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Many a disease associates with inflammation. Upon binding of antigen-antibody com-
plexes to immunoglobulin-like receptors, mast cells release tumor necrosis factor-α and 
proteases, causing fibroblasts to release endogenous antigens that may be cross reac-
tive with exogenous antigens. We made a predictive dynamic map of the corresponding 
extracellular network. In silico, this map cleared bacterial infections, via acute inflamma-
tion, but could also cause chronic inflammation. In the calculations, limited inflammation 
flipped to strong inflammation when cross-reacting antigen exceeded an “On threshold.” 
Subsequent reduction of the antigen load to below this “On threshold” did not remove 
the strong inflammation phenotype unless the antigen load dropped below a much lower 
and subtler “Off” threshold. In between both thresholds, the network appeared caught 
either in a “low” or a “high” inflammatory state. This was not simply a matter of bi-sta-
bility, however, the transition to the “high” state was temporarily revertible but ultimately 
irreversible: removing antigen after high exposure reduced the inflammatory phenotype 
back to “low” levels but if then the antigen dosage was increased only a little, the high 
inflammation state was already re-attained. This property may explain why the high 
inflammation state is indeed “chronic,” whereas only the naive low-inflammation state 
is “acute.” The model demonstrates that therapies of chronic inflammation such as with 
anti-IgLC should require fibroblast implantation (or corresponding stem cell activation) for 
permanence in order to redress the irreversible transition.

Keywords: inflammation, innate immunity, cross-reacting antigen, modeling, irreversible transition, bi-stability

inTrODUcTiOn

An inflammatory environment engages a network of innate and adaptive immune cells (1–4), tissue 
components like stromal fibroblasts (5), extracellular matrix (6), the vascular networks of blood and 
lymphatics (7), and soluble molecular messengers like plasma proteins, cytokines, and chemokines 
(8). The inflammatory process has been classified into acute and chronic substantiations. Once the 
body has been infected by pathogens, innate immune cells such as macrophages and mast cells express 
pattern recognition receptors (PRRs) that may become ligated by pathogen-associated molecular 
patterns (PAMPs). PRR activation leads to activation of innate immune cells and pro-inflammatory 
immune responses against the pathogen. In addition, PRR activation of antigen-presenting cells, 
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like dendritic cells (DCs), eventually induces adaptive immune 
res ponses. Next to PAMPs, specific pathogen-independent struc-
tures deriving from damaged or dying cells [“damage-associated 
molecular patterns (DAMPs)” (9)] activate. They may signal a 
status of altered-self. DAMPs activate innate cells like DCs and 
macrophages via specific PRRs, i.e., toll-like receptors and C-type 
lectin receptors. DAMPs may thus amplify immunity against 
pathogens, but also promote autoimmunity in sterile ongoing  
inflammatory processes.

Acute inflammation facilitates innate and acquired immunity, 
which combats infection by attracting leukocytes and plasma 
proteins (and at a later stage antibodies) to sites of infection 
or injury (10, 11). Prolonged or more intensive infiltration by 
various immune cells may turn acute inflammation into chronic 
inflammation (12, 13). Acute inflammations persist for a couple 
of days or weeks; they require the presence of the external stimu-
lus. Prolonged or more intensive infiltration by various immune 
cells may turn acute inflammation into chronic inflammation, 
which persists over months or years, well beyond the presence 
of the external stimuli. DAMPs may be involved in both stages 
of inflammation.

In some autoimmune diseases such as inflammatory arthritis 
(14, 15) and multiple sclerosis (16, 17), chronic inflammation 
may be caused by some interplay between B-cell activation and 
differentiation, autoantibody formation, and mast-cell func-
tion. Antigen binds to a specific B cell receptor (BCR), which 
consists of a monomeric membrane-bound immunoglobulin 
(Ig), composed of two light chains and two heavy chains (18). 
In addition to intracellular BCR signaling via the Ig-associated 
Igα and Igβ, the activated B  cell requires signals to survive, 
proliferate, and eventually differentiate into memory B  cells 
and Ig secreting plasma blasts and plasma cells (19). For 
thymus-independent antigens, the second signal may consist 
of PRR ligation (20, 21). Thymus-dependent antigens require 
CD40 co-stimulation and cytokines from cognate CD4 T cells 
(22, 23), such as the follicular T helper (Tfh) cells (24, 25). Tfh 
cells mediate B  cell class switching and somatic hypermuta-
tion, yielding high-affinity IgG and IgE (26, 27). Igs infiltrating 
a site of infection bind the specific pathogen or autoanti gen. 
This supports pathogen eradication. Both pathogen-specific 
Igs and auto-antigen-specific Igs may then also instigate  
inflammation.

Usually, inflammation is initiated by innate immunity against 
exogenous antigens; either be allergens (such as pollen) or parts 
of microorganisms (such as coat or toxin). Exogenous antigens 
can be cross-reactive with endogenous antigens: Streptococcus 
mutans antigen is highly cross-reactive with heart tissue antigen 
(28). Antigenic cross-reactivity was detected by using carto-
graphic comparison between H5N1 influenza virus and other 
virus strains (29). Potential cross-reactivity of all MHC class I 
cancer immunotherapy antigens assessed by quantifying cross-
reactivity for MHC-1 epitopes was distributed across tissues (30). 
Every inflammatory disease appears linked to one or more infec-
tious agents. Infectious antigens may impact the autoimmune 
response by molecular mimicry (31). B-cells that are activated 
in response to the antigens are then also cross-reactive to self  
and may lead to further activation of T cells and mast cells.

B  cell differentiation triggered by contact with antigen and 
with cytokines produced by cognate Tfh cells induces secretion of 
antibodies (here referred to as Ig’s). Two types of immunoglobu-
lin light chains (IgLC) are produced in human: kappa (κ) and 
lambda (λ) type. Although B-cell activation causes production of 
excess immunoglobulin light chains that are not bound to heavy 
chains (FLCs) (32), we shall here focus on their complex, i.e., IgE: 
in healthy individuals, the majority of light chains in serum are 
bound to heavy chains. IgLC can serve as a drug target (33), with 
the F991 peptide as drug example. Nakano et al. reviewed that 
this peptide may also bind to the CDR3 region of the FLC which 
remains exposed to the medium when the light chain is in its 
complex with heavy chain (34).

Mast cells are effector cells of the innate immune system. 
Capable of producing proteolytic enzymes, cytokines, and growth 
factors, they are innate to many normal tissues and organs. The 
tissue environment matures these mast cells through cytokines 
such as stem cell factor (SCF) and nerve growth factor (35), which 
acts via tyrosine kinase receptors (TrkA, B, and C) different from 
C-kit activated SCF (36). The mast cell is primarily activated by 
IgE, but molecules such as SCF, IgG, FLC, hormones, comple-
ment peptides (C3a, C4a, and C5a), and certain neuropeptides 
also trigger mast cell activation. The activated mast cells secrete 
pro-inflammatory mediators such as tumor necrosis factor-α 
(TNF-α) (37), tryptase (38), and vascular endothelial growth 
factor (VEGF) (39).

