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Background and Objective. Although radiotherapy has become one of the main treatment methods for cancer, there is no
noninvasive method to predict the radiotherapeutic response of individual glioblastoma (GBM) patients before surgery. The
purpose of this study is to develop and validate a machine learning-based radiomics signature to predict the radiotherapeutic
response of GBM patients. Methods. The MRI images, genetic data, and clinical data of 152 patients with GBM were analyzed.
122 patients from the TCIA dataset (training set: n = 82; validation set: n = 40) and 30 patients from local hospitals were used as
an independent test dataset. Radiomics features were extracted from multiple regions of multiparameter MRI. Kaplan-Meier
survival analysis was used to verify the ability of the imaging signature to predict the response of GBM patients to radiotherapy
before an operation. Multivariate Cox regression including radiomics signature and preoperative clinical risk factors was used to
further improve the ability to predict the overall survival (OS) of individual GBM patients, which was presented in the form of a
nomogram. Results. The radiomics signature was built by eight selected features. The C-index of the radiomics signature in the
TCIA and independent test cohorts was 0.703 (P < 0:001) and 0.757 (P = 0:001), respectively. Multivariate Cox regression
analysis confirmed that the radiomics signature (HR: 0.290, P < 0:001), age (HR: 1.023, P = 0:01), and KPS (HR: 0.968, P < 0:001)
were independent risk factors for OS in GBM patients before surgery. When the radiomics signature and preoperative clinical
risk factors were combined, the radiomics nomogram further improved the performance of OS prediction in individual
patients (C‐index = 0:764 and 0.758 in the TCIA and test cohorts, respectively). Conclusion. This study developed a radiomics
signature that can predict the response of individual GBM patients to radiotherapy and may be a new supplement for precise
GBM radiotherapy.

1. Introduction

Glioblastoma is the most common malignant tumour of the
central nervous system in adults. At present, the standard
therapy for glioblastoma patients is surgery and radiotherapy
and adjuvant or concurrent chemotherapy [1]. The median
survival time of glioblastoma is 14-15 months [2]. However,
in the actual clinical practice, the difference in OS of individ-
ual GBM patients is very significant [3–5]. As one of the main
methods of cancer treatment, radiotherapy plays an impor-
tant role in the comprehensive multimodal treatment of
GBM. In the era of personalized medicine, the core principle
of precision medicine is that cancer treatment should be

adjusted according to the biological heterogeneity of individ-
ual patients. However, the current radiotherapy plan still
assumes that each patient benefits from the same dose plan
[6], ignoring the heterogeneity of individual tumour patients.
It means that clinical practice needs a marker that can predict
the response of radiotherapy to lead to more personalized
clinical decision making or dose adjustments for patients.

Recent studies have developed and validated some
genetic markers for predicting radiotherapeutic response in
individual cancer patients. By clustering four different
microarray experiments, Kim et al. built a radiotherapeutic
response prediction signature [7] containing 31 genes. The
31-gene signature has been validated in independent clinical
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datasets of different cancer types, including glioblastoma
[8], low-grade gliomas [9], head and neck tumours [10],
and oesophageal cancer [11]. Eschrich et al. constructed
the tumour radiosensitivity index (RSI) [12], which has
also been verified in a number of different types of tumour
datasets [13].

However, the main drawback of these signatures for pre-
dicting response to radiotherapy is that tumour samples must
be sequenced, which can only be performed after surgery or
biopsy. At the same time, a GBM tissue biopsy is associated
with a risk of neurological impairment, and the small sam-
ples obtained cannot reflect the overall heterogeneity of the
whole tumour.

