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A B S T R A C T

The COVID-19 series is obviously one of the most volatile time series with lots of spikes and oscillations.
The conventional integer-valued auto-regressive time series models (INAR) may be limited to account for such
features in COVID-19 series such as severe over-dispersion, excess of zeros, periodicity, harmonic shapes and
oscillations. This paper proposes alternative formulations of the classical INAR process by considering the
class of high-ordered INAR models with harmonic innovation distributions. Interestingly, the paper further
explores the bivariate extension of these high-ordered INARs. South Africa and Mauritius’ COVID-19 series are
re-scrutinized under the optic of these new INAR processes. Some simulation experiments are also executed
to validate the new models and their estimation procedures.
. Introduction

The Novel Coronavirus 2019 (COVID-19) pandemic had diverse
epercussions on the social, cultural, economic, and psychological
pheres [1]. With alarming death tolls and economic downfall, the
orld, especially developing countries which are more economically
ulnerable, witnessed a degradation in their health system during
he last two years, mainly due to emergence of variants with high
ropagation rate.

To exemplify, the COVID-19 pandemic affected South Africa’s econ-
my and its health care system, due to its strict sanitary restrictions like
he sanitary curfew which affected hugely vulnerable households which
re dependent on labour jobs. However, through rapid vaccine roll-outs
nd pharmaceutical interventions [2,3], a considerable decline in the
umber of COVID-19 infection and deaths cases, has been observed.
imilar case has been observed in the Mauritian community. Mauri-
ius, via appropriate timely health-related policies like strict COVID-19
estrictions resulting in a computational high COVID-19 stringency
ndex was exceptionally able to curb the pandemic successfully in
020 [See [4–6]]. After the 2021 and 2022 waves, the aim of the
auritian authorities is now to attain herd immunity via an acceler-

ted vaccination campaigns among high-risk patients and the whole
opulation.

∗ Corresponding author.
E-mail address: soobhugn@gmail.com (A.D. Soobhug).

Considering that South Africa and Mauritius are Sub-Saharan coun-
tries featuring in the Top 10 most competitive economies, it is believed
that by studying their COVID-19 deaths series which gives an indication
of the severity of the COVID-19 pandemic, better public health strate-
gies to strengthen the health care system and secure the lives of the
South African and Mauritians, can be implemented.

When observing the COVID-19 death series in South Africa, we
notice huge fluctuations with a number of ups and downs causing
oscillations and with repeated trend causing periodicity. On the other
hand, the COVID-19 death series in Mauritius exhibit huge variability
over the mean, thus causing severe over-dispersion due to the prepon-
derance of zeros in the early stage of detection. Besides, these series
are unarguably affected by several factors which may be explaining
these variations in the data such as the COVID-19 stringency index,
number of COVID-19 infected people and amongst others. In addition,
the COVID-19 series exhibit many significant auto-correlation lags, thus
demanding a time series process of order greater than one, that is, a
high-ordered process. The question of interest is how to model such
series in the presence of the phenomena of periodicity, over-dispersion,
presence of excess zeros, covariate specifications and others. Up to
this extent, there exists integer-valued time series models of auto-
regressive nature that handles the modelling of counting time series.
However, these auto-regressive models are restricted as they cannot
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accommodate for the above features in an unified framework. Thus, this
paper proposes a flexible high-ordered integer-valued auto-regressive
time series process that has the ability to simultaneously consider
periodicity via harmonic specification and all sources of over-dispersion
through the proper specification of the components of the time series
model. The proposed model construction is a major extension of the
existing models that we explain in the following subsections:

1.1. INteger-valued time series model

In the literature, integer-valued time series of auto-regressive char-
acteristics is much popular. [7–11] propounded the class of integer-
valued auto-regressive structures (INAR) based on the binomial thin-
ning operator with constant probability coefficient [12]. The simple
ordered INAR model (INAR(1)) is represented as:

𝑌𝑡 = 𝜌 ∗ 𝑌𝑡−1 + 𝑅𝑡, 𝑡 > 1, 𝑡 ∈ Z (1)

with 𝜌 ∈ (0, 1), ∗ as the binomial thinning operator, and 𝑌𝑡 as the count
observation at the 𝑡th time point. 𝑅𝑡 is the discrete innovation term that
adjusts for any possible random error effects. The binomial thinning
equation is shown later in the paper, while the basic assumptions
are the sequence of {𝑅𝑡}𝑇𝑡=1 consists of independent and identically
distributed innovation terms that follow some probability distributions
with finite moments. The relation between the previous lagged obser-
vation 𝑌𝑡−1 and the current error term 𝑅𝑡 is such that the covariance
between these two terms equates to zero. The probability generating
function (PGF) of 𝑌𝑡|𝑌𝑡−1 is denoted by 𝐺𝑌𝑡|𝑌𝑡−1 (𝑠) and is given by