Antigen-dependent mast cell activation is mainly mediated 
by IgE through cross-linking of their surface receptor FcεRI 
(40) at a binding affinity of 109–1010 M−1 (41). FcεRI has seven 
N-linked glycosylation sites in its 176 amino acid residues. The 
intact receptor on mast cells is approximately 40% carbohydrate 
by its ~50 kDa mass (42, 43). The Fc fragment of IgE interacts with 
the extracellular domains of FcεRI-α chain (40, 44). IgE levels 
are high in serum and synovial fluid of patients with rheumatoid 
arthritis (45) or allergies (46).

The interplay of these many factors in the inflammatory net-
work correlates with the research findings that innate immune 
cells and their mediators promote inflammation (47, 48).  
Although it operates largely extracellularly, this network has 
a number of aspects in common with the various intracellular 
signal transduction networks that have increasingly become 
subject to systems biology studies: it is complex, co-determined 
by the individual’s genome, affected by environmental factors 
and, it exhibits memory effects, such as related to prior exposure 
to external antigens leading to enhanced reactivity (49–51). 
Diseases related to some of these features or their absences have 
been recognized as systems biology diseases (52).

In this paper, we therefore build and then examine a compu-
tational systems biology model of IgE-induced inflammation. 
We focus on IgE-mediated mast-cell activation and a relatively 
small number of factors and interactions, so that the model’s 
results can also be understood more intuitively. The resulting 
model makes existing knowledge about the components of the 
network and their interactions, predictive of the response to 
various antigen doses. The predictions include that the network 
can flip from weak to strong inflammation, but not back. A 
peptide drug interfering with IgLC may transiently reset the 
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network from a chronic inflammation state to an uninflamed 
state, but this cure may not persist. Perhaps surprisingly, naive 
fibroblasts may play a decisive role in the final outcome of such 
a therapy.

MaTerials anD MeThODs

The native immune network as described in Figure  1 was 
decomposed into its component processes and for each of the 
latter, a characteristic rate equation was developed. This equa-
tion formulated the rate at which the process should proceed as 
a function of the concentrations of the components involved in 
the process, and kinetic parameters. For each species in Figure 1, 
a balance equation was then formulated, specifying its time 
dependence as the difference between the rates of the reactions 
synthesizing the species and the rates of the processes degrad-
ing it. Combination of the rate and balance equations then led 
to differential equations, which were integrated as functions of 
time. This computation process was performed using COPASI 
(a biochemical systems simulator). The dynamic model we made 
thereby depends not only on the topology of the network of 
Figure 1 but also on parameter values, to which we therefore had 
to assign values. For most of the parameters of our model, accu-
rate values are unknown. We chose parameter values that were in 
a realistic range based on biochemical and physicochemical data 
and considerations, as specified below.

cell concentrations, Total space,  
growth k17, k18
A fibroblast has a volume of some 2.0 pl (i.e., 10−12 l) (53), giving a 
space completely packed with fibroblasts, a fibroblast concentra-
tion of almost 1.0 pM. We set the fixed concentration of B cells 
to 1  fM (i.e., 10−15 mol/l) and the constant total concentration 
of the mast cells to 0.1  fM. We assumed that in the remaining 
space, 1,000 fM of healthy and dying fibroblasts could exist. We 
expressed this “total_space” in terms of the concentration of 
subspaces each of the volume of a fibroblast (2.0 pl). In this way, 
the total space was 1,000  fM and the concentration of healthy 
fibroblasts was 1,000 fM or less. Free_space was assumed to equal 
total_space minus the concentration of fibroblasts and expressed 
in unit fibroblast, i.e., in fM. The fibroblast division rate (R18) was 
made proportional to free space at a second order rate constant 
of k18 = 0.485/nM/min (nM refers to nanoMolar, i.e., 10−9 mol/l; 
min refers to minute, equal to 60  s). When all space was free 
(and hence free_space = 1,000 fM), this corresponded to a 24 h 
doubling time. If present, bacteria were taken to grow (R17) at a 
specific growth rate of k17 = 0.01/min, at a rate independent of the 
free space, as bacteria were assumed to fit in between the larger 
mammalian cells.

association rate constants k1, k9, k14, k16, 
k21, k22, and k23
In water, the maximum diffusion-limited rate constant for 
association follows the Smoluchowski equation kon  =  4πDr 
(54). Here, r is the sum of the radii of the two colliders and D 
their diffusion constant. This corresponds to 6 × 10−5/fM/min 

for small molecules and some 10−5/fM/min  =  10.0/nM/min 
for proteins. When the two diffusing objects attract each other  
(or tend to remain together as in surface diffusion), the number 
can readily become 10 times higher (55). When the target is 
any of multiple receptors on a target cell, the association rate 
constant increases proportionally to the number of receptors 
per cell, but this only up to a maximum of some 5,000 per cell 
(56). When there are approximately 105 receptors expressed on 
the surface of the cell (57), any collision with the cell will be 
effective and then the rate constant is increased by the factor of 
π·rcell/rIgE ≈ 30,000. Combining all these effects and allowing by 
a factor of 2 for a reduction in diffusion rate due to steric hin-
drances, we obtained a diffusion-limited rate constant for IgE 
binding to IgE receptor-FcεRI (R23) on the mast cell of approxi-
mately 10/fM/min. In the next process (R22), a cross-reacting 
antigen (CRA) molecule associates with an IgE presented by a 
mast cell. This may happen when that mast cell contains only 
one IgE, but will happen faster when the mast cell already 
harbors many IgE’s: there are many subtypes of MastCell–IgE 
complex. For simplicity, we took “the” MastCell–IgE complex 
to be a complex of the mast cell with some 100 IgE molecules. 
This required us to reduce the association rate constant by a 
factor of 100 to k23 = 0.1/fM/min. The association rate constant 
(k22) of CRA with this “MastCells–IgE complex” should hereby 
become 100 times the diffusion-limited value of 10−5/fM/min 
for larger molecules. We augmented this by another factor of 
100 because of the surface diffusion effects, which we expect 
to be strong because CRA may already loosely associate with 
the heavy chains in the IgE receptors. This brought the associa-
tion rate constant of R22 to k22 = 0.1/fM/min. We assumed the 
breakdown of CRA by MMP-8 (R1) to be a diffusion-limited 
bimolecular reaction with a factor of 2 for the attractive effect 
(55), leading to a rate constant k1 = 10−4/fM/min. For B cells 
to produce IgE’s they need to be activated by CRA binding to 
a receptor. We assumed some 15 CRA-receptor molecules to 
be present on the B  cells, leading to a diffusion-limited rate 
constant for (R9) of k9  =  0.001/fM/min. As to the clip-off of 
CRA from healthy fibroblasts by MMP-7 (R14), we assumed the 
encounter of MMP7 with a fibroblast to be diffusion limited at 
k14 = 10−5/fM/min. This was all done to achieve a system where 
dying fibroblasts would only exist transiently so as to emit 
CRA. The killing of healthy fibroblast by TNF-α (R16) is another 
bimolecular reaction. Here, we assumed the TNF-α to be able 
to hit the fibroblast destructively at three sites, making the rate 
constant equal to k16  =  0.0005/fM/min. TNF-α was assumed 
to be released intact after its killing act. Similarly, the antibac-
terial proteases that are secreted by the mast cells (R25) were 
re-released after their killing act (R21). Here, the biomolecular 
association rate constant was taken to equal k21  =  0.005/fM/
min, where we assumed >30 sites on each bacterial cell for the 
protease to attack productively.