Therefore, in order to overcome these limitations, it is
necessary to develop a noninvasive technology to identify
the tumour response to radiotherapy. Radiomics has the
advantages of being highly specific and noninvasive. It
can mine high-throughput quantitative features from tradi-
tional medical images and apply them to clinical decision-
making or improve the accuracy of diagnosis and prognosis
[14, 15]. Compared with traditional methods, radiomics has
two unique advantages. First, radiomics allows semiauto-
matic or automatic extraction of features and provides more
quantitative data than qualitative analysis. Second, by
extracting the features of different subregions, the tumour
phenotype can be described in depth, which not only reflects
the macroscopic characteristics of the tumour tissue but also
reflects the molecular characteristics of tumour and the
responsiveness to treatment [16–18]. The study by Grossmann
et al. showed that extracting the image features of GBM from
multiple sequences and multiple subregions can provide a
variety of tumour biological information, including informa-
tion about the cell cycle, inflammation, and immune response,
which affects the prognosis of patients [19]. Beig et al. success-
fully constructed a radiomics scoring model to evaluate hyp-
oxia in GBM patients by using the expression profiles of 21
genes related to the hypoxia pathway of GBM [20]. All of these
indicate that radiomics is an extremely promising method to
assist in the development of individualized treatment strategies
for GBM [21].

This study hypothesized that the radiotherapeutic
response of GBM patients may be related to the high-
dimensional information in different subregions of MR
images and developed a radiomics signature based on a
machine learning algorithm to predict the radiotherapeutic
response of GBM patients. The performance for predicting
the OS of individual GBM patients was further improved
by constructing a nomogram combining the imaging
markers and clinical factors.

2. Methods and Materials

2.1. Patients. In this retrospective study, a total of 152 patho-
logically confirmed GBM patients were included: 122 from
the TCGA-GBM [22] dataset in the cancer imaging database
(TCIA) [23] and 30 from a local hospital dataset (January
2013 to February 2019). To evaluate the prognostic value of
radiomics signature, OS was calculated as the time from the
initial diagnosis to death or censure point (June 15, 2020) if

patients were still alive. At the median 14.7-month follow-
up, 11 (36.67%) patients from the local hospital were alive.

TCIA (http://www.cancerimagingarchive.net) is a pub-
licly available database, and the medical images of patients
are deidentified; therefore, it does not need the approval of
the institutional review committee. The data from the local
hospital were approved by the ethics committee of the hospi-
tal, and informed consent of the patients was waived. All
images were obtained at the time of the initial diagnosis.

The inclusion criteria for the TCIA dataset used to build
the radiomics signature were as follows: (1) newly diagnosed
histologically confirmed GBM (WHO classification IV); (2)
preoperative MRI images with a complete sequence, includ-
ing T1-weighted, postcontrast T1-weighted, T2-weighted,
and T2 flair (T1W, T1c, T2W, and T2FLAIR, respectively)
images; (3) original dataset with corresponding gene expres-
sion values (HU-133A); and (4) satisfactory image quality.

Using patients from a local hospital (n = 30) and the
TCIA dataset receiving radiotherapy (n = 102), the ability of
the radiomics signature to predict individual GBM patients’
radiotherapeutic responses was verified. The inclusion cri-
teria for these data were as follows: (1) GBM (WHO classifi-
cation IV) with newly diagnosed histology; (2) postoperative
radiotherapy; (3) preoperative MRI images with complete
sequences, including T1-weighted, postcontrast T1-weighted,
T2-weighted, and T2 flair (T1W, T1c, T2W, and T2FLAIR,
respectively); (4) satisfactory image quality; and (5) OS that
could be achieved through follow-up. The flowchart of this
study is shown in Figure 1. The detailed data exclusion process
in TCIA is described in Supplement S1 and Figure S1, and the
local dataset is described in Supplement S2 and Figure S2.

2.2. MRI Data Acquisition

2.2.1. MR Image Acquisition of TCIA Cohort. MRI was per-
formed with a 1.5 or 3.0T scanner before operation. In TCIA
images, the T1 sequence parameters were as follows: TR/TE,
352-3379msec/2.75-19msec; and slice thickness, 1-5mm.
The parameters of the T1 enhancement sequence were as
follows: repeat time (TR)/echo time (TE), 4.9–3285msec/
2.1–20msec and slice thickness, 1–5mm. The parameters of
the T2 sequence were as follows: TR/TE, 700-6370msec/
15-120msec and slice thickness, 1.5-5mm. The parameters
of the T2FLAIR sequence were as follows: TR/TE, 6000–
11000msec/34.6–155msec and slice thickness, 2.5–5mm.

