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RNA-seq based detection of 
differentially expressed genes in 
the skeletal muscle of Duroc pigs 
with distinct lipid profiles
T. F. Cardoso1,2, A. Cánovas1, O. Canela-Xandri3, R. González-Prendes1, M. Amills1,4 & 
R. Quintanilla3

We have used a RNA-seq approach to investigate differential expression in the skeletal muscle of swine 
(N = 52) with divergent lipid profiles i.e. HIGH (increased intramuscular fat and muscle saturated and 
monounsaturated fatty acid contents, higher serum lipid concentrations and fatness) and LOW pigs 
(leaner and with an increased muscle polyunsaturated fatty acid content). The number of mRNAs and 
non-coding RNAs (ncRNAs) expressed in the porcine gluteus medius muscle were 18,104 and 1,558, 
respectively. At the nominal level of significance (P-value ≤ 0.05), we detected 1,430 mRNA and 12 
non-coding RNA (ncRNA) transcripts as differentially expressed (DE) in the gluteus medius muscle of 
HIGH vs LOW pigs. This smaller contribution of ncRNAs to differential expression may have biological 
and technical reasons. We performed a second analysis, that was more stringent (P-value ≤ 0.01 
and fold-change ≥ 1.5), and only 96 and 0 mRNA-and ncRNA-encoding genes happened to be DE, 
respectively. The subset of DE mRNA genes was enriched in pathways related with lipid (lipogenesis and 
triacylglycerol degradation) and glucose metabolism. Moreover, HIGH pigs showed a more lipogenic 
profile than their LOW counterparts.

Several RNA-seq studies have been carried out on different pig breeds in order to identify genes involved in 
fat deposition and meat quality1,2. Besides analysing gene expression differences, these studies aimed to dissect 
the complex networks of pathways and genes that determine porcine phenotypes of economic interest. In this 
way, the expression patterns of porcine liver, longissimus dorsi and abdominal fat were examined in two full-sib 
hybrid pigs with extreme phenotypes for growth and fatness traits3. The proportion of tissue-specific mRNA 
transcripts happened to be quite modest (< 10%) and several microRNAs (miRNAs) were differentially expressed 
(DE) across tissues. Other studies analysing differential gene expression in muscle, fat and liver tissues of Iberian 
x Landrace pigs with extreme phenotypes for muscle fatty acid (FA) composition revealed that DE loci are inte-
grated in common pathways related with LXR/RXR activation, peroxisome proliferator-activated receptors 
(PPARs) and β -oxidation1,4,5. A recent analysis comparing Iberian and Iberian x Duroc pigs also identified LXR/
RXR activation and cholesterol synthesis as enriched pathways in the set of DE genes2. In contrast, the potential 
role of ncRNAs in muscle fat deposition has been scarcely studied in pigs4,6.

In a previous experiment, we demonstrated that genes involved in FA uptake, lipogenesis, triacylglycerol syn-
thesis, lipolysis and insulin signalling are DE in the skeletal muscle of Duroc pigs with divergent lipid pheno-
types7. One drawback of this study was that gene expression was measured with microarrays, which have a limited 
dynamic range, sensitivity (specially for low-abundance transcripts) and specificity. Moreover, the expression of 
non-coding RNAs could not be measured with Affymetrix porcine microarrays. In the current work, we aimed to 
circumvent all these limitations by analysing, through a RNA-seq approach, the muscle transcriptome of a subset 
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of these Duroc pigs. Our goal was to determine the relative contributions of protein-coding and non-coding 
RNAs to differential expression in the skeletal muscle of pigs with distinct lipid profiles.

Results
The RNA-seq experiment allowed us generating an average of 133 million paired-end reads per sample and 72.8% 
of them were successfully mapped to the pig Sscrofa10.2 genome assembly. The percentages of exonic and intronic 
reads were 91.4% and 8.6%, respectively. After quality control analysis, four samples were discarded. Thereby, we 
used a final dataset of 26 animals per group (HIGH and LOW) to identify DE genes.

Differential expression of mRNA encoding genes. A total of 1,430 mRNA genes happened to be 
DE when considering exclusively a significance threshold of P-value ≤  0.05 (Supplementary Table S1). Only 76 
of these 1,430 mRNA-encoding genes were identified as DE by Cánovas et al.7 when they compared the gene 
expression of HIGH and LOW pigs retrieved from the same population employed by us (Supplementary Figure 1, 
Supplementary Table S2). When we performed a more stringent analysis (P-value ≤  0.01 and fold-change ≥ 1.5), 
96 genes were DE (Supplementary Table S3). Moreover, twenty-one genes remained significant after correction 
for multiple testing (q-value ≤  0.05 and fold-change ≥ 1.5) as shown in Table 1.