Dissociation rate constants k−22 and k−23
We expected the CRA and IgE concentrations to be far below 
1  fM in the inactive state of the network and then to shoot 
through the 1 fM level when the systems move into an active state.  
We therefore set the equilibrium binding dissociation constant in 
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FigUre 1 | Diagram of the inflammatory network studied here. (a) Four types of cell (B cells, mast cells, bacteria, and fibroblasts) are shown, where the latter are 
either in a healthy or a dying state. In terms of extracellular molecules, we consider Cross Reactive Antigen (CRA), IgE, TNF-α, the proteases MMP-7 and MMP-8, 
and drug molecules. The symbol ∅ or ⦰ represents an exit into which all molecules wash out at a certain rate and cells disappear at a certain death rate. Free space 
refers to space not taken up by fibroblasts. Solid arrows refer to conversion processes, dashed arrows to secretion processes, and dotted arrows to catalysis or 
regulation. Processes are numbered as R followed by a number. (B) Systems Biology Graphical Notation (SBGN) scheme. By using the program Cell Designer, we 
designed an IgE-mediated inflammatory network, which corresponds with the network model as shown in (a).
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R22 and R23 to 1.0 fM by making the corresponding dissociation 
rate constants k−22 and k−23 = 0.1/min.

Washout rates: k2, k4–k8, k10, and k12
The inflammation was taken to occur in interstitial space. 
Lymph flow rates led to inverse first order turnover rate con-
stants of 1,200 min in the skin of active rat (58); for skeletal 
muscle this was 5,000 min. Assuming increased flow at the 
inflammation site, we took this life time to equal 100  min: 
all substances other than cells were subject to efflux from 
the system at the same specific rate of k = 1 × 10−2/min for 
the reactions R2 (k2), R4 (k4), R5(k5), R6 (k6), R7(k7), R8 (k8), R10 
(k10), and R12 (k12).

secretion rates and cell Death rates: k13, 
k14, k15, k19, k20, k24, k25, k26, and k27
We assumed the release of MMP-8 by healthy fibroblasts 
(R20) to occur in packages of 10,000 enzyme molecules; 
the reaction stoichiometry of the product MMP-8 was set 
to 10,000. The same cell was assumed to release MMP-7 
(R19) in packages of 100 molecules at a time. The rates 
of these two release processes were set to k19  =  0.001/min 
for R19 and k20  =  0.1/min for R20. After antigen activation, 
the MastCells_IgE complex secreted TNF-α (R24) at a rate 
constant k24 = 5/min. The mast cells secreted protease (R25) 
at a rate constant of k25 =  65/min per cell. The healthy and 
dying fibroblasts secreted CRA (R14 and R13) at rate constants 
of k14  =  10−5/fM/min (see above) and k13  =  0.001/fM/min, 
respectively. The dying fibroblasts then disappeared imme-
diately. In a second process, the dying fibroblasts also disap-
peared at a rate independent of CRA secretion k15 = 0.2/min 
(R15). We assumed that dying bacteria secreted packages of 
1,000 CRA molecules at a rate of 10.0/min, k26  =  10.0/min 
(R26). Bacteria died independently of this at a rate constant  
k27 = 0.1/min.

Drug related rate constants k10, k11, k−11, 
and k12
In the presence of drug in the system, R10, R11, and R12 were 
involved accordingly. The two washout rates constants were 
again taken to equal k10  =  0.0001/min [washout of drug alone 
was taken to be 100 times slower than standard washout  
(see above), thanks to a particular formulation of the drug, see 
below] and k12 = 0.0001/min for the same reason. The association 
rate constant was taken to be limited by diffusion and to equal 
k11 = 10.0/nM/min. We set the dissociation rate constant of drug 
from the IgLC_drug complex to k−11 = 0.00001/min, setting the 
half saturating drug concentration to 1.0 fM.

cra influx rate
Reaction R3 was set to a constant level. Unless stated otherwise, 
this level was 0, i.e., k3 = 0/min.

With the parameter values as stated above, the model was 
run for various sets of initial conditions and relaxed to the 
same steady state (with exceptions to be specified below). The 
magnitudes of all variables were then used as initial conditions 
for all other calculations, except where we note explicitly that a 
different starting point was used. For each figure and table, we 
have a file in the supplementary material that has the definitive 
COPASI model with the definitive parameter values used such 
that it can be rerun to reproduce the figure or table. The resulting 
computed data were analyzed on Graphpad Prism 5.

resUlTs

network Design
Notwithstanding the whole-body nature of innate immunity, we 
here focus on a local environment in the mammalian body where 
inflammation may occur, as well as on a set of processes that are 
relevant for and may suffice to produce inflammation locally. These 
are described in Figure 1. The innate immune response is held to 
be activated by CRA (see the dotted line in Figure 1 leading from 
CRA to the process denoted by R9), which is inserted into the 
network as an influx from the outside world (R3). CRA is secreted 
by fibroblasts that are activated by TNF-α (see below). In response 
to CRA, B cells secrete IgE (R9), which binds to FcεRI receptors 
on mast cells (R23). In reaction R22, we have assumed the FcεRI 
receptor on the mast cell binding IgE to be activated subsequently 
by CRA. CRA may also secreted by bacteria (R26). The mast cell 
releases mediators such as TNF-α (R24) and proteases (R25). When 
they do not have both IgE and CRA bound, the mast cells do not 
produce TNF-α; there is no equation describing such a process. 
Protease production by mast cells is similarly dependent on the 
latter having both IgE and CRA bound. The proteases may kill 
bacteria (R21). Without the proteases the bacteria would prolifer-
ate (R17). TNF-α turns healthy fibroblasts into dying fibroblasts 
(R16), which have a greatly enhanced rate of CRA secretion (R13). 
Healthy fibroblasts also secrete the proteases MMP-7 (R19) and 
MMP-8 (R20), which catalyze their secretion of CRA (R14) and the 
degradation of CRA (R1), respectively. Fibroblasts are assumed 
to require free space before they can divide, which is meant to 
reflect contact inhibition. Free space is a fixed total space minus 
the volume taken by healthy and dying fibroblasts. It is expressed 
in unit fibroblast concentration (fM). We assumed that bacteria 
are not contact-inhibited by fibroblasts.

