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Abstract

The Iterative Closest Point (ICP) algorithm is currently one of the most popular methods for
rigid registration so that it has become the standard in the Robotics and Computer Vision
communities. Many applications take advantage of it to align 2D/3D surfaces due to its pop-
ularity and simplicity. Nevertheless, some of its phases present a high computational cost
thus rendering impossible some of its applications. In this work, it is proposed an efficient
approach for the matching phase of the Iterative Closest Point algorithm. This stage is the
main bottleneck of that method so that any efficiency improvement has a great positive
impact on the performance of the algorithm. The proposal consists in using low computa-
tional cost point-to-point distance metrics instead of classic Euclidean one. The candidates
analysed are the Chebyshev and Manhattan distance metrics due to their simpler formula-
tion. The experiments carried out have validated the performance, robustness and quality
of the proposal. Different experimental cases and configurations have been set up including
a heterogeneous set of 3D figures, several scenarios with partial data and random noise.
The results prove that an average speed up of 14% can be obtained while preserving the
convergence properties of the algorithm and the quality of the final results.

Introduction

The advance of the computational sciences is heading to the development of applications and
technologies oriented towards improving the quality of life of the citizens. In this context, the
automatic knowledge of the world surrounding us provide information for offering valuable
services [1, 2]. The new application environments such as internet of things and mobile com-
putation demand the development of methods able to be used in more restrictive scenarios.
Shape registration is a key stage in the process of reconstruction or acquisition of 3D sur-
faces so that it is considered a cornerstone in the fields of computer vision and graphics. It is
also a task of major importance in many other fields like biometric applications [3], 3D model
reconstruction from multiple range images [4], medical diagnostic support tools and computer
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aided interventions [5], quality control of manufactured pieces [6], and robotic applications
ranging from full environment reconstruction for navigation to particular objects 3D model
creation and tracking [7].

Nowadays, range sensors obtain depth information so that we can capture 3D datasets from
different points of view, each one of them represented using a particular coordinate system. A
lot of applications like the ones mentioned before require a full or partial scene reconstruction
from the data provided by the sensors over different points of view. In order to reconstruct the
surfaces or shapes of the original scene, we have to combine the different datasets with their
own coordinate systems in a process called “shape registration”.

The goal of shape registration is the transformation of different 3D datasets to represent
them in one common coordinate system so that those elements that overlap in both sets are
properly aligned allowing the reconstruction of the original surfaces. The registration process
may be applied to rigid or non-rigid shapes. In the case of rigid shapes, the transformations
which aligns both surfaces are rigid too (rotation and translation) so that the solution space is
bounded to six degrees of freedom. On the other hand, non-rigid shape requires a non-rigid
transformation which takes into account the possibility of deformation so that the solution
space is increased considerably.

Registration can be classified according to its granularity, distinguishing coarse and fine
grained methods. The objective of coarse grained registration is to obtain a quick estimate of
the transformation to roughly align both shapes while fine grained techniques use that initial
estimate to refine it iteratively in order to find the best alignment in terms of precision under a
set of restrictions.

Currently, the most popular method for 3D rigid registration for the Robotics community is
the Iterative Closest Point (ICP) algorithm [8]. This is a fine grained registration method char-
acterized by its simplicity and effectiveness. A wide set of applications of different fields make
use of this algorithm in order to compute rigid registrations, however, the algorithm has a high
computational complexity (quadratic with respect to the number of points in its original vari-
ant) which renders impossible or at least makes difficult certain applications which require the
processing of high density point sets provided by high precision sensors.

The search for solutions to overcome this problem is the main motivation of this research.
Many variants have been proposed in the literature to improve the algorithm’s performance,
either by reducing the number of points or by decreasing the needed iterations or even reduc-
ing the complexity of its most expensive phase in terms of computing resources: the search of
nearest neighbours. Nevertheless, despite reducing its complexity, in many cases those variants
tend to have a negative impact on precision or even on the convergence domain, limiting the
possible application scenarios. Hence, the general objective of this research is to find ways to
improve the performance of the algorithm without affecting the quality nor reducing its possi-
ble application scenarios.