We used the IPA package (QIAGEN Redwood City, www.qiagen.com/ingenuity) to identify pathways to which 
DE genes belong to as well as to explore the existence of signalling networks connecting DE genes. Forty four 
pathways were significantly enriched in the dataset of 96 DE genes (Supplementary Table S4). This information 
should be interpreted with caution because, in general, pathways were represented by a small number of genes and 
statistical significance was not very high. Amongst the enriched pathways, it is worth to mention TR/RXR activa-
tion, synthesis of palmitate and stearate, FA biosynthesis, triacylglycerol degradation, and the conversion of ace-
tate into acetyl-CoA (Table 2, Supplementary Table S4). A complementary analysis with the ReactomeFIViz app8  
revealed 50 significant pathways (Supplementary Table S5). Differentially expressed mRNA genes were also 
grouped in gene regulatory networks with the IPA software. As shown in Supplementary Table S6, we found 
eleven regulatory networks related with a variety of functions, and the top-scoring one was that of Cardiovascular 
Disease, Cardiovascular System Development and Function, Organismal Injury and Abnormalities (Fig. 1 and 
Supplementary Table S6).

The Regulator Effects tool of the IPA package was employed to identify potential transcriptional regulators 
that may explain the differential patterns of expression observed between HIGH and LOW pigs (Fig. 2). By doing 
so, two main transcriptional regulators were identified i.e. peroxisome proliferator-activated receptor γ (PPARG) 
and platelet-derived growth factor BB (PDGFB). In the network shown in Fig. 2, these genes appear to be 
involved in an heterogeneous array of biological functions related with the quantity of carbohydrate, insulin sen-
sitivity, necrosis of prostate cancer cell lines and apoptosis of lymphocytes. Indeed, the PPARG gene (P-value =  
0.02 and FC = 1.36) is depicted as a key regulator of genes related with carbohydrate metabolism (CEBPA, CES1, 
CIDEC) and the inhibition of insulin sensitivity (CES1, CIDEC, FASN).

Ensembl ID Gene name Fold-Change P-value q-value

ENSSSCG00000005648 SLC27A4 1.66 1.32E-06 4.28E-03

ENSSSCG00000027946 MVP 1.78 2.63E-06 5.97E-03

ENSSSCG00000017232 SLC9A3R1 1.72 1.26E-05 1.36E-02

ENSSSCG00000005935 AGO2 1.59 1.77E-05 1.43E-02

ENSSSCG00000003379 KLHL21 1.79 1.61E-05 1.43E-02

ENSSSCG00000011740 SERPINI1 − 1.81 2.48E-05 1.72E-02

ENSSSCG00000001931 GRAMD2 − 1.58 2.74E-05 1.76E-02

ENSSSCG00000011444 NT5DC2 1.54 3.26E-05 1.76E-02

ENSSSCG00000007574 SDK1 1.58 2.97E-05 1.76E-02

ENSSSCG00000007745 SUMF2 − 1.54 4.21E-05 1.95E-02

ENSSSCG00000000293 ITGA5 1.72 4.46E-05 1.96E-02

ENSSSCG00000007133 ACSS1 1.51 5.18E-05 2.09E-02

ENSSSCG00000028814 SOD3 1.97 5.37E-05 2.09E-02

ENSSSCG00000006277 SPIDR 2.04 5.90E-05 2.19E-02

ENSSSCG00000007554 ZFAND2A 2.54 1.01E-04 2.88E-02

ENSSSCG00000003105 SLC1A5 1.67 1.17E-04 3.07E-02

ENSSSCG00000010529 SFRP5 2.03 1.31E-04 3.11E-02

ENSSSCG00000006245 SDR16C5 3.02 1.36E-04 3.15E-02

ENSSSCG00000013579 CD209 1.95 1.50E-04 3.31E-02

ENSSSCG00000008232 RNF181 − 2.09 2.05E-04 3.57E-02

ENSSSCG00000030165 MAFF 1.67 2.22E-04 3.72E-02

Table 1. List of the most significant differentially expressed genes in HIGH and LOW pigs after correcting 
for multiple testing (q-value ≤ 0.05 and fold-change ≥ 1.5). A negative FC means that the affected gene is 
overexpressed in LOW pigs.