With respect to the spatial aspects, our model is not defined. 
It suggests that all processes of Table 1 happen at the site of the 
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TaBle 1 | Reaction and rate equations for the processes considered in the 
mathematical model.

R11: IgE_drug_binding R12: IgE_drug_washout

 IgE + drug = IgE_drug  IgE_drug + washout -> washout
 v11 = k11 • IgE • drug − k−11  

• IgE_drug
 v12 = k12 • IgE_drug • washout

 k11 = 0.01/pM/min; k−11 =  
0.00001/min

 k12 = 0.0001/min

R13: CRA_secretion_dyingFibr R14: CRAClipOffHealthyFibr
 DyingFibr -> CRA  HealthyFibr + MMP7 -> CRA +  

MMP7 + HealthyFibr
 v13 = k13 • DyingFibr  v14 = k14 • HealthyFibr • MMP7
 k13 = 0.001/min  k14 = 0.01/pM/min

R15: DyingFibroblast_death r16: Healthy_to_Dying_fibroblast
 DyingFibr ->  HealthyFibr + TNF-α 

-> DyingFibr + TNF-α
 v15 = k15 • DyingFibr  v16 = k16 • HealthyFibr • TNF-α
 k15 = 0.2/min  k16 = 0.0005/fM/min

R17: HealthyBacteriaProduction R18: HealthyFibrProduction
 HealthyBacteria -> 2  

* HealthyBacteria
 free_space + HealthyFibr -> 2 * 

HealthyFibr
 v17 = k17 • HealthyBacteria  v18 = k18 • Free_

space • HealthyFibr
 k17 = 0.01/min  k18 = 0.485/nM/min

R19: MMP7_release_HealthyFibr R20: MMP7_release_HealthyFibr

 HealthyFibr -> HealthyFibr  
+ MMP7

 HealthyFibr -> HealthyFibr +  
100 * MMP8

 v19 = k19 • HealthyFibr  v20 = k20 • HealthyFibr
 k19 = 0.001/min  k20 = 0.1/min

R21: Healthy_to_dying Bacteria R22: CRA_binding
 HealthyBacteria + Protease ->  

DyingBacteria
 MastCells_IgE + CRA =  

MastCells_IgE_CRA
 v21 = k21 • HealthyBactmia  

• Protease
 v22 = k22 • MastCells_IgE • CRA

 k21 = 0.005 fM/min  −k22 • MastCells_IgE_CRA
 k22 = 0.1/fM/min; k−22 = 0.1/min

R23: IgE_binding R24: TNF-α_production
 IgE + MastCells = MastCells_IgE  MastCells_IgE_CRA -> TNF-

α + MastCells_IgE_CRA
 v23 = k23 • MastCells_IgE  v24 = k24 • MastCells_IgE • CRA
 −k23 • MastCells_IgE  k24 = 5.0/min
 k23 = 0.1/fM/min; k−23 = 0.1/min

R25: Protease_production R26: Dying Bacteria secrete antigen
 MastCells_IgE_CRA ->  

Protease + MastCells_ 
IgE_CRA

 DyingBacteria -> 1,000 * CRA
 V26 = k26 • Dyingbacteria

 v25 = k25 • MastCells_IgE_CRA  k26 = 10/min
 k25 = 65/min

R27: Dying Bacteria_death
 DyingBacteria ->
 v27 = k27 • Dyingbactetia
 k27 = 0.1/min

In the table, each process considered has been given a number, which follows 
the symbol ‘R’ for reaction (see also Figure 1). A description name is given for 
each process, followed by both chemical reaction equation, a rate equation, and 
the parameter values used. Where substances occur on both sides of the arrow 
in a reaction equation, they are mere (catalytic) influences on the process, without 
themselves being consumed. This corresponds to the dotted arrows in Figure 1.  
= refers to a reversible reaction and to a ◊ reaction treated as irreversible.
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IgE produced by those B-cells may then be conveyed back to 
the inflammation site by circulation. B-cells are known to be 
present at sites of chronic inflammation and some may already 
be present at a site of acute inflammation. In such a case, our 
model could work more locally. A future version of this model 
should include these spatial aspects as well as the issue that the 
appearance of CRA may increase the local concentration of IgE 
producing B-cells.

Of course, our model is also much simpler than reality with 
respect to the complexity of the network it takes into account. 
The network that we have modeled may represent the minimal 
complexity needed to generate the interesting phenomena that 
emerge in this paper. In reality there are many, perhaps redun-
dant, pathways of interactions and many additional cell types 
are involved. Macrophages are not mentioned in our model for 
instance but are highly relevant in inflammation. We consider 
that they play roles similar to the role played by the mast cells in 
or model; in the model the mast cells might be substituted for by 
macrophages and similar results would come out.

network Function
We first examined whether the network we formulated in Figure 1 
would indeed be capable of its perhaps primary task in biology, 
i.e., to kill invading microorganisms with growth rates outpac-
ing the naïve nonnative immune response. For this we needed 
to make the network predictive, i.e., to enable all the processes 
described in Figure 1 to interact in the ways shown in Figure 1, 
but now in a collective predictive model. For this we formulated 
a mathematical equation to characterize each process, most often 
in terms of the rate at which it would proceed (Table 1). Then we 
formulated balance equations describing the accumulation rate of 
each substance or cell type as a difference between rates of synthe-
sis and degradation. We then integrated the differential equations 
produced by combining the rate and the balance equations. This 
enabled prediction of how the network’s dynamics should be 
expected to evolve as a function of time and of the values of the 
various parameters. Figure 2 shows how, for our standard set of 
parameters, bacteria continued to grow in the control case where 
the mast cells did not secrete protease (Figure 2A). When mast 
cells produced the protease continuously, the number of bacteria 
was reduced relatively suddenly at a later time (Figure 2B) (see 
also Figure  1). By this, the simulated mast cells succeeded in 
restraining the microbial population to truly low levels. In our 
simulation, the time period of virtually disappeared bacteria 
(approximately 10 days) was followed up by a burst of bacterial 
growth and a subsequent immune response removing it (results 
not shown). We suppose that in real life, adaptive immunity would 
rid the system of such subsequent bursts of microbial growth, but 
adaptive immunity is not in our model.