The main contribution of this work is a general improvement for the algorithm, carried out
by an interdisciplinary research based on the fusion of mathematical and geometric concepts,
such as distance metrics, with its computational component by taking into account their asso-
ciated operative cost and their impact on the algorithm's execution time. The proposed modifi-
cation of the distance metric is focused on improving the low-level computing performance at
the hardware layer of the system architecture. The focus is to design a distance as simple as pos-
sible. That is, that use the fewer number of mathematical arithmetic functions with the lower
costs. The novelty of the proposal lies in easing the computational effort of the ICP algorithm
by fitting the calculations to the arithmetic hardware of the architecture. In this way, a better
adaptation of the methods to the hardware implies a better performance [9]. In addition,
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computer arithmetic techniques such as pre-calculated results [10] and imprecise computation
paradigm [11] could be used in order to further improving the performance.

The working hypothesis of the research consist on speeding up the mathematical distance
function in which the ICP is based without perceptible effects on quality and robustness.

To achieve this goal, this work analyses other distance metrics whose computational

cost is reduced respect to the Euclidean one and evaluates the algorithm's convergence prop-
erties as well as the registration quality in terms of convergence domain and final registration
error.

The rest of this paper is structured as follows: Section 2 provides a general view of the most
remarkable variants of the ICP algorithm published, focusing on those whose goal is to acceler-
ate the method; in addition, those elements which differentiate our proposal are outlined; sec-
tion 3 introduces the ICP algorithm and the proposed distance metrics; Section 4 describes the
experiments that will be carried out; next, Section 5 discusses the main results of the experiment;
at last, Section 8 concludes this work with an overview of the results and the accomplished goals
to end the paper putting this work in context with other proposals and enumerating some future
work possibilities.

Related Work

This section discusses the state-of-the-art of ICP algorithm. It is not intended to be exhaustive
but to show the most remarkable works as representative of the intensive research on this
topic.

The research efforts are mainly focused on designing variants of the algorithm with specific
features for certain applications and/or increasing the performance by improving the stages of
the calculation method. The ICP algorithm can be divided into six stages [12]: point selection,
matching, pair weighting, outlier removal, error metric, and minimization. The next subsec-
tions review the previous works and the relevant proposals of the algorithm for each one of its
stages, focusing on matching and error metric because our proposal will directly impact on
them.

The Table 1 provides a summary of the contributions outlined in this review which has
been organized according to the part of the algorithm addressed. Finally, a findings subsection
is added which describes our contributions to previous work.

Rigid Registration issue and ICP algorithm

There are several review works relating to the general rigid registration issue [13-16] and
works focused specifically on to the study of the ICP algorithm as a whole and its different ver-
sions [17, 18].

Among the different variants of the algorithm, it is worth highlighting the probabilistic reg-
istration for high accuracy alignment [19], the extension of the ICP algorithm for non-rigid
registration [20, 21] and the variants focused on the inclusion of a priori knowledge to improve
registration [22]. As we previously noted, one of the main problems of the algorithm is its high
complexity, quadratic with respect to the number of points, because of the need of computing
the distances of all points of one point cloud to all points of the other in order to obtain the
closest point. In that sense, a lot of variants have directed their efforts toward the reduction of
that complexity by using k-dimensional trees [23], closest points caching [24], k-means binary
space-partitioning trees [25], or even hardware parallel implementations on CPU [26] or GPU
[27].
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Table 1. Main contributions outlined.

Problem addressed Research works
Rigid Registration issue and ICP  Surface registration techniques [13]
algorithm * Image registration methods [14]
* Registration of 3D point clouds [15]
* Shape correspondence [16]
« Efficient variants of the ICP algorithm [17]
* Accurate free form shape matching [18]
* Probabilistic registration [19]
* Non-rigid registration [20, 21]
* Inclusion of a priori knowledge [22]
* Using Kd-trees [23]
» Using closest points caching [24]
 Binary space-partitioning trees [25]
* Hardware implementations on CPU [26] and GPU [27]
Point selection * Uniform subsampling [28]
* Random selection [29]
* Selection based on color or intensity information [30]
* Normal-space sampling [12]
Matching ¢ Inclusion of additional properties [30, 31]
» Taking into account different types of noise [32]
Pair weighting * Weights based on normal colors [33]
* Weights based on compatibility criteria