http://www.qiagen.com/ingenuity
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Differential expression of non-coding RNAs. We identified 1,558 ncRNA transcripts expressed in the 
pig gluteus medius muscle, with sizes between 53 and 9,032 bp (Supplementary Table S7). Amongst these, 1,354 
and 204 transcripts were classified as small (sncRNA) and long (lncRNA) non-coding RNAs, respectively. It is 
important to emphasize that the annotation of porcine ncRNAs is still very preliminar and it should be taken with 
caution. In general, sncRNA had orthologous sequences in other mammalian species, while lncRNAs were much 
less conserved (Table 3). We only detected 12 ncRNAs (11 lncRNAs and 1 sncRNA) that were DE at the nominal 
level (P-value ≤  0.05), while none of these ncRNAs remained significant after correction for multiple testing (in 
all cases the q-value was non-significant, Table 4).

In addition, we identified 25 mRNA-encoding genes that mapped near (30 kb or less) to the subset of DE 
ncRNA loci (Table 5). This observation may have biological implications because ncRNAs often cis-regulate 
the expression of genes located in their vicinity. Within this list of neighbouring genes (Table 5), CU468594.8 
(P-value = 0.003 and FC = 1.26) and MT-ND6 (P-value = 0.038 and FC = −1.21) mRNAs are DE in HIGH vs 
LOW pigs (P-value < 0.05 and 1.2-fold change in expression).

Discussion
Divergent muscle mRNA expression profiles in pigs with extreme phenotypes for fatness 
traits. After correcting for multiple testing, twenty-one genes, displaying a wide array of functional roles, 
showed a significant DE between HIGH and LOW pigs (Table 1). For instance, SLC27A4 is involved in the trans-
location of long-chain fatty acids across the plasma membrane9 while SFRP5  plays a role in anti-inflammatory 
and insulin-sensitizing processes10 and AGO2 and MVP contribute to RNA interference11 and signal transduction 
and transport12, respectively. Two of the genes listed in Table 1 might be related with meat quality i.e. RNF181, 
which encodes a E3 ubiquitin-protein ligase that participates in the degradation of muscle proteins through the 
ubiquitin-proteasome system13, and SDK1, which has been associated with intramuscular fat (IMF) content in 
Large White pigs14.

The Spearman correlation between the microarray data reported by Canovas et al.7 in 68 HIGH and LOW pigs 
and RNA-seq data generated in the current study (N =  52) was 0.54. This value is comparable to what has been 
published in previous studies analysing gene expression in human brain cells (r =  0.61–0.67)15 and proliferating vs 
quiescent fibroblasts (r =  0.18–0.42)16. We also compared our dataset of DE genes with those detected by Canovas 
et al.7. As shown in Suppl Figure 1 the level of concordance was quite low (only 76 genes were simultaneously 
identified by both platforms). A modest overlap between microarray and RNA-seq data has been reported in 
previous studies. For instance, Trost et al.16 analysed the concordance between both types of data in fibroblasts 
cultured at two different developmental stages, and they just found an overlap of around 25% in the two lists of 
DE genes. This value is higher than the one reported by us, but it is important to highlight that the analysis of 
Trost et al.16 was based on a set of probes common to both platforms. Moreover, the microarray analysis per-
formed by Canovas et al.7 was based on a dataset of around 68 pigs, while we used a subset of 52 individuals in 
our RNA-seq analysis. Trost et al.16 used quantitative real-time PCR as a third approach to validate microarray 
and RNA-seq data and they found that RNA-seq outperforms the microarray technology. However, differences 
between both methods are not dramatic i.e. the Spearman correlations between microarray and RNA-seq data vs 
qPCR validation results were 0.44 and 0.56, respectively. This means that both technologies detect different sets of 
DE expressed genes and, in consequence, they are complementary17. According to Wang et al.18, the magnitude of 
the treatment effect has a strong impact on the level of concordance between microarray and RNA-seq platforms 
i.e. large discrepancies can be anticipated when two similar biological conditions are compared. Low-abundance 
transcripts are another source of discrepancy between both methodological approaches18.