2.2.2. Local Cohort MR Image Acquisition. Preoperative MRI
was performed with a 3.0T scanner (GE Signa HD xt) and 8-
channel array coil. In the images from the local hospital, the
parameters of the T1 sequence were as follows: TR/TE, 139-
409msec/2.46-2.48msec and slice thickness, 5mm. The
parameters of the T1 enhancement sequence were as follows:
TR/TE, 220–2300msec/2.34–2.5msec and slice thickness, 1-
5mm. The parameters of the T2 sequence were as follows:
TR/TE, 4000-6000msec/92-125msec and slice thickness,
5mm. The parameters of the T2FLAIR sequence were as
follows: TR/TE, 7000–9000msec/81–85msec and slice thick-
ness, 5mm.
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2.3. Radiotherapeutic Response. The TCGA-GBM dataset in
the TCGA (The Cancer Genome Atlas) database was used
to evaluate the radiotherapeutic response of individual
GBM patients. Gene expression data (HU-133A microarray)
corresponding to the TCIA image data were obtained from
the UCSC Xena browser (https://xenabrowser.net). Accord-
ing to the previous study [7] of Kim et al., a 31-gene model
was used to evaluate the radiotherapeutic response, which is
a model to calculate the SF2 (2Gy survival fraction, which
represented radiosensitivity) value distribution of individual
patients through gene expression.

Based on the expression of the specific 31 genes in the
TCGA dataset, the patients were divided into two groups
by a hierarchical clustering method (k = 2): radiotherapy
effective group (RE) and radiotherapy resistance group
(RR). Kaplan-Meier survival analysis was performed to verify
the prediction results of the 31-gene model.

2.4. Image Preprocessing and Tumour Segmentation. Image
preprocessing was mainly performed through the FMRIB
software library (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL)
and with Python’s SimpleITK package. To increase the
robustness of features as much as possible through prepro-
cessing [24], the following steps were adopted in this study:

use of FLIRT in FMRIB to coregister the same T1WI image
[25] as the template. After skull stripping, the isotropic voxel
was resampled [26] to 1 × 1 × 1mm3. N4ITK [27] was used
to correct the bias field of each image sequence to eliminate
the influence of pixel extremum in the image as much as pos-
sible. Since the image data were collected by different centres,
a landmark-based method [28] was used to standardize the
intensity. Then, the SUSAN method [29] (Smallest Univalue
Segment Assimilating Nucleus) was used to smooth the
image to reduce the interference of high-frequency intensity
changes in different images. The image preprocessing process
is shown in Figure 1.

GLISTR (glioma image segmentation and registration)
software [30] was used to segment the image automatically.
After preprocessing, the image was automatically divided
into four segmentation subregions, i.e., the tumour enhance-
ment area, tumour nonenhancement area, peritumoural
edema area, and whole tumour. After that, two different
radiotherapy doctors reviewed and revised the segmentation
results together. Figure 2 shows an example of the segmenta-
tion results.

2.5. Radiomics Feature Extraction. Based on the above
four subregions, five groups of features were extracted by
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Figure 1: A flowchart describing the radiomics method for prediction of radiotherapy response. (1) Preprocess the original image;
(2) delineate the subregion ROI by GLISTR; (3) feature extraction using pyradiomics; (4) 31-gene signature were used to predict the result of
the corresponding data, and a label was generated. (5) Feature selection by the Boruta algorithm; (6) modeling by a variety of machine
learning methods, ROC curve, and AUC evaluation model; (7) building a prediction model by combining radiomics signature features
and clinical features, finally displaying the OS prediction results by nomogram.
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pyradiomics including the following: (I) shape features, (II)
intensity features, (III) texture features, (IV) intensity and
texture features under wavelet transformation, and (V)
intensity and texture features under Gaussian Laplace trans-
formation. Shape features describe the shape and volume of
the tumour. Intensity features refer to the first-order statistics
of all voxel intensity values in the region of interest (ROI).
Texture features use the Gray Level Cooccurrence Matrix
(GLCM), Gray Level Dependence Matrix (GLDM), Gray
Level Run-Length Matrix (GLRLM), Gray Level Size-Zone
Matrix (GLSZM), and Neighbouring Gray Tone Difference
Matrix (NGTDM) to quantify sharp changes in the gray
spectrum. Wavelet and Gaussian Laplacian features are
obtained by extracting voxel features and texture features,
respectively, after applying wavelet or Gaussian Laplace
transformation to the image. These two processes can obvi-
ously show the features of the image edge. Finally, for each
image, 28496 features were extracted from four segmentation
regions of four sequences. For the detailed definition of fea-
tures, please refer to Supplement S3.