Outlier removal * Rejection of a percentage of the worst correspondences [34]
* Rejection of pairs over a certain threshold [12]
* Rejection of pair in the mesh boundaries [9]
* Rejection of pairs which aren’t consistent neighbours [35]
Error metric ¢ Point-to-point metric [8]
¢ Point-to-plane metric [36]

Minimization ¢ Unitary quaternions method [37]

 Singular Value Decomposition (SVD), orthonormal matrices or
double quaternions [38]

* Gradient descent, annealing or physical system simulations [39]

doi:10.1371/journal.pone.0164694.t001

Point selection

There are variants on point selection performing a uniform subsampling [28], random selec-
tion [29], based on color or intensity information [30] or even normal-space sampling [12].
These methods have been validated as a simple and effective way of accelerating the algorithm.
Our proposal introduces no change during this phase, but all the previously mentioned
improvements may be coupled with ours without any problems.

Matching

Some variants have focused their contribution on the inclusion of additional properties in the
Euclidean distance metric used to make the point correspondences. For example, by adding
information about color [30] or surface normals [31]. Other contributions adapted the algo-
rithm to take into account anisotropic and heterogeneous noise [32] in which the Euclidean
metric was replaced by the Mahalanobis distance, proving the possibility of exchanging the
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distance metrics. Our proposal introduces changes it this stage, the Euclidean distance metric
is replaced by other metrics to reduce the computational cost.

Pair weighting

Various implementations include some kind of weight to each pair of corresponding points in
order to improve the robustness of the algorithms when facing certain situations. The most
popular weighting schemas try to assign weights based on normal colors, point-to-point dis-
tance [33] and compatibility criteria [12]. In general, these methods do not affect speed but
they improve the quality for certain scenarios. Our proposal does not change this stage. How-
ever, as before, these improvements can work together with in a fully compatible manner.

Outlier removal

In order to solve the presence of statistical outliers multiple variants have been proposed with
the objective of rejecting these negative correspondences: rejection of a percentage of the worst
correspondences [34], rejection of pairs whose distance is over a certain threshold [12], rejec-
tion of pair in the mesh boundaries [28] or even rejection of pairs which aren't consistent with
their neighbours [17]. Again, our method makes no improvement in this stage since our main
goal is not the robustness of the method but its speed. However, we can always use other vari-
ants of this stage together with our proposal.

Error metric

There are two main error metrics that are profoundly tested and widely used: the point-to-
point metric [8] and the point-to-plane one [36]. The point-to-point distance consists of the
summation of the quadratic distances between the points of the model and source point clouds.
On the other hand, the point-to-plane distance takes into account the distance between the
points of the source to the tangent planes in which the model points are. These basic error met-
rics can be modified to take into account other variants of the original algorithm to improve its
robustness. In fact, many of the previously mentioned variants apply changes over the error
metric. In our case, it is implemented the original point-to-point error metric using the same
distance metric as used in the matching stage to ensure the consistency of the algorithm. That
is, the Euclidean or the proposed low-cost distance metric in each case.

Minimization

The next step is the minimization of the function or error metric previously selected. In the
case of the original metric [8] there are multiple closed-form solutions: the unitary quaternions
method [37], SVD decomposition, ortonormal matrices or double quaternions [38]. In addi-
tion, there are many non-closed-form solutions based on gradient descent, simulated annealing
or physical system simulations [39]. These works compare different strategies for the minimi-
zation of the point-to-point metric and states that all of them achieve similar results regarding
speed and precision since they all converge in linear time and offer floating point precision
[38]. On the other hand, the use of a point-to-plane metric [36] usually requires the use of least
squares non-linear methods for minimizing the error function.

Findings

Many variants of the ICP algorithm have been proposed affecting all phases of the method
with the objective of reducing their computational cost and the convergence time. There are
proposals oriented to improve the overall algorithm (for example probabilistic [19], KD-trees
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[23], uniform subsampling [28] or random selection [29]) and others designed for specific
application scenarios (for example, using a priori [22] or color information [30, 33] were that
information are available).

In this work, it is described a straight-forward contribution to the algorithm by using low
computational cost distance metric. The proposed operations are built from simple arithmetic
functions of the instruction set of the standard computer architecture. This approach comple-
ments the previous works and should be applicable to the other variants of the ICP algorithm
reported since they all are using distance metrics. In the next section, the proposed distance
metrics are studied from an analytical point of view.