We found some evidence that pathways related with lipid synthesis (stearate, palmitate and FA synthesis) and 
catabolism (triacylglycerol degradation), glucose metabolism (glucose synthesis and degradation) and hormonal 
response (growth hormone signalling) were enriched in the set of DE genes (Table 2 and Supplementary Table S4).  
Similar results were obtained by Cánovas et al.7 i.e. they detected an overexpression of pathways related with the 
synthesis of FA and insulin signaling in HIGH pigs. Puig-Oliveras et al.1 compared the muscle mRNA expression 
of pigs with high saturated (SFA) and monounsaturated (MUFA) FA muscle contents against those with a high 
polyunsaturated FA (PUFA) content and also observed an enrichment of pathways related with fat deposition 

Ingenuity Canonical Pathways −log(p-value) Ratio Nodes

Acute Myeloid Leukemia Signaling 3.22 4/91 CEBPA, FLT3, RUNX1, STAT3

Hematopoiesis from Pluripotent Stem Cells 2.98 3/47 CD3E, CD8E, CSF1

Primary Immunodeficiency Signaling 2.96 3/48 CD3E, CD8E, ZAP70

Hepatic Fibrosis/Hepatic Stellate Cell Activation 2.12 4/183 CCR5, CSF1, IGFBP4, TIMP1

TR/RXR Activation 2.08 3/98 BCL3, FASN, SYT2

Palmitate Biosynthesis I (Animals) 2.07 1/2 FASN

Fatty Acid Biosynthesis Initiation II 2.07 1/2 FASN

CTLA4 Signaling in Cytotoxic T Lymphocytes 2.07 3/99 CD3E, CD8A, ZAP70

Retinoate Biosynthesis I 2.04 2/34 RDH5, SDR16C5

Stearate Biosynthesis I (Animals) 2.02 2/35 FASN, SLC27A4

Table 2.  IPA-based pathway analysis of the list of genes that are differentially expressed in HIGH and LOW 
pigs (P-value ≤ 0.01 and fold-change ≥ 1.5). Ratio: number of DE genes in a pathway divided by the number 
of genes comprised in the same pathway.
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(PPAR and insulin signalling) in the set of DE genes. Insulin stimulates the absorption of glucose, which is a 
lipogenic substrate, and PPARG enhances triglyceride storage19. By using the same animal material employed by 
Puig-Oliveras et al.1, Corominas et al.5 observed an overexpression of genes belonging to the LXR/RXR activa-
tion pathway in the adipose tissue of pigs with high muscle SFA and MUFA contents. These results, which agree 
well with ours (Supplementary Table S4), make sense because liver X receptors are sterol-activated transcription 
factors that enhance lipogenesis20.

Though not all studies comparing pigs with divergent lipid phenotypes identify the same sets of pathways, 
an outcome that partly depends on the software and databases used as well as on the targeted tissue and phe-
notype variability, the general trend that emerges is that biochemical routes that promote lipid deposition are 
overexpressed in the skeletal muscle of fat pigs with high muscle SFA and MUFA contents. In close concordance 
with a previous study7, we have also found that one gene that promotes the catabolism of triglycerides, carbox-
ylesterase 1 (CES1), is strongly upregulated in HIGH pigs (P-value =  0.0006, FC =  2.4). The CES1 protein has 
hydrolase activity and its inactivation leads to hyperlipidemia and increased fat deposition in peripheral tissues, 
obesity, fatty liver, hyperinsulinemia and insulin insensitivity and a decreased energy expenditure21. According to 
Cánovas and coworkers7, the upregulation of lipolytic genes in HIGH pigs suggests the existence of a cycle where 
triacylglycerols are continuously synthesized and degraded. However, we have also detected the downregulation 
of lipolytic genes such as lipase C, hepatic type (LIPC, P-value =  0.002, FC =  −1.5)22, a feature that suggests that 
the mechanisms that promote an adequate balance between anabolic and catabolic lipid metabolism routes are 
highly complex.

Analysis of the data with the IPA software (QIAGEN) showed that the top-scoring regulatory network was 
Cardiovascular Disease, Cardiovascular System Development and Function, Organismal Injury and Abnormalities, a 
result that it is not surprising given the tight relationship between lipoprotein metabolism and cardiovascular risk23.  
In the network shown in Fig. 1, the V-Akt murine thymoma viral oncogene homolog molecule (AKT) occupies a cen-
tral position, having connections with several DE lipid-related genes (e.g., TRIB3, TIMP1 and ITGA5). Interestingly,  
AKT is one of the main regulators of glucose homeostasis24, a feature that is consistent with the existence of tight 
links between lipid and carbohydrate metabolism.