acute and chronic inflammation Produced 
by the same network
We next focused on inflammation rather than infection.  
We studied the response of the network to a modest influx rate 
of CRA at 5.0  fM/min. We first ran the model until a steady 
state was obtained and used the resulting magnitudes of all 
the variables as initial values for the subsequent calculations. 

inflammation. In reality the B-cells that produce the IgE may 
be far away from the inflammation site, the CRA released from 
the fibroblasts reaching the B-cells through the circulation. The 

https://www.frontiersin.org/Immunology/
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FigUre 2 | Antibacterial function of mast cells producing proteases. Bacterial growth (a) when mast cells produced no protease, i.e., k25 = 0, or (B) did produce 
protease at a first order rate constant k25 = 65/min (full red line), or k25 = 130/min (dashed red line) (B). In both cases, bacteria were seeded into the network at t = 0. 
Mast cell concentration was the standard 0.1 fM. (c) Scheme showing the network response to the bacterial challenge.
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The full lines in Figures  3A–C confirm that the steady state 
obtained for 5.0 fM/min CRA influx was stable: the number of 
healthy fibroblasts, as well as the TNF-α and CRA levels were 

independent of time, at high, low, and low levels, respectively, 
characteristic of a moderately inflamed state. Virtually the same 
result was obtained for different CRA influx rates between 0 and 

https://www.frontiersin.org/Immunology/
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FigUre 3 | The levels of three network components involved in inflammation, i.e., healthy fibroblasts (a), TNF-α (B), and antigen (CRA) (c) as functions of time after 
increasing (at time 0) the CRA influx level. Full line: no increase in CRA influx, i.e., maintained at 5.0 fM/min. Yellow dashed line: CRA influx increased from 5 to 20 
fM/min. The blue dotted line: CRA influx increased from 5 to 30 fM/min.

8

Abudukelimu et al. Inflammation Switch

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1596

12.0 fM/min (not shown). At a CRA influx rate of 20.0 fM/min, 
however, we observed quite a different behavior (dashed line in 
Figures 3A–C): already immediately after the increase of the CRA 
influx, fibroblasts began to die (Figure 3A). This was accompa-
nied by a small but steady increase in TNF-α (Figure 3B) and 
CRA (Figure 3C) levels with progressing time. Some 8 days after 
the increase in CRA influx, the rate at which the fibroblasts died 
began to increase and the TNF-α level increased strongly and 
suddenly. A day later, the CRA levels also increased suddenly. 
The next day no live fibroblasts were left (Figure 3A), and the 
TNF-α and CRA levels had become steady and high. When at 
time 0, the CRA influx rate was increased by a further 50%, this 
had little additional effect on the final levels: no live fibroblasts, 
the same high level of TNF-α, and a steady, even (50%) higher, 
CRA level. This increase did make a difference to the timing, 
however, the transition from the low TNF-α, low CRA level to 
the high levels of these substances, now occurred three times 
sooner.

Simulation results also suggested a bi-modality in network 
function. Depending on the intensity of the cytokine challenge, 
the ultimate steady-state extent of inflammation was either 
minor or massive and not something in between. The dashed 
lines in Figure 4 confirm this: they show the final steady-state 
levels of TNF-α, of mast cells without IgE, of free CRA, as well as 
of healthy fibroblasts as a function of CRA influx. With all four 
properties, the same threshold CRA influx rate was evidenced, 

above which the property flipped to a level that corresponds to 
strong inflammation, i.e., high TNF-α, low free mast cells, high 
CRA levels, and few healthy fibroblasts. Only for the CRA levels, 
the increase with CRA influx rate was, understandably, a bit more 
gradual.

Up to this point, our calculations started at steady states for 
low CRA influx rates (5.0 and 0.001  fM/min for Figures  2–4, 
respectively). The bi-modality we observed above suggested 
that this might be a case of bi-stability, i.e., a coexistence of 
two different steady states for the same parameter values and 
external conditions. Which steady state a bi-stable system settles 
to, depends on the initial condition. To examine this possibil-
ity, we performed a second set of computations, in which we 
started from the steady state obtained for an influx of 30.0 fM/
min of CRA, a state of high inflammatory activity therefore  
(see Figure 3), and then reduced the CRA load. The solid lines 
in Figure 4 show the results of these computations: for the entire 
CRA influx range between 0.05 and 11 fM/min, the steady state 
achieved in this case was one of strong inflammation, as judged 
by high levels of TNF-α and CRA and low levels of mast cells 
without activated IgE, and healthy fibroblasts, whereas for the 
same conditions the calculations starting at 0.001 fM/min CRA 
influx all led to minor inflammation. We associated this situation 
to a dichotomy between acute and chronic inflammation that 
may occur at apparently the same antigen dosage. Our calcula-
tions show that after the network of Figure 1 had been taxed with 
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FigUre 4 | Steady-state levels of various network components at the final steady state achieved when starting from an initial state at very low CRA influx (dashed 
lines; we call this “acute inflammation”) or starting from an initial state at very high CRA influx (full lines; we call this “chronic inflammation”). The former cases were 
calculated by starting at a steady state at 0.001 fM/min CRA influx and then increasing that influx to the level indicated on the abscissa. The latter cases were 
computed by starting at the steady state achieved for 30.0 fM/min CRA influx and by then reducing the CRA influx to the rate indicated on the abscissa (where 
steady-state concentrations were below 10–9, which was the resolution of COPASI computation, MMP7 and MMP8, healthy and dying fibroblasts, we reset them to 
10–9 fM). The components are, as indicated, (a) TNF-α, (B) unliganded mast cells, (c) CRA, and (D) healthy fibroblasts. The symbols in (D) refer to the CRA values 
for which actual calculations were carried out. In all figures, lines in between were obtained by linear interpolation between calculated points.
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an overdose of CRA, it tended to remain in the fully inflamed 
state even if the antigen (CRA) dose was reduced drastically; 
this is reminiscent of what is observed in chronic inflammation. 
Figure 4D may be important in particular: in the conditions of 
chronic inflammation, there are few or healthy fibroblasts left.

anti-inflammatory Peptide
A possible explanation of the bi-stability might be the positive 
feedback loop of CRA upon itself, through activation of mast 
cells by CRA binding to IgE presented by those cells, TNF-α 
elevation and CRA production by dying fibroblasts (Figure 1B). 
Such loops can produce thresholds below which a system tends 
to one state and above which it prefers another. We wondered 
whether interference with that feedback loop could do away with 
chronic inflammation, and if so, whether that interference would 
have to have special qualifications. The solid line in Figure 5A 
repeats that of Figure  4A, i.e., it shows the TNF-α level after 
reducing CRA influx rates back from 30 to the value indicated 
on the abscissa. The red circle on the right in Figure 5A  gives the 
TNF-α level attained (after 15 simulated days) when, to a chronic 
inflammation system with a continuous CRA influx of 3.0 fM/
min (as indicated on the abscissa), a single shot of IgLC-binding 

peptide was given (see Figure 1). Figure 5A shows that perhaps 
unexpectedly, the peptide drug was ineffective even though the 
CRA influx was well below the CRA influx threshold of 12 fM/
min of Figure 4A. In the chronic inflammation state with a CRA 
influx rate of 0.1  fM/min, however, the system did respond to 
the peptide-based drug, and it did so by what appeared, after 15 
simulated days, to be a switch to the low-inflammation state (the 
lower black circle on the left in Figure 5A).