Distance Operator Methods
The ICP algorithm

Rigid registration can be formulated as an optimization problem with certain restriction whose
objective is the alignment of surfaces or 3D data.

Let M and D be two point sets of n dimensions with cardinality of Nj; and Np, respectively.
Set M is commonly referred as model and D as data. The objective is to align the data point
cloud with the model one, in other words, obtain the rigid transformation ® which minimizes
the mean square error between the model and the data points once the transformation (a rota-
tion R and a translation T) is applied to the source point set D. The objective function that has
to be minimized is:

SR T) = 32 llm — Rd) ~ 7If (1)
where my; is each point of the model set (M) and d; is each point of the data set (D).

The ICP algorithm is one of the most popular and widely used methods for performing
rigid registration and solve Eq (1). Its functioning is based on the closest point criteria used for
establishing the correspondences, so that the corresponding point for a source point is its clos-
est one in the model [8]. The distances between the points are calculated by using the Euclidean
distance metric to define the closest point operator.

Given two 3D-points p; and p,, the Euclidean distance between both of them d(p;, p,) is
the length of the segment which connects them ||p, —p;||- Given a point p and a point set A
(with n individual points), we define the Euclidean distance of the point to the set d(p,A)
as the minimum of the distances of p to each one of the points of the set A, in other words,

d(p, A) = min,c 4 d(p, a). So that, the function which obtains the closest point to p in the point
set A can be defined as follows:

fe(p, A) = arg min,, d(p, a) (2)

The algorithm sets a correspondence between each point d; of the source point set D and the
closest point in the model which will be named y; € Y, forming the set of closest points to D.
From this statement we deduce that Y C M, y € M and Ny = Np,.

The closest point operator C which produces the point set Y = C(D, M) in which each point
y; is the closest point in the model to the point d; to the source point set.

C(Dv M) = {yi = C(divM)}fg (3)

Assuming this closest point criteria, the algorithm ensures the convergence if the initial
position of the source point set is close enough to the model set position. Given that, in general,
the correspondences obtained using the closest point operator are not the right nor the best
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ones from the beginning, the ICP algorithm performs an iterative refinement process. Each
one of the iterations comprises three main phases: Correspondences or matching, Transforma-
tion calculation or minimization, and Update transformation or apply it.

These phases are repeated until a certain stop criterion, such as a limit for the number of
iterations or a threshold for the difference of final registration error of the current iteration and
the previous one, so that the algorithm stops if the transformation has enough refinement. By
using this process, the algorithm's convergence is stated in the following theorem [8]: the ICP
algorithm always converges monotonically to a local minimum with respect to the objective
mean squared distance error functionin Eq (1).

The widely distance operator used on the matching stage is the Euclidean distance metric. In
this work, other metrics are analysed in order to achieve lower computational cost while pro-
vide similar quality as the Euclidean one. The candidate metrics are Chebyshev and Manhattan
distance metrics since we expect an inferior computational cost from them due to their sim-
plest formulations.

Distance metrics formulation

The distance operators meet the mathematical distance conditions stated below. In this way,
the registration process generically reduces the average distance between corresponding points
during each iteration and the closest point determination generically reduces the distance for
each point individually [8]. Therefore, the convergence theorem remains valid for them.

A distance metric d is defined as a functionin a set X so that d : X x X — R* U {0}, being
R the set of real numbers. This function describes the distance between points, for example
X, ¥, z, of the X set. Furthermore, it must meet the following conditions:

1. d(x,y) +d(y, z) > d(x, z)
2. d(x,y) =d(y, x)

3. d(x,x)=0

4. dx,y)=0=x=y

Once the concept of distance metric has been defined, we can address the formulation of the
proposed distance metrics as candidates for the reduction of the computational cost.

Original Euclidean distance. The Euclidean distance between the points x and y is
defined as the length of the segment which connects both of them. In Cartesian coordinates, if
X =(X1,Xp, .. » Xy) and y = (y1, Y2 - . ., V) are two points in a Euclidean n-space, then the dis-
tance d(x, y) is determined by Eq (4).

d(x,y) = Z:;l (x; _)’i)2 (4)

In terms of computational cost, this metric requires the calculation of » multiplications,
2n-1 additions/subtractions and a square root to obtain the distance between two n-dimen-
sional points.