When we used the Regulator Effects tool of IPA, the PPARG and PDGFB genes were predicted to be major 
transcriptional regulators of the set of 96 DE loci (Fig. 2). The PPARG transcription factor is critically required 
for adipogenesis, being a powerful modulator of whole-body lipid homeostasis and insulin sensitivity25.  
Polymorphism in the PPARG gene is associated with individual susceptibility to type 2 diabetes, obesity and body 
mass index26. In our study, PPARG is upregulated (P-value = 0.02 and FC = 1.36) in HIGH pigs and appears to 
regulate several genes, such as CEBPA (P-value = 0.009 and FC = 1.64), CES1 (P-value = 0.0004 and FC = 2.03), 

Figure 1. The top-scoring regulatory network identified with the IPA software corresponded to Cardiovascular 
Disease, Cardiovascular System Development and Function, Organismal Injury and Abnormalities. Genes that 
are upregulated and downregulated in HIGH pigs (when compared with the LOW ones) are displayed within red 
and green nodes, respectively. Solid and dashed lines between genes represent known direct and indirect gene 
interactions, respectively. The shapes of the nodes reflect the functional class of each gene product: transcriptional 
regulator (horizontal ellipse), transmembrane receptor (vertical ellipse), enzyme (vertical rhombus), cytokine/
growth factor (square), kinase (inverted triangle) and complex/group/other (circle).
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CIDEC (P-value = 0.0005 and FC = 2.46) and FASN (P-value = 0.0009 and FC = 2),  that play distinct roles in lipid 
metabolism (http://www.genome.jp/kegg/pathway.html).

Limited contribution of the non-coding RNA transcriptome to differential expression between 
HIGH and LOW pigs. Non-coding RNAs have been shown to regulate gene expression by interacting with 
chromatin complexes, working as RNA enhancers, recruiting or assembling certain proteins and interacting with 
other RNAs at the post-transcriptional level27. In consequence they may play a fundamental role in the metabo-
lism of the porcine skeletal muscle. In our study, we have identified 1,558 muscle-expressed ncRNA transcripts 

Figure 2. The Regulator Effects tool of the IPA package was employed to identify two major upstream 
regulators (PPARG and PDGFB) of the networks of differentially expressed genes. This tool integrates 
Upstream Regulator results with Downstream Effects results to build causal hypotheses that help to interpret what 
may be occurring upstream to cause particular phenotypic or functional outcomes downstream (http://www.
ingenuity.com/products/ipa/ipa-spring-release-2014). In the upper tier, there are two upstream regulators (PPARG 
and PDGFB) predicted to be activated (orange color). In the middle tier, we can see the genes whose expression 
changes in response to the activation of upstream regulators (red = upregulation). The shapes of the nodes reflect 
the functional class of each gene product: enzyme (vertical rhombus), transcription regulator (vertical ellipse), 
cytokine/growth factor (square), ligand-dependent nuclear receptor (horizontal rectangle) and complex/group/
other (circle). In the lower tier, the expected phenotypic consequences of changes in gene expression are shown by 
considering the Ingenuity Knowledge Base (absolute z-score > 2 and P-value < 0.05). The octagonal symbol defines 
Function, while solid and dashed lines between genes represent known direct and indirect gene interactions, 
respectively. Orange leads to activation, while blue leads to inhibition predicted relationships. Orange (predicted to 
be activated) and blue (predicted to be inhibited) lines represent relationships with causal consistency.

Transcript Transcript Type Number Conserved ncRNA

Small ncRNA

miRNA 433 137

misc_RNA 95 82

Mt-rRNA 2 0

Mt-tRNA 22 0

rRNA 57 52

snoRNA 417 395

snRNA 328 273

Long ncRNA

Non coding 4 0

Processed transcript 143 0

Antisense 15 0

lincRNA 42 0

Table 3.  Evolutionary conservation of non-coding RNAs transcribed in the porcine gluteus medius muscle. 
miRNA =  microRNAs; misc_RNA =  miscellaneous other RNA; Mt-rRNA =  Mitochondrial ribosomal RNA;  
Mt-tRNA =  transfer RNA located in the mitochondrial genome; rRNA =  ribosomal RNA; snoRNA =  small nucleolar 
RNA; snRNA =  small nuclear RNA; lincRNA =  Long intergenic non-coding RNAs.

http://www.ingenuity.com/products/ipa/ipa-spring-release-2014
http://www.ingenuity.com/products/ipa/ipa-spring-release-2014
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(Supplementary Table S7). The total number of ncRNAs in the pig genome is currently unknown, but Zhou  
et al.28 highlighted the existence of at least 6,621 long intergenic non-coding RNAs (lincRNA) transcripts encoded 
by 4,515 gene loci. In humans, 58,648 lncRNA encoding loci have been identified so far29. In our dataset (Table 3), 
the degree of evolutionary conservation of sncRNAs happened to be much higher than that of lncRNAS. Zhou  
et al.28 characterized the porcine lincRNA transcriptome and found that only 40% of the transcripts had a detect-
able human lincRNA ortholog. This scarcity of orthologous sequences can be due, in part, to the poor annotation 
of ncRNAs in all investigated species.