2.6. Radiomics Feature Selection. The Boruta algorithm [31]
was used for feature selection. Boruta is a packing algorithm
for selecting all relevant features. After comparing the impor-
tance of original features and random features for modeling,
the important features were arranged from top to bottom,
and the P values were corrected by the Benjamin Hochberg
method to ensure their reliability. To ensure the robustness
and replicability of features, 20 cases were randomly selected
from all datasets. A region of interest (ROI) was generated
after GLISTR automatic segmentation. The generated ROI
was modified by different doctors to generate two indepen-
dent groups of new ROIs.

The two new groups of new ROIs including four subre-
gions were used to extract the corresponding radiomics fea-
tures from four sequences of MRI images in 20 cases, and
the intraclass correlation coefficient (ICC) of each feature
was calculated [32]. Among them, the features with an ICC
of 0.9 were considered to be robust [33] and were included
in the study.

2.7. Radiomics Signature and Nomogram Construction. To
develop the radiomics signature, all cases from the TCIA
database were stratified and sampled by a computer-
generated random number according to the ratio of 2 : 1
and were divided into a training set (n = 82) and a validation
set (n = 40). Because the data from the RE and RR groups
were unbalanced, the training set was first balanced by using

the synthetic minority oversampling technique (SMOTE)
algorithm [34]. The SMOTE algorithm is a kind of oversam-
pling algorithm for fewer classes. It is generally considered
that it can effectively balance imbalanced samples. Several
machine learning algorithms, such as logistic regression
(logistic), random forest (RF), support vector machine
(SVM), k-nearest neighbour (KNN), and Xgboost (Xgboost,
extreme gradient boosting), were used to model. The input
of the model was the selected features, and the output was
the results of the 31-gene model prediction.

The purpose of using these machine learning methods
was to build a model to predict the radiotherapeutic response
of GBM patients by inputting quantitative image features
before surgery. Through 10-fold cross-validation, a grid
search was carried out on the training set to determine the
optimal tuning parameters of each machine learning algo-
rithm. The AUC and ROC curve were used to evaluate the
model in the training set and validation set, respectively,
and the most suitable model was selected.

Due to the lack of gene expression data in local hospitals,
we used an indirect method to verify the model indepen-
dently. We hypothesized that among the 30 local GBM
patients with basically the same treatment, the OS of the clus-
ter with strong response to radiotherapy should be longer
than that of the patients with radiotherapy resistance and
was verified by Kaplan survival analysis. In order to further
construct the OS prediction model for individual GBM
patients, univariate and multivariate Cox regression models
were used to evaluate the effects of the radiomics signature
and clinical factors (such as KPS, age, gender, and tumour
location) on OS. Multivariate Cox regression was performed
for independent risk factors and presented in the form of a
nomogram. The calibration curve was used to evaluate the
consistency between the nomogram and the observed values,
and the Harrell consistency index (C-index) was used to
quantify the discrimination performance.