We then wondered whether this flipping back by the drug to 
the acute inflammation state would be definitive, as expected 
from a bi-stable steady-state situation. We therefore followed the 
TNF-α level for a long time (Figure 5B). We found that the flip 
was not definitive: in some 30 days, the system drifted back to the 
state of high inflammation. This was a bit odd: we seemed not to 
have a bi-stable state of high inflammation and low inflammation: 
after the history of high inflammation the low-inflammation 
state was no longer stable, but transient, though apparently stable 
for a couple of days. Apparently, the transition from low to high 
inflammation at high CRA influx rates had been irreversible.

We next searched for the factor that might be the culprit of 
the irreversibility and turned to the fibroblasts. These had actu-
ally gone extinct in the high inflammation state. In our model, 
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FigUre 5 | The effect on steady-state TNF-α levels and number of healthy fibroblasts of addition of IgLC-binding peptide to a chronically inflamed network at 
various sustained rates of CRA influx. (a) The full line (blue; also in Figure 4a) represents the steady-state TNF-α levels when no peptide was added; the system 
had first been brought to the CRA influx steady state of 30 fM/min after which the CRA influx rate was reduced to the number indicated on the abscissa. This 
produced the chronic inflammation state even for the lower CRA influx rates. The red circles indicate these original chronic inflammation states at CRA influx rates of 
0.1, 0.5, and 3.0 fM/min. The downward green arrows to the black circles show the effect after 15 simulated days, of then adding 1 nM of IgLC-binding peptide at 
sustained CRA influx rates of 0.1, 0.5, or 3 fM/min. (B) The time dependence of TNF-α after peptide addition to any of these three chronic inflammation states, i.e., 
at CRA influxes of 0.1, 0.5, and 3 fM/min. (c) The effect on fibroblast levels of 5.0 fM fibroblast addition to the system at steady state simultaneously with peptide 
addition, of the 0.1 (full red line), 0.5 (dashed blue line), and 3.0 (dashed red line) fM CRA/min chronic states as in (a). (D) The effect on TNF-α levels of 5 fM 
fibroblasts added to the system at steady state simultaneously with drug treatment of the CRA influx of 0.1 (dashed red line), 0.5 (blue full line), and 3.0 (dashed 
green line). (e) Fibroblast concentration as function of time after injecting 6 times (dashed line) or 20 times (dotted line) more healthy fibroblasts to the chronic 3.0 fM 
CRA/min state. (F) The effect on TNF-α levels of giving 30 or 100 fM fibroblasts to the system at steady state simultaneously with peptide treatment at CRA influx 
rates of 0.5 (red dotted line), 3.0 fM/min (blue full line, coinciding with axes).
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new fibroblasts could only appear through division of existing 
fibroblasts, so that the killing of all fibroblasts that the model 
produced should be irreversible. In reality, however, fibroblasts 

from neighboring tissues might come to the rescue by invading. 
In order to test this idea, we then added a low concentration of 
fibroblasts together with the peptide to the model. Indeed, for 
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FigUre 6 | Prevention: the effect of a single dose of CRA on steady-state 
TNF-α level for the case of acute inflammation in the absence (a) and 
presence [(B) dashed line] of a single dose of IgLC-binding peptide.  
(a) Simulations started at an acute inflammation steady state with 5.0 fM/min 
CRA influx (as in Figure 4a) and a bolus of CRA was added at this time 0. 
The amounts added were 0.01 fM and 10 µM for the dashed blue and full red 
lines respectively. (B) 10 µM of CRA was added at time 0 together with 
(dashed red line) or without (full red line) 1.0 nM of peptide. CRA influx was 
maintained at 5.0 fM/min in all cases.
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the lower CRA influx rate of 0.1 fM/min, addition of very few 
healthy fibroblasts (5  fM) already triggered their regrowth to 
full confluence, as shown in Figure 5C. Conversely, the levels of 
healthy fibroblasts went back to 0 at sustained CRA influx rates 
of 0.5 and 3 fM/min, as shown in Figure 5C as well. Figure 5D 
shows that with the high CRA influx rates also TNF-α came back 
to its maximum level. The addition of more healthy fibroblasts 
(30 and 100 fM) resulted also in the latter cases of 0.5 and 3 CRA 
influx in regrowth of the fibroblasts (Figure 5E) and reduction 
of TNF-α (Figure 5F).

In the situation above, peptide addition was able to switch 
the network back from its chronic inflammation state to a virtu-
ally uninflamed state, either transiently (when no fibroblasts 
were reseeded) or persistently (when they were). We also 
wished to examine whether peptide addition could be used 
for prevention, i.e., prevent the network from turning into the 
chronic inflammation state altogether. We therefore set the 
CRA influx rate at 5 fM/min and started the computation from 
the hardly inflamed state. We added a bolus of 10  µM CRA 
and found (Figure 6A) that for initial amounts of CRA below 
1 µM the system returned to the hardly inflamed steady state 
characterized by low TNF-α (dashed blue line). For initial levels 

of CRA exceeding this 1 µM, the system still became chroni-
cally inflamed (the full red line). The Figure 6B shows that the 
IgLC-neutralizing peptide was able to prevent the switch to 
full-blown inflammation induced by 10 µM CRA. Specifically, 
the drug prevented the dying of healthy fibroblasts (not shown) 
and brought the TNF-α level back to 0.01 or virtually 0.

inter-individual Differences
The activities of the various components of the native immune 
network may differ between human individuals. We examined 
whether the dichotomy between chronic and acute inflammation 
predicted by Figure 4 for the network of Figure 1, would depend 
on B-cell activity, which does differ between individual humans 
due to differences in genome or because of different pre-exposure 
to CRA like antigens. Figure 7A shows that for the case of acute 
inflammation (i.e., a calculation starting at low CRA influx rates), 
the TNF-α steady state level attained is already high at much 
lower CRA influx levels when the individual was modeled to 
have 10 times more B  cells. A similar effect was computed for 
the dependence of TNF-α on CRA influx rate in the chronic 
inflammation case (Figure 7B). In addition, we simulated for the 
bacterial growth a time course in two cases to test whether such 
inter-individual differences should also be expected to affect the 
strength of innate immunity per se (Figure 7C).