Ensembl ID Gene ID Size (bp) Fold Change P-value Type of ncRNA

ENSSSCG00000031004 CH242-227G20.3 1833 − 1.44 0.002 lincRNA

ENSSSCG00000031028 CH242-15C8.2 1495 − 1.34 0.014 lincRNA

ENSSSCG00000015579 PTGS2 3601 − 1.47 0.016 Processed transcript

ENSSSCG00000030904 CU468594.10 1083 − 1.49 0.025 Non coding

ENSSSCG00000001227 TMP-SLA-3 1767 − 1.31 0.026 Processed transcript

ENSSSCG00000030767 TMP-SLA-5 1147 − 1.29 0.027 Processed transcript

ENSSSCG00000015549 RNASEL 2716 − 1.87 0.028 Processed transcript

ENSSSCG00000018090 Unavailable 70 − 2.05 0.036 Mt-tRNA

ENSSSCG00000001397 TMP-CH242-74M17.4 1726 − 1.27 0.038 Processed transcript

ENSSSCG00000001227 TMP-SLA-3 1700 − 1.3 0.043 Processed transcript

ENSSSCG00000004334 MAP3K7-001 2818 − 1.72 0.044 Processed transcript

ENSSSCG00000015897 IFIH1 3720 − 1.6 0.046 Processed transcript

Table 4. List of non-coding RNAs that are differentially expressed (at the nominal level, P-value ≤ 0.05) 
in the gluteus medius muscle of HIGH and LOW pigs. A negative FC means that the affected gene is 
overexpressed in LOW pigs; lincRNA = Long intergenic non-coding RNAs, Mt-tRNA = transfer RNA located in 
the mitochondrial genome. 