Chebyshevdistance. The Chebyshev distance between the points x and y is defined as the
maximum of the absolute values of the differences between their coordinates. In this way, the
Chebyshev distance of two n-dimensional points is described by Eq (5).

d(x,y) = max(|x, = y[, [% = pols- o5 x, = 20) (5)

The Chebyshev metric requires n subtractions, #n-1 comparisons to obtain the distance
between two n-dimensional points. Since a comparison operation has similar cost than a
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Table 2. Computational cost comparison respect to Euclidean metric.

Execution time
Speedup

doi:10.1371/journal.pone.0164694.t002

Eucl
0%
1.00

idean Chebyshev Manhattan
-20% -43%
1.247 1.766

subtraction, the whole computational cost is 2n-1 subtractions. Please, note that the absolute
values calculation for real numbers implies no computation cost where real numbers are repre-
sented with sign-bit [40, 41].

Manbhattan distance. The Manhattan distance between the points x and y is defined as the
sum of the absolute values of the differences of their coordinates. Then the Manhattan distance
of two n-dimensional points is described by Eq (6).

d(x.y) = 3 1%~ (6)

The operative cost of this metric is 2n-1 sums/subtraction and n absolute values to obtain
the distance between two n-dimensional points x and y.

Experimentation and Validation of Topological Spaces

This section aims to validate the topological spaces proposed on this work. In first place, it is
analyzed the computational cost of the distance metric functions itself. Next, the experiments
carried out test the ICP algorithm using the different low-cost distance metrics in it.

Computational cost comparison of distance metrics

The analytic analysis of the formulation of Chebyshev and Manhattan metrics results in lower
and simpler arithmetic operations than the Euclidean one. In this subsection, the experiments
are oriented to validate empirically this finding. Thus, it is conducted a set of empirical tests to
determine the speedup that may be expected by using one metric instead of another.

The experimental setup of this part is the following:

o A typical platform based on the x86 architecture has been used with the operating system
Debian 7.1, 64-bits version.

o The different distance metrics have been codified in C++ in order to perform a low-level
implementation of the functions.

« Series of 10° distance calculations of randomly generated 3D points have been performed for
each metric. The average cost is obtained for each series.

The results of the benchmark are shown on Table 2 together with the speedups obtained
over the Euclidean metric.

The results shown in Table 2 confirm our operative cost analysis that we performed in pre-
vious subsections; it is a remarkable fact that the Manhattan distance is clearly better than the
Chebyshev one, while its operative complexity is quite similar; this happens because of the cost
of the call to the maximum function which is higher than performing a simple addition or sub-
traction that requires no additional logic.

The obtained speedup may vary depending on the used architecture and the processor fam-
ily that implements the instruction set, but we do not expect a significant deviation in the
results given that most current processors implement similar features and the algorithms for
computing the arithmetic operations are highly optimized for the target platform.
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In addition, we would like to note that we can't expect to obtain an improvement of a 20%
or a 43% in the execution time of the algorithm just by simply applying the Chebyshev or Man-
hattan distance metrics because this change would only accelerate the matching phase which is
just a fraction of the overall computation that is performed by the algorithm.

Experimental Design and Setup

This subsection describes the exhaustive set of experiments to prove the viability of the use of
the candidate metrics and their impact on the results of the algorithm. The experimentation is
focused on testing the convergence, the accuracy, the robustness and the performance of using
the analyzed distance metrics in the ICP algorithm.

o The convergence is the ability of the algorithm to match the Model with the Data datasets.
The convergence is achieved when the algorithm ends under the stop criterion and the final
Root-Mean-Square (RMS) is smaller than the threshold (€) established.

o The accuracy is the degree of similarity between the Model and the Data once the algorithm
has been completed. This is measured by the final error defined as the RMS of the last itera-
tion of the method.

o The robustness is a measure of how the algorithm works with noisy and partial data.

o The performance is the time cost of the algorithm. It is measured in seconds, although this
result is highly dependent of the experimentation hardware.

These aspects are interrelated, so that, each experiment produces outputs for all of them.
However, in order to clarify the results, the experiments have been organized in three sets
depending on the degree of changes made on the figures: full figures, partial figures and noise
figures.