DiscUssiOn

Tumor necrosis factor-α, fibroblast killing, and mast cell activa-
tion are all associated with inflammation, but inflammation 
itself can assume dichotomous forms. The one is witnessed by 
a moderate increase in TNF-α and other cell lytic factors, just 
enough to kill a population of invading microorganisms or to 
rid the body of a damaged piece of tissue. It is also transient and 
disappearing when the microorganisms or damaged tissue have 
been removed. This is the acute type of inflammation. The other 
type is sustained, persisting long after the antigenic challenge 
has disappeared, and continuing to remove tissue, including 
healthy tissue of the individual itself. This chronic inflammation 
is associated with diseases such as rheumatoid arthritis (RA). 
It may depend on cross-reactivity between exogenous and 
endogenous antigens, taking the place of CRA in our Figure 1. 
The distinction between acute and chronic inflammation is a 
bit unclear when it is accepted that the intensity of the acute 
response increases with the intensity of the antigenic challenge. 
What then is the difference between a strong acute inflamma-
tion caused by a high amount of CRA and a perhaps weaker 
chronic inflammation in the presence of a lower amount of anti-
gen? Indeed, why is it that when exposed to a given antigenic 
dose the one person exhibits minor but useful inflammation 
whereas another person is subject to strong and pathological 
inflammation?

To try to understand these paradoxical phenomena in the 
innate immune response vis-à-vis the confusingly high number 
of factors involved, we put some of the important factors together 
into a much simplified map of the system (Figure 1) and then 
made this map predictive by integrating corresponding math-
ematical equations. The calculations were indeed predictive of 
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FigUre 7 | Dependence of acute (a) and chronic (B) inflammation on the rate of CRA influx and in bacterial infection (c) depends on the individual's B-cell level. 
The dashed lines in (a,B) refer to the standard case, while the full lines refer to the same calculations but for five times increased B-cell levels. (c) Dependence of 
host response in silico on the level of mast cells. The full red line refers to the standard case with 0.1 fM of mast cells, and the dashed blue line (almost coinciding 
with the abscissa) to the case with 1 fM of mast cells. Protease secretion rate constant for mast cells was k25 = 65/min and B-cell concentration was 1 fM in both 
cases.
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function: they predicted (i) that the network would act success-
fully against bacterial infections, (ii) that CRA would produce 
inflammation also in the absence of bacteria, (iii) that there 
are two types of inflammation, and (iv) that a peptide-binding 
IgLC could redress inflammation from chronic to acute or could 
prevent chronic inflammation from occurring when the network 
was challenged by a high dose of CRA.

All these predictions are paralleled by validations in the expe-
rimental literature. For (i)–(iii), these are common knowledge; 
we now have a model-supported understanding of these features 
of innate immunity. Issue (iv) is a more specific test, where 
indeed one of us demonstrated that anti-IgLC peptide injected 
i.p. into mice reduced ear swelling caused by previous injection 
of antigen (33).

In a previous note (59), one of us referred to this finding as 
well as to findings by Dispenzieri et al. (60), as evidence of a much 
greater role of IgLC in innate immunity and in fact non-specific 
human mortality than previously assumed. With the present 
paper, we have now underpinned substantiated this proposal: 
this may indeed a role for IgLC as component of IgE that follows 

from the integration of the relevant data through a systems biol-
ogy model.

This validation of the four main model predictions requires 
qualifications. The first is that the network we made predic-
tive (i.e., Figure  1) is far from completely representing all the 
factors involved in innate immunity and from presenting all 
interactions in the network properly. One issue is that we held 
CRA as essentially covariant with multiple antigens. A second 
is that the parameter values inserted in the model may not have 
been the precise actual parameter values, because most of the 
latter are insufficiently known. Consequently, the present study 
should be seen as a mere demonstration of what networks of 
innate immunity might be capable of. It also offers a first innate-
immunity network that exhibits the essential functional proper-
ties mentioned above, amenable to in silico prediction of actually 
observed behavior. A third issue is that the model is not spatially 
defined, assuming CRA to be in contact with B-cells that might 
be in bone marrow (see the model description above). And, some 
relevant cell types are not mentioned, such as the macrophages. 
They may play roles similar to the mast cells, which would be 
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simulated by the model, but then again, they will add additional 
aspects that we did not model here.

The Parameter Values
Having written the above caveats, we would add that the para-
meter values used are of interest, because they were chosen and 
argued to be as realistic as possible with current knowledge. Cell 
cycle times were realistic, association rate constants were taken 
to reflect diffusion limitation but with corrections for multiple 
molecular targets on the same target cell, surface diffusion, and 
attractive forces. Protease secretion by mast cells was mod-
eled to occur in batches. Our model hereby differs from other 
models in mathematical biology in that it is based on realistic 
estimates of the parameter values rather than on values obtained 
by fitting. The observation that the model reproduces so many 
features of immunology, suggests that we are not that far away 
from the actual parameter values. As such, the network and 
the parameter values, we used may serve future studies where 
parameter values are determined experimentally. In this sense, 
the model presented here may serve as a facility: for each figure 
and table, we have added a file in the supplementary material 
that has the definitive COPASI model in which the parameter 
values can be adjusted. Models are also in JWS-Online (jjj.bio.
vu.nl) to new experimental data, such that implications of the 
new data can be computed.

cra influxes and acute inflammation
Our computational study showed that the network flipped 
to a state of very high inflammation at high challenges with 
antigen influx, with very high levels of TNF-α and extensive 
cell death as a result. This complex association is perhaps best 
illustrated by Figure  4C, where we see the predicted level of 
CRA (antigen) as a function of CRA influx. The correlation 
between disease and CRA appears to run in two directions: 
first, increasing influx of CRA leads to little inflammation until 
the CRA influx exceeds a threshold, and then (see the dashed 
line in Figure 4A) only with a minor further increase in CRA 
influx, inflammation becomes much stronger: high CRA influx 
associates with highly intensive inflammation.

acute Versus chronic inflammation
Acute inflammation can turn into chronic inflammation (61, 62). 
If an acute inflammation has not resolved itself in days, it can 
thereby be considered chronic. This phenomenon is predicted by 
our computations of the implications of the network of Figure 1 
with realistic parameter values: as pointed out in Figures 3 and 
4, continued acute inflammation caused by a continued influx of 
CRA at an intensity level above a certain threshold, is predicted 
to lead to strong inflammation with much elevated TNF-α. 
Once steady state has been achieved for this strong and acute 
inflammation, return of the CRA influx to very low levels, fails 
to lead to a reduction in TNF-α levels (see Figure 4A, the full 
line): substantial exposure of the network to external CRA above 
a certain threshold intensity does not only produce a strong 
acute inflammation but also turns the network into a chronic 
inflammation state. Consequently, for the same antigenic chal-
lenge the network can turn to a high or a low inflammation state, 

depending on its history. This suggests a mechanistic basis of the 
difference between acute and chronic inflammation in the quasi 
bi-stability of the network of Figure 1.