Non-coding RNA
Neighboring  
mRNA gene

Fold  
Change P-value

RPKM-means 
LOW

RPKM-means 
HIGH

CH242-15C8.2 USP9X − 1.02 0.500 10.70 10.50

CH242-227G20.3
PDK3 − 1.03 0.435 8.97 8.69

PCYT1B − 1.07 0.461 0.35 0.33

CU468594.10

CU468594.8 1.26 0.003 1.40 1.77

CPSF1 1.10 0.020 12.60 13.90

SLC39A4 1.24 0.316 0.09 0.11

FBXL6 − 1.03 0.777 1.88 1.84

ADCK5 − 1.04 0.865 2.82 2.72

TMEM249 1.07 0.587 0.08 0.08

ENSSSCG00000018090

MT-ND2 − 1.15 0.024 5019.58 4372.26

MT-ATP6 − 1.13 0.033 25335.60 22504.43

MT-ND6 −1.21 0.038 5199.05 4287.84

MT-COX2 − 1.12 0.051 20299.35 18062.05

MT-ND5 − 1.16 0.051 3264.12 2809.24

MT-COX1 − 1.13 0.064 24826.52 21886.25

MT-ND3 − 1.10 0.086 4413.22 4010.71

MT-CYTB − 1.10 0.123 10033.49 9149.34

MT-ATP8 − 1.07 0.162 6421.54 5974.98

MT-COX3 − 1.08 0.164 31328.03 28896.14

MT-ND1 − 1.06 0.197 8412.34 7957.73

MT-ND4 − 1.04 0.243 5784.35 5564.63

MT-ND4L − 1.03 0.289 2042.94 1980.50

IFIH1 FAP − 1.10 0.665 2.56 2.33

RNASEL RGS8 2.22 0.300 0.11 0.24

TMP-SLA-5 and TMP-CH242-74M17.4 SLA-1 − 1.17 0.123 79.31 67.50

Table 5.  Protein-encoding genes that map near (30 kb) to the subset of 12 differentially expressed ncRNAs 
(HIGH vs LOW pigs). Differentially expressed ncRNAs and mRNAs (HIGH vs LOW pigs) P-value ≤ 0.05, 
Fold Change ≥ 1.2) are shown in bold. A negative Fold Change means that the affected gene is overexpressed in 
LOW pigs.
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There is growing evidence that there might be a positive correlation between the expression of ncRNAs and 
nearby mRNA encoding genes, suggesting that the former may regulate the expression of the latter30. We inves-
tigated this issue by analysing if there are DE protein-coding genes in the vicinity of any of the 12 DE ncRNAs 
identified in our work (P-value ≤ 0.05, Tables 4 and 5). Two protein-coding genes, i.e. mitochondrially encoded 
NADH:ubiquinone oxidoreductase core subunit 6 (MT-ND6) and CU468594.8, fulfilled this condition (P-value 
≤ 0.05 and FC ≥ 1.2, Table 5). The MT-ND6 gene encodes a NADH dehydrogenase that catalyses the oxidation of 
NADH by ubiquinone, an essential step in the mitochondrial electron transport chain31. The CU468594.8 locus 
is orthologous to human solute carrier family 52-riboflavin transporter, member 2 (SLC52A2). Riboflavin is the 
precursor of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), two essential cofactors that 
participate in a wide range of redox reactions32,33.

We aimed to ascertain if differences amongst HIGH and LOW pigs, in terms of IMF content and composition, 
are mainly due to the DE of either mRNA or ncRNA encoding genes. When considering a nominal P-value of 
0.05 as a threshold of significance, the number of DE ncRNAs (12 loci) was much smaller than that of DE mRNAs 
(1,430 loci), even if we take into account that the number of expressed mRNAs (18,104) was also higher than that 
of ncRNAs (1,558). Moreover, none of the DE ncRNAs remained significant after correction for multiple testing. 
In a recent experiment, the transcriptome of pig endometrial samples collected at different pregnancy stages 
was characterized, and 2,376 transcripts were identified as DE in pairwise comparisons34. Only 12% of these 
transcripts corresponded to lncRNAs indicating that changes in the endometrial transcriptome associated with 
pregnancy mainly affect the expression of protein-coding genes. However, studies performed in humans indicate 
a much more balanced contribution of mRNAs and ncRNAs to differential expression. For instance, Wang et al.35 
investigated the expression patterns of peripheral leukocytes of healthy and autistic individuals and identified 
3,929 and 2,591 DE lncRNAs and mRNAs, respectively. Similarly, Zhou et al.36 identified 891 and 576 DE mRNAs 
and lncRNAS, respectively, when comparing the expression patterns of ectopic and eutopic endometrial tissue. 
These differences between humans and pigs are probably the consequence of technical rather than biological 
causes, evidencing the pressing need of improving the genomic and functional annotation of porcine ncRNAs.

Conclusions
By comparing the mRNA expression of HIGH and LOW pigs by RNA-seq, we have identified 96 loci display-
ing differential expression (P-value ≤  0.01 and FC ≥  1.5). Many of these loci were not detected in a previous 
microarray-based experiment, suggesting that distinct platforms detect different sets of DE genes. Lipid biosyn-
thetic pathways were enriched in DE genes and upregulated in HIGH pigs, a result that is consistent with previous 
reports. We have also undertaken the analysis of non-coding RNAs, a feature that has been neglected in previous 
studies investigating the differential expression of porcine genes. Our results indicate that the number of DE 
non-coding RNAs is much lower than that of mRNAs, an outcome that might be partly explained by the poor 
annotation of porcine ncRNAs.

Material and Methods
Ethics statement. All experiments were performed in accordance with the ARRIVE guidelines (https://
www.nc3rs.org.uk/arrive-guidelines). Animal care and management procedures were approved by the Ethical 
Committee of the Institut de Recerca i Tecnologia Agroalimentàries, IRTA.

Animal Material. One population of 350 Duroc barrows belonging to 5 half-sib families, and distrib-
uted in 4 fattening batches was generated in 2003. All animals were kept under the same feeding and man-
agement conditions37. A wide array of growth, fatness, feed efficiency and carcass and meat quality traits were 
recorded in these animals, including weight, daily food intake, fat deposition, and IMF content and composi-
tion (C:12-C:22 interval) of the gluteus medius muscle7. By using a principal component analysis based on 13 
lipid-related traits, we selected two groups of pigs, i.e. HIGH and LOW, displaying distinct phenotypic profiles7 
(Supplementary Table S8). Compared with their LOW counterparts, HIGH pigs were fatter and they had a higher 
IMF, SFA and MUFA muscle contents as well as elevated serum lipid concentrations7. LOW pigs, in contrast, had 
a higher muscle PUFA content7.