2.8. Statistical Analysis. All data were analyzed by SPSS
(version 19.0), R software (3.4), and Python (3.7). Pearson’s
chi-squared test or Student’s t-test (as appropriate) were per-
formed with SPSS to evaluate the differences between the
TCIA and local hospital datasets in terms of age, gender,
KPS, survival status, OS, etc. The statistical significance levels
were all two-sided, with the statistical significance level set at
0.05. The C-index was calculated with the “hmisc” software
package. ROC curves were drawn using the “pROC” package.
Feature selection used the R package which is “Boruta,” and
classifier building was mainly performed using the following

Figure 2: The segmentation result of tumour subregions overlapped on T1WI, CE-T1WI, T2WI, and FLAIR images.
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Python packages: “Gridsearchcv,” “Sklearn,” “SMOTE,” and
“Xgboost.”

3. Results

3.1. Patient Characteristics. First, gene expression data of 122
patients were included in the 31-gene model to calculate the
distribution of the SF2 value. In order to test the accuracy of
this distribution, Kaplan survival analysis was performed in
102 patients who received radiotherapy. It can be seen that

Cluster0 in the red part on the left side is the RR group,
and Cluster1 in the blue part is the RE group (P < 0:05), as
shown in Figure 3.

The clinical data and results of the model are summarized
in Table 1. There was no significant difference in age, gender,
KPS, and OS between the TCIA dataset and independent test
group (P > 0:05). In this study, 122 cases from the TCIA
dataset were divided into the RR group (13 cases) and the
RE group (109 cases). The reason for this result is that the
31-gene model is a marker to distinguish the responsiveness
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Figure 3: Hierarchical clustering was used to determine the expression pattern of the 31-gene signature on the samples from TCGA
(Figure 3(a)). The samples in the red branch on the left side of the dendrogram are classified as Cluster0, while the samples in the blue
branch on the right side are classified as Cluster1. After using Kaplan-Meier survival analysis, the prognosis of Cluster0 is different from
that of Cluster1, so according to Kim et al.’s report, Cluster0 was subclassified as the radiotherapy resistance group (RR), whereas Cluster1
was a radiotherapy effective group (RE) (Figure 3(b)).
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to radiotherapy in the sample, and the results of the cluster
analysis depend on the sample size and median value.

3.2. Feature Selection. After using the Boruta algorithm for
feature selection and applying the Benjamin Hochberg
method to correct the P value, 8 features were retained, as
shown in Table 2.

All features selected by the Boruta algorithm were quali-
fied (the ICC value was higher than 0.9). A summary of the
ICC results for the features can be found in Supplement S4
and Figure S3.

3.3. Radiomics Signature Construction. The AUCs of RF,
SVM, KNN, logistic, and Xgboost were 0.980, 0.965, 0.969,
0.974, and 0.962, respectively, and 0.937, 0.874, 0.874,
0.931, and 0.880, respectively. The ROC curves of the five
machine learning methods are shown in Figure 4, and the

accuracy, sensitivity, and specificity of the model are summa-
rized in Tables 3 and 4. Because of the best performance, the
RF model was chosen as the final radiomics signature model.

3.4. Survival Analysis. Individual GBM patients’ radiothera-
peutic responses to radiotherapy in the TCIA (n = 102)
and test (n = 30) datasets were predicted using radiomics
signature.

After Kaplan-Meier analysis, as shown in Figure 5, the
C-index of the radiomics signature in the TCIA and test
datasets was 0.703 (95% CI: 0.642-0.764, P < 0:001) and
0.757 (95% CI: 0.663-0.851, P = 0:001), respectively.

3.5. Construction and Evaluation of Nomogram. Univariate
and multivariate Cox regression analyses using the radiomics
signature, age, and KPS as independent risk factors were
performed (radiomics signature: HR: 0.290, 95% CI: 0.160-
0.526, P < 0:001; age: HR: 1.023, 95% CI: 1.005-1.040, P =
0:01; and KPS: HR:0.968, 95% CI: 0.950-0.987, P < 0:001).

According to the relevant factors of the multivariate
Cox regression analysis, the nomogram was constructed
(Figure 5). The C-index of the nomogram in the TCIA data-
set was 0.764 (95% CI: 0.723-0.806, P < 0:001), and that of
the test dataset was 0.758 (95% CI: 0.667-0.838, P < 0:001),
indicating that the prediction performance was improved.
The calibration curves of 1-, 2-, or 3-year OS probability after
radiotherapy are shown in Figure 6. The calibration curve of
the nomogram shows that there is satisfactory consistency
between the prediction and observation possibility of OS in
1, 2, and 3 years in the TCIA and independent test datasets.