The following features define the general conditions of the experimentation:

o The experiments of the algorithm have been performed in a homogeneous working environ-
ment. The operating system

It is used a x86 architecture with Debian 7.1, 64-bits as the operating system and MathWorks
Matlab®™ 2015a as development platform.

It is used the original implementation of ICP algorithm from Besl and McKay [8] with the
needed modifications to include the different metrics and the SVD decomposition for rota-
tion and translation estimation due to its effectiveness.

Each test for the three distance metrics (Euclidean, Manhattan and Chebyshev) has been per-
formed one hundred times for each 3D model. It is taken the average time of all executions,
discarding values with a deviation of 20% from the median of each model in order to avoid
noise due to system overloads while executing background processes.

o The registration will stop when the registration has been stabilized. That is, when the differ-
ence between the registration error in the current iteration and the one from the previous
iteration is less than a threshold €. A common value for € is 0.05. The error of an iteration is
computed as the RMS of the data set and the correspondences.

1 N,
eltemtion = ﬁ E i=1
s

where m; is each point of the model set (M) and d; is each point of the data set (D).

2
|mi_di”
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This stop criterion is not based on the error with respect the model, instead it is based on the
error of an iteration with respect the previous one.

The set of figures used is a representative sample of the different surfaces and scenarios
where 3D rigid registration techniques are often used. This set consists of five heterogeneous
3D models with different forms and sizes selected from the Communication and Multimedia
Laboratory of the National Taiwan University (http://graphics.csie.ntu.edu.tw/~robin/
courses/cg04/model/index.html). These models are shown in Fig 1. The number of 3D points
of each full dataset is reported. These figures have been scaled to homogeneous sizes in order
to obtain comparable results of the accuracy and the convergence trend.

Full figures

This subsection tests the behavior of the ICP using the three distance metrics and the set of fig-
ures depicted in Fig 1. All the Model and Data datasets have been used with the full sets of 3D
points, that is, they both have exactly the same point set.

Each test tries to register a point set into another one called model; for each scenario, the
Data set has been initially transformed applying a rotation of R0(30°, 20°, 15°) and a translation
of T0(0.12m, -0.08m, 0.1m) to the surface. It is a simple situation for the algorithm and it is
not very useful from a practical point of view, although it allows us to evaluate the difference
among metrics in a basic scenario. The Figs 2 and 3 show the experiments performed with two
full models as representative case.

The experimentation results for the full scenarios are shown in Table 3. The execution time
and the number of iterations have been reported. Regarding execution time, that Chebyshev
distance has worse performance than Euclidean one, meanwhile Manhattan distance offers a
remarkable improvement in comparison with this last distance. Regarding final registration
error, all of them show similar results so neither Chebyshev nor Manhattan get significantly
worse quality registrations than the one obtained with the Euclidean distance, except for the
case without noise using Chebyshev.

As shown in previous table, the Chebyshev distance needs more iterations to reach conver-
gence. The Fig 4 shows the convergence evolution of the registration for the elephant figure.

Note that number of iterations is not relevant for the conclusions of this research. Fewer
iterations does not mean lower computational costs since the cost by iteration of each distance
metric is not the same.

Partial figures

When an acquisition device is registering a figure, the standard situation is taking a partial
view of it. Thus, this subsection considers more realistic scenes taking part of the cloud set of
the models for test the distance metrics. Two cases are considered: take a 60% of the figure and
only a 30% of it.

In these cases, the Data figure has fewer 3D points that the Model one. The 3D points dis-
carded correspond with the 40% (or 70%) of the points of the coordinate axis where is centered
the figure. The datasets have been initially transformed applying a rotation and a translation
similar to previous case. For example, the Figs 5 and 6 depicts successful registration examples
of the experiments for each case.

The results for these scenarios are shown in Table 4. These follow the same trend as the pre-
viously exposed data. However, in this case it is remarkable that Manhattan metric has different
behaviour. The partial data affects the performance of that metric and in these cases is more
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e)

Fig 1. 3D models. a) Venus (5688 points); b) Elephant (5132 points); ¢) Bunny (1494 points); d) Athenea (4721 points); e)
Skeleton hand (1055 points).

doi:10.1371/journal.pone.0164694.9001

similar to the Euclidean one. In contrast, the Chebyshev metric keeps providing significantly
worse performance.