RNA isolation and library construction and sequencing. Total RNA was isolated from 56 porcine 
gluteus medius muscle samples (28 HIGH and 28 LOW) by using the acid phenol method implemented in the 
RiboPure kit (Ambion, Austin, TX). Total RNA was quantified in a Nanodrop ND-1000 spectrophotometer, 
checked for purity and integrity in a Bioanalyzer-2100 device (Agilent Technologies, Inc., Santa Clara, CA) and 
submitted to the Centre Nacional d’Anàlisi Genòmica (CNAG, http://www.cnag.cat) for sequencing. Libraries 
were prepared using the TruSeq RNA Sample Preparation Kit (Illumina Inc) according to the protocols recom-
mended by the manufacturer. Each library was paired-end sequenced (2 ×  75 bp) by using the TruSeq SBS Kit 
v3-HS, in a HiSeq2000 platform.

Bioinformatic analyses. All bioinformatic analyses were performed with the CLC Bio Workbench soft-
ware (CLC Bio, Aarhus, Denmark). Quality control was carried out with the NGS Core Tools, considering sev-
eral parameters based on the FastQC-project (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). We 
carried out per-sequence and per-base analyses to filter reads according to the following criteria: sequence-read 
distribution =  75 bp, 100% coverage in all bases, GC-content ~50%, ~25% of A, T, G and C nucleotide contribu-
tions, ambiguous base-content < 0.1% and a Phred score higher than 30 (i.e. base-calling accuracy larger than 
99.9%). Short sequence reads were assembled, mapped and annotated by using as template the pig reference 
genome version 10.2 (Sscrofa10.2-http://www.ensembl.org/info/data/ ftp/index.html). For mapping purposes, we 
just considered alignments with a length fraction of 0.7 and a similarity fraction of 0.8. Besides, two mismatches 
and three insertions and deletions per read were allowed.

https://www.nc3rs.org.uk/arrive-guidelines
https://www.nc3rs.org.uk/arrive-guidelines
http://www.cnag.cat
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.ensembl.org/info/data/
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Gene expression data were normalized by calculating the reads per kilobase per million mapped reads 
(RPKM)38. Using scales of abundance estimates by exon length and millions of mapped reads, original expression 
values were transformed and normalized. More specifically, data were transformed on a decimal logarithmic scale 
and a scaling algorithm was utilized for the normalization of average scores39. For the statistical analysis of differ-
ential expression, we used a two-tailed t-test that assumes a Gaussian distribution and homogeneous variances. 
This statistical test compares the mean expression levels in the two experimental groups (HIGH vs LOW) and 
evaluates the significance of the difference relative to the variance of the data within the groups. Multiple testing 
correction was performed by using a false-discovery rate approach (cut-off =  0.05) implemented in the QVALUE 
R package40. Fold-Change was computed as the ratio of HIGH vs LOW gene expressions (a negative FC means 
that the affected gene is upregulated in LOW pigs).

Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity) was used to identify 
gene ontologies, pathways, and regulatory networks to which DE genes belong to, as well as upstream regulators. 
Ingenuity Pathway Analysis can transform a set of genes into a number of relevant networks based on com-
prehensive records maintained in the Ingenuity Pathways Knowledge Base. Networks are presented as graphs 
depicting the biological relationships between genes/gene products. Genes are shown as nodes, and the molec-
ular relationship between two nodes is represented with either a solid (direct interactions) or a dashed (indirect 
interactions) line. The analysis of upstream regulators considers every possible transcription factor and upstream 
regulator contained in the Ingenuity Knowledge Base repository as well as their predicted effects on gene expres-
sion (inferred from the scientific literature). Then, this tool analyses if the patterns of expression observed in 
the DE genes can be explained by the activation/inhibition of any of these regulators through the calculation of 
a z-score i.e. a statistical measure of the match between expected relationship direction between the regulator 
and its targets and observed gene expression41. A parallel analysis was performed with the Cytoscape software42 
by using the ReactomeFIViz app8. IPA and Cytoscape analyses were performed on a subset of DE genes, with 
P-value ≤  0.01 and a FC ≥  1.5. Transcript classification and the search of homologs of porcine ncRNAs in other 
mammalian species were carried out with tools implemented in the BioMart web interface (http://www.ensembl.
org/biomart/martview).
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