Targeting inflammation
Vis-à-vis medication, innate immunity and its active components 
are frequent targets (63, 64). The mast cell contributes many dif-
ferent mediators, including tryptase, VEGF, and TNF-α. These are 
contributors to tissue inflammation (65–69). We here examined 
if our predictive network facility could serve in pre-validating 
in silico, therapies one might propose for chronic inflammation 
and whether an in silico study might provide early warnings of 
complications of such a therapies. We focused on a peptide binding 
to the IgLC part of IgE inhibiting indirectly the activation of mast 
cells by CRA. Sure enough, we found that such a peptide could 
switch the network back from a chronic to an acute inflamma-
tory state. However, the effect of the peptide was transient only, 
thereby requiring multiple dosing of the peptide at subsequent 
points in time, or a very low drug washout rate for that effect to 
persist acceptably long (results not shown).

In this paper, we assumed that the peptide drug would interact 
with the IgLC that is part of IgE. In a different incarnation of 
the model, the role of IgE would be played by immunoglobulin 
heavy chain devoid of light chain, which would then bind to the 
mast cells, after which there could be piggy-back binding of the 
FLC molecules. B-cells would then not only secrete FLCs but also 
HCs, which should then be able to bind to IgE receptors on the 
mast cells (67). Both this mechanism and the mechanism we used  
in the present paper, should lead to similar kinetic models and 
hence to the same results as shown in this paper.

At a lower CRA influx load the peptide had a longer lasting 
but still no permanent effect. This was because in our simula-
tions the fibroblasts had gone extinct. Consequently, the system 
could not return to the uninflamed or acutely inflamed steady 
state. Why would the fibroblasts matter, however? The fibroblasts 
themselves are not directly involved in stopping inflammation. 
The solution to this riddle was (not shown) that the fibroblasts 
also produce MMP-8 which is a protease that removes CRA and 
thereby defuses the inflammation. Our simulations in which we 
did not only add drug but also fibroblasts to the system, con-
firmed this and suggest that the fibroblasts play an important 
role in keeping inflammation low by scavenging, through the 
proteases they secrete, the inflammatory antigens.

Economically and in view of a possible immune response 
against the peptide, therapy with a single dose of peptide could 
be preferable. Perhaps such a therapy could just consist of adding 
peptide and rely on fibroblasts growing back in from the sur-
roundings of the inflamed tissue. But again perhaps, it should 
be advisable to try and activate this repopulation by fibroblasts.  
A further analysis using patient data and our model might be able 
to predict whether the CRA levels in a particular patient would 
indeed advocate a one-time high-dose treatment with peptide 
rather than a continuous treatment at a lower dose, or treatment 
combined with repopulating with fibroblasts.

For the absence of fibroblast implantation, the network 
predicts the anti-inflammatory effect of the peptide to last only 
for a month or so. This finding may be important, because it 
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could, wrongly, suggest that drug resistance has arisen. Here 
the mechanism is that the drug has not irreversibly flipped the 
network back from its chronic to its acute inflammation state. We 
also examined a different mode of treatment, i.e., one that might 
prevent acute inflammation turning into chronic inflammation. 
Here peptide added when the acute high antigen dose arose, was 
predicted to be effective. This was not what we found for all levels 
of CRA, however: In all these cases, there is a threshold depend-
ence on dose of both CRA and peptide, as well as a complex 
time-dependence. Deciding on the precise dosing and dynamics 
of the therapy and on its limitations, might benefit from having a 
model such as the one developed here, available.

individualized Disease
B cells play a vital role in both acute and chronic inflammation 
(70–72). We found that at a 10-fold increase in B-cell concentra-
tion decreased the threshold CRA influx rate above which inflam-
mation intensity switched from low to high: the window of CRA 
influx rates where the network was bi-stable between chronic and 
acute inflammation was then shifted to lower CRA influx rates. 
This illustrates that the phenomena of acute and chronic inflam-
mation and the effectiveness of therapies may differ significantly 
but also predictably, between individual patients.

complex regulation
The network in Figure 1 contains a positive feedback loop, which 
involves CRA activation of mast cells into the secretion of TNF-
α, and stimulation by TNF-α of CRA secretion by fibroblasts. 
A complicating matter is that the mediators of CRA secretion 
are themselves compromised by TNF-α. We have here shown 
a way to deal with the complexity of this type of regulation,  
i.e., by making predictive models and by simulation in silico. This 
has enabled us to show that the complex regulation also results 
in complex, yet functional properties. One such property of 
the network is that there is an appreciable range of CRA levels 
for which the inflammation remains acute. Only at the highest 
CRA levels, beyond an “On” threshold, a switch occurs to highly 
intense inflammation, which may then lead to chronic inflamma-
tion when maintained sufficiently long. Conversely, we also found 
that there is a switch back from the chronic inflammation state 
to the state of acute inflammation, but that this switch requires 
(i) reduction of the CRA load (as modeled by CRA influx) to 
an intensity below an “Off ” threshold that is far below the “On” 
threshold and (ii) fibroblast repopulation. This “Off ” threshold is 
a bit more gradual. This information may re-motivate therapies 
of antigen removal that failed previously: because of the dual 
threshold effect, a slightly more intensive antigen reduction might 
prove more effective than a longer lasting therapy with a lower 
concentration of peptide. Indeed a more sophisticated approach 

to drug administration may be enabled by predictive modeling 
and this might improve the therapy of chronic inflammation. 
Monitoring of more of the properties involved, such as those of 
CRA and TNF-α, would further empower such an approach.

Our simulations also suggest that pathology and optimal 
therapy should be expected to differ between individual patients 
(our example was that of differences in B-cell activity). Use of 
improved versions of our model and of biomarkers interpreted 
through these models may aid diversified and personalized drug 
development. Similar modeling may help interpret experiments 
inquiring whether a similar positive feedback loop accomplishes 
a specific activation of other innate immune cells such as neu-
trophils, macrophages, and basophils and whether this may also 
occur in the vicinity of a tumor (73, 74).
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