4. Discussion

This study built a radiomics signature based on three texture,
one shape, and four intensity features and verified that it can
predict the response of individual patients to radiotherapy on
an independent test dataset.

Since the model constructed in this study only predicted
the results of a 31-gene model through preoperative images,
it was not necessary to consider whether the patient had
received radiotherapy in the modeling stage of this study.
In the validation stage of this model, because the 31-gene
model is only a model with predictive effect in patients who
have received radiotherapy, only 102 of 122 patients who
have received radiotherapy are included in the validation
phase.

Different from other studies using radiomics to predict
the response to radiotherapy [35], this study used a 31-gene
signature. This is because there are many confounding fac-
tors in reflecting the response ability of patients to radiother-
apy with clinical results. However, the 31-gene clustering
model based on the SF2 value can only predict the individ-
ual’s response ability after radiotherapy [7] and has been ver-
ified [8]. Therefore, the radiomics signature constructed in
this study can be verified by a Kaplan-Meier survival curve;
that is, the OS of the sensitive cluster is longer than that of
the resistant cluster.

Since the model constructed in this study only predicted
the results calculated by a 31-gene model through

Table 1: Characteristics of patients in the TCIA and independent
test datasets.

Characteristic
TCIA

(N = 102)
Huadong
(N = 30) P

Ages (years) 0.856

Range 17-80 18-73

Median 57.5 54

Mean ± SD 56:10 ± 14:35 52 ± 13:68
Gender, No. (%) 0.847

Female 40 (39.22%) 13 (43.33%)

Male 62 (60.78%) 17 (56.67%)

Status, No. (%) 0.0011

Alive 10 (9.8%) 11 (36.67%)

Dead 92 (90.2%) 19 (63.33%)

KPS 0.2795

KPS > 60 75 21

KPS ≤ 60 17 9

Not reported 10 0

Tumour location 0.377

Frontal lobe 24 12

Temporal lobe 43 11

Parietal lobe 19 4

Occipital lobe 8 3

Insular lobe 6 0

Callosum lobe 2 0

OS (months) 0.6516

Range 1-74.87 3.3-52.43

Median 14.30 14.77

Mean ± SD 18:90 ± 15:23 17:53 ± 10:70
31-gene prediction result

RH 89 —

RR 13 —

Radiomics prediction result 0.8813

RH 85 24

RR 17 6
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preoperative images, it was not necessary to consider whether
the patient had received radiotherapy in the modeling stage
of this study. In the validation stage of this model, because
the 31-gene model is only a model with predictive effect in
patients who have received radiotherapy, only 102 of 122

patients who have received radiotherapy are included in the
validation phase.

In order to further improve the ability to predict the OS
of individual patients, this study constructed a nomogram
including the radiomics signature and preoperative clinical

Table 2: A summary of the high-throughput radiomics features extracted.

MRI sequences Region Group Feature name Type

T1WI Whole tumour Shape MinorAxisLength Origin

CE-T1WI Edema Texture MeanAbsoluteDeviation Wavelet-HHL

CE-T1WI Enhancement Texture GLCM_JointEnergy Wavelet-LLH

CE-T1WI Enhancement Texture GLDM_DependenceNonUniformityNormalized Wavelet-LLH

CE-T1WI Enhancement Intensity 90Percentile Wavelet-LHH

CE-T1WI Enhancement Intensity 90Percentile Wavelet-HLH

T2WI Whole tumour Intensity 90Percentile Log-sigma-1-mm

T2WI Nonenhancement Texture GLSZM-SizeZoneNonUniformity Wavelet-LHH
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Figure 4: Receiver operating characteristic (ROC) curves of training (a) and validation (b) sets under different machine learning algorithms.
It can be seen from the figure that the random forest algorithm performs best. KNN: k-nearest neighbour; logistics: logistic regression; SVM:
support vector machine; Xgboost: extreme gradient boosting; RF: random forest.