Regarding to the number of iterations needed, in first place, it is noted that this number
increases according the registered data decreases. Secondly, the Manhattan distance seems to
need less iterations than Euclidean to reach the convergence. In addition, it is proved that in
these cases, the Chebyshev distance also needs more iterations to reach the convergence. The
Figs 7 and 8 represents the convergence evolution of the registration shown by Figs 5 and 6 for
the Skeleton Hand and Bunny models respectively.

Noise figures

In this subsection the experiments performed are mainly focused on the robustness of the pro-
posed distance metrics. This is quite common on the application cases of the ICP algorithm,

Fig 2. Elephant model. a) Model set; b) Data set; c) Model & Transformed Data; d) Model & Transformed
Data after registration.

doi:10.1371/journal.pone.0164694.9002
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Od)

Fig 3. Venus model. a) Model set; b) Data set; ¢) Model & Transformed Data; d) Model & Transformed Data
after registration.

doi:10.1371/journal.pone.0164694.9003

where de acquisition devices can add some error to the measures. In these tests, it is specified
two cases of noise situations: noise applied only to the Data set, and noise applied to both
Model and Data sets. The datasets have been used with the full sets of 3D points and they have
been initially transformed applying the same rotation and translation as in the previous cases.
The applied noise consists on the application of random displacements to all coordinates of
all the points of the set. The displacements have been generated from a normally distributed
function with a standard deviation of 2% of the dimensions of each image. It is used the
“randn” Matlab function (http://es.mathworks.com/help/matlab/ref/randn.html). The Fig 9
shows the experiments made with the Athenea model and the noise applied to both datasets.

Table 3. Average full figures results.

Euclidean Chebyshev Manhattan
ATime Iter. Error ATime Iter. Error ATime Iter. Error
0% 19 8.2e-7 +87% 31 1.4e-5 -13% 19 7.9e-7
doi:10.1371/journal.pone.0164694.1003
PLOS ONE | DOI:10.1371/journal.pone.0164694 October 21,2016 12/19
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All the cases tested reach the convergence using the three distance metrics. The results are
shown in Table 5.

It is observed that the noise increases the number of iterations needed. In these experiments
the Manhattan distance metric clearly provides better results than Euclidean distance. In this
way, this metric has a better noise tolerance than the others.

Discussion

The experiments are conducted with a heterogeneous set of 3D models. These models are com-
posed of thousands of 3D points and they have been generated synthetically. The different
experiments designed aims to reproduce a representative sample of the different scenarios
where 3D rigid registration techniques are often used. In all the cases tested, the distance met-
rics analysed in this work reach the convergence. That is, all of them achieve the main objective

Fig 5. Partial figure 60%. Skeleton hand model. a) Model set; b) Data set 60%; c) Model & Transformed
Data; d) Model & Transformed Data after registration.

doi:10.1371/journal.pone.0164694.9005
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Fig 6. Partial figure 30%. Bunny model. a) Model set; b) Data set 30%; c) Model & Transformed Data; d)
Model & Transformed Data after registration.

doi:10.1371/journal.pone.0164694.9006

of the algorithm and they are robust again registering partial data and noise in the model and
in the data clouds.

In terms of accuracy, the three distance metrics have similar results. The cases with noise
figures, the final error obtained is close to the mean of the magnitude of the introduced noise
as expected.

The main focus of this study is the performance. The analytical computational cost shows
that the low-cost distance metrics should have less time delay than the Euclidean one. In addi-
tion, they both are composed of primitive functions of the repertory of instruction of the archi-
tecture. The experiments performed on this matter, shows different results. The Chebyshev
metric has shown a contradictory behaviour since a performance gain was expected instead of
a loss. The Manhattan metric showed the anticipated behaviour regarding to its performance.

On the one hand, the proposal adapted to the Chebyshev metric has shown a constant exe-
cution time worsening along all the scenarios. This fact is due to the slower convergence
because it provides bad distance approximations for the matching, and then more iterations
are needed to complete the registration as shown in the convergence evolution figures. This
means more execution time that is not balanced by the computational cost reduction in the

Table 4. Average partial figures results.