Table 3: A summary of the AUC with different machine learning methods on the TCIA dataset.

Algorithm AUC 95% CI SENS SPEC ACC P

RF 0.980 0.942-0.996 0.946 0.932 0.939 <2.2e-16
SVM 0.965 0.921-0.988 0.905 0.972 0.939 <2.2e-16
KNN 0.969 0.926-0.990 0.757 0.932 0.844 <2.2e-16
Logistic 0.974 0.933-0.993 0.932 1 0.966 <2.2e-16
Xgboost 0.962 0.917-0.987 0.865 0.905 0.885 <2.2e-16
SENS: sensitivity; SPEC: specificity; ACC: accuracy.
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factors. The C-index of the nomogram was 0.764 (95% CI:
0.723-0.806, P < 0:001) and 0.758 (95% CI: 0.667-0.838,
P < 0:001) in the TCIA dataset and independent test dataset,
which was higher than that with the single application of the
radiomics signature (the C-index of the TCIA dataset was
0.703, 95% CI: 0.642-0.764, P < 0:001; and the C-index of
the independent test dataset was 0.757, 95% CI: 0.663-
0.851, P = 0:001), indicating that the combination of multiple
risk factors can improve the ability to predict the OS of indi-
vidual GBM patients. MGMT methylation or IDH mutation
status was not included in this study because the purpose of
this study was to build a radiomics signature to predict the
response of individual GBM patients to radiotherapy by
extracting preoperative imaging features. MGMT methyla-
tion and IDHmutation status need to be obtained after oper-
ation or biopsy, which undoubtedly limits the application of
the nomogram in patients who cannot be operated.

Multiparameter imaging sequences contain the compre-
hensive information of the tumour; for instance, T1WI
images reflect the anatomical information of the tumour,
and CE-T1WI images include information regarding tumour
local angiogenesis and blood-brain barrier damage. Previous
studies have shown that multisequence imaging features can

be used to predict the heterogeneity and gene expression of
individual tumours. The radiomics signature included 1
edema subregion, 4 tumour enhancement subregions, 1
tumour nonenhancement subregion, and 2 overall tumour
features. This may be because the nonenhancement subre-
gion is related to the process of apoptosis. The features of
the enhancement subregion are related to the process of sig-
nal transduction and protein folding, and the edema subre-
gion mainly reflects the process of the cell cycle [19]. These
tumour biological pathways are related to the function of
the genes in the 31-gene signature and have been proven to
be related to the response ability of cells to radiation [7].

The core of precision medicine is to make clinical deci-
sions according to individual heterogeneity. For GBM, radio-
therapy has become an important part of standard therapy.
How to choose the most appropriate treatment strategy or
adjust the radiotherapy dose parameters to better match the
biological phenotypes of individual patients has become a
problem.

In a recent study [36], the authors combined gene expres-
sion values with traditional LQ models to build a dose-
response model for individual patients. According to the
model, patients can be divided into several clusters, and the

Table 4: A summary of the AUC with different machine learning methods on the independent test dataset.

Algorithm AUC 95% CI SENS SPEC ACC P value

RF 0.937 0.813-0.989 0.829 1 0.9 <2.2e-16
SVM 0.874 0.732-0.957 0.771 0.800 0.775 1.375e-08

KNN 0.874 0.731-0.958 0.714 0.800 0.725 7.63e-05

Logistic 0.931 0.805-0.987 0.886 1 0.900 <2.2e-16
Xgboost 0.880 0.738-0.961 0.886 0.800 0.875 6.851e-09

SENS: sensitivity; SPEC: specificity; ACC: accuracy.

100

50

O
ve

ra
ll 

su
rv

iv
al

 (p
ro

b.
)

0
0 500 1000

Time (days)
1500 2000 2500

Pre = 0
Pre = 1

(a) Prediction of radiomics signature in TCIA dataset

100

50

O
ve

ra
ll 

su
rv

iv
al

 (p
ro

b.
)

0
0 500 1000

Time (days)
1500 2000 2500

Pre = 0
Pre = 1

(b) Prediction of radiomics signature in test dataset

Figure 5: Using Kaplan-Meier analysis to verify the performance of radiomics signature. The response ability of GBM patients to
radiotherapy was successfully divided into the high-risk group (radiotherapy resistance group, pre = 0) and low-risk group (radiotherapy
effective group, pre = 1) according to the prediction results of radiomics signature. There were significant differences in TCIA (a) and test
(b) datasets between the high-risk group and the low-risk group.
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Figure 6: Continued.
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response degree of each cluster to the same dose is very dif-
ferent. This shows that it is necessary to adjust the dose of
radiotherapy for individual patients. At present, the recom-
mended standard procedure postoperative treatment is the
combination of conventional fractionated radiotherapy
(RT) and temozolomide (TMZ), followed by adjuvant TMZ
[37]. Neoadjuvant TMZ can improve the sensitivity of
patients to radiotherapy [37], and a phase II clinical trial
has confirmed that the use of neoadjuvant TMZ before radio-
therapy can increase the OS of GBM patients [38]. Tumour-
treating fields (TTFs) is the latest GBM recommended ther-
apy in the NCCN (National Comprehensive Cancer Net-
work) guidelines, and a previous clinical study found that
in addition to its antimitotic effect, this technique can also
specifically delay DNA repair and increase DNA-induced
damage, thus increasing the radiosensitivity of tumour cells
[39–40]. Therefore, it is very important to predict the
response of GBM patients to radiotherapy. For those clusters
with radiotherapy resistance, the individual clinical decision
of using TTF or neoadjuvant TMZ before radiotherapy may
prolong the OS of individual patients.

There are some limitations to this study. First, although
the study included an independent test dataset, it had a rela-
tively small sample size with retrospective data. Increasing
the sample size to improve the robustness of the model is
the main work in the next stage. To ensure the robustness
and repeatability of the research, multicentre data should be
collected. Second, limited by the TCIA database, only four
kinds of conventional MRI sequences (T1WI, CE-T1WI,
T2WI, and T2FLAIR) were used in the dataset in this study,
but no other sequences (such as DCE or DTI) were included.
Third, a more accurate OS should be from the time of radio-
therapy to death or censure point. Although postoperative
radiotherapy has been the standard treatment for GBM,
due to the limitations of the TCIA dataset, detailed treatment

information (such as the use and type of chemotherapy
drugs, the dose of radiotherapy, or the start time of radiother-
apy) cannot be obtained. Therefore, this study used the time
from diagnosis to censure point as OS to roughly evaluate the
impact of radiotherapy on survival. This rough evaluation
has a certain impact on the accuracy of this study. Finally,
although a variety of image preprocessing methods are used
in this study, different imaging parameters and protocols still
affect its radiologic characteristics to a certain extent. More-
over, most of the image parameters are removed from TCIA
image data, so the normalization method cannot be used fur-
ther. This is the main reason why the application of radio-
mics is currently limited.

5. Conclusion

In this study, a noninvasive radiomics signature was built by
combining the previous 31-gene signature with radiomics,
which was proven to predict the response of GBM patients
to radiotherapy on independent test datasets. Compared with
the 31-gene model prediction after surgery, the radiomics
signature constructed by the machine learning algorithm
can predict the response ability of radiotherapy before oper-
ation. The performance of predicting individual patients’ OS
can be further improved by using the constructed nomogram
with the radiomics signature, age, and KPS, and this tech-
nique may be a new attempt for providing precise GBM
radiotherapy.

Data Availability

The data from TCIA and UCSC can be downloaded from
http://www.cancerimagingarchive.net and https://xenabrowser
.net. The data from the local hospital can be obtained from
the corresponding author as reasonably required.
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Figure 6: The nomogram constructed by radiomics signature, KPS, and age (a). The calibration curve of the nomogram shows that the
prediction and observation possibilities of TCIA (b) and test (c) datasets are satisfactory.
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