Partial figure Euclidean Chebyshev Manhattan
ATime Iter. Error ATime Iter. Error ATime Iter. Error
60% 0% 25 2.7e-5 +77% 37 2.1e-5 -14% 25 2.4e-5
30% 0% 40 2.3e-5 +85% 69 1.6e-5 -15% 36 4.9e-7
doi:10.1371/journal.pone.0164694.1004
PLOS ONE | DOI:10.1371/journal.pone.0164694 October 21,2016 14/19
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distance computation itself. For this reason, the proposal that uses the Chebyshev distance is
discarded, at least for its cost reduction properties.

On the other hand, the proposal implemented with the Manhattan metric has shown, in all
cases, a better performance than the original implementation with the Euclidean one. The aver-
age execution time speedups obtained by this metric is about 14%. It is remarkable that the
maximum improvement is produced not only by better time cost of the metric but also the
lower iterations needed to reach convergence. It has been experimentally proven that the Man-
hattan metric offers better performances in the tested scenarios than the Euclidean one regard-
ing execution time, and at the same time it keeps a similar registration quality. Therefore, the
Manbhattan metric, unlike Chebyshev one, becomes an alternative that should be considered
for reducing the computational cost of the algorithm in general, taking into account that this
improvement is boosted when we deal with a larger number of points, so its use is appropriate
for high-resolution applications.

Conclusions and Future Work

In this work, it is proposed an improvement for the ICP algorithm which is able to reduce its
computational cost effectively for high resolution applications. This cost reduction affects the
execution time of the algorithm, making it decrease in different scenarios. The research is
focused on the distance metric used since this is one of the most frequent operator used by the
algorithm. The performance improvement is due to the replacement of the classic Euclidean
distance metric with other metric with less computational cost.

—@—Euclidean Chebyshev Manhattan
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Fig 8. Convergence evolution for partial Bunny figure.

doi:10.1371/journal.pone.0164694.9008
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Table 5. Average full noise results.
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Fig 9. Noise Athenea figure. a) Model set; b) Data set; ¢c) Model & Transformed Data; d) Model &

Transformed Data after registration.

doi:10.1371/journal.pone.0164694.9009

After the analysis and the exhaustive experimentation carried out in this work, some conclu-
sions can be drawn about the results obtained. The case tested in this research concern specifi-
cally to 3D points, but similar findings should be drawn in others dimensions. In first place, it
should be noted that different distance metrics can be used in the ICP algorithm to make the
registration of point clouds. There exists many distance metrics with quite different formula-
tions, but the main goal of this research is to find ways to reduce the computational cost of the
ICP algorithm. So that, the work is specifically focused on low computational cost distance
metrics. Among them it is chosen the Chebyshev and Manhattan distance metrics as candi-
dates due to their simple mathematical formulation.

The experiments prove the convergence, accuracy, robustness and performance of the can-
didate metrics. The three former features are similar for all operators. However, the empirical
work made demonstrate that a simpler mathematical formulation of the metric does not

Noise Euclidean Chebyshev Manhattan
ATime Iter. Error ATime Iter. Error ATime Iter. Error
Model & Data 0% 34 44 +89% 60 43 -19% 29 45
Data 0% 23 50 +81% 39 50 -17% 21 51

doi:10.1371/journal.pone.0164694.1005
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directly involves better performance. The speed of convergence (or number of iterations to
reach the convergence) is the other aspect to take into account apart from its mathematical for-
mulation. The experimentation made shows that the Manhattan distance metric is able to
improve the Euclidean function in many scenarios, while the Chebyshev distance metric pro-
duces worst results. Thus, this last metric is discarded as candidate.

Finally, the proposed contribution can be extended or improved in several ways: the same
concept of cost reduction could be applied in parallel architectures, both in CPU and GPU to
explore both possibilities to increase performance. It is also possible to modify variants where
the matching phase has not been altered, in order to apply this performance increase to other
contributions that improve other parts of the algorithm. Furthermore, a custom low cost dis-
tance metric might be created to test its effect over the algorithm; or even a custom hardware
architecture could be designed. This last option means a computational implementation of the
algorithm, mainly the low-cost distance operator (the one that we have simulated here via soft-
ware or a custom one), with the goal of reaching huge speedups.
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