𝐺𝑌𝑡|𝑌𝑡−1 (𝑠) = (1 − 𝜌 + 𝜌𝑠)𝑌𝑡−1 × 𝐺𝑅𝑡
(𝑠) (2)

where 𝐺𝑌𝑡 (𝑠) stands for the probability generating function of the ran-
dom variable 𝑌 . It is worth to mention that in the development stages
of the simple INAR process, the Poisson, Geometric, Negative Binomial
and Poisson–Lindley innovations have been mostly used [13–17]. The
choice of the innovation distributions impacts on the modelling of the
over-dispersion property in the counting series 𝑌𝑡. Other alternatives of
the simple INAR process have been provided with random coefficient in
the thinning part and with other distributed thinning distributions [18–
22] to cater for the over-dispersion but the PGFs under these other
thinning procedures become cumbersome. This in turn affects the
estimation and inferential procedures. This paper rather focuses on the
simple binomial thinning with constant coefficient.

1.2. Periodicity in the integer-valued time series process

Some examples of integer valued series with periodic structure can
include the monthly counts of claims of short-term disability bene-
fits [23,24], the day-time and night-time road accidents [25–27], the
number of infected cases due to the outbreak of a virus [28,29] and,
the monthly number of short-term unemployed people [30].

For such periodic series, [31] introduced the periodic integer-valued
auto-regressive moving average model (PINARMA) which has the same
INARMA structure in [7,8]. That is, the current observation is related
with the previous-lagged observations through the binomial thinning
operator [12]. If we focus on the auto-regressive structure, the PINAR
model of [31] in the sense of Gladyshev [32] with period.

Basically, the PINARMA can suitably account for the non-stationarity
with respect to the moments of the counting series. This is explained in
detail in [31,33,34]. In our context, the model we consider is based on
the INAR part of the PINARMA model involving the use of the operator
of [12] and hence can generalize the stationary integer autoregressive
process (𝐼𝑁𝐴𝑅) to periodically correlated counting series, where a
periodically correlated Integer-Valued process

{

𝑌𝑡, 𝑡 ∈ Z
}

in the sense
of Gladyshev (1963), with period 𝑆 (where 𝑆 ≥ 2), is expressed as

𝑌 = 𝜌 ∗ 𝑌 +⋯ + 𝜌 ∗ 𝑌 + 𝑅 , 𝑡 ∈ Z (3)
𝑡 1,𝑡 𝑡−1 𝑝,𝑡 𝑡−𝑝 𝑡

2

where
{

𝑅𝑡, 𝑡 ∈ Z
}

is a sequence of uncorrelated non-negative integer-
valued random variables, with a periodic mean 𝜆𝑅𝑡 ,𝑡 and a finite pe-
riodic variance 𝜎2𝑅𝑡 ,𝑡

, and where the parameters 𝜌𝑖,𝑡 lie in the interval
(0, 1) and 𝜃𝑗,𝑡 are defined for 𝑖 = 1,… , 𝑝 and 𝑗 = 1,… , 𝑞. The mean
and variance of 𝑅𝑡 are periodic in 𝑡, with period 𝑆 (𝑆 ≥ 2), such
that, 𝜌𝑖,𝑡+𝑟𝑆 = 𝜌𝑖,𝑡, 𝜆𝑅𝑡 ,𝑡+𝑟𝑆 = 𝜆𝑅𝑡 ,𝑡 and 𝜎2𝑅𝑡 ,𝑡+𝑟𝑆

= 𝜎2𝑅𝑡 ,𝑡
, ∀𝑡, 𝑟 ∈ Z:

The counting sequences of independent non-negative integer-valued
random variables

{

𝑌𝑘,𝑡, 𝑙 ∈ N, 𝑡 ∈ Z
}

, where
𝑃
(

𝑌𝑘,𝑡 = 1
)

= 1 − 𝑃
(

𝑌𝑘,𝑡 = 0
)

= 𝜌𝑖,𝑡 ∈ [0, 1] is given by

𝜌𝑖,𝑡 ∗ 𝑌𝑡−𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑌𝑡−𝑖
∑

𝑘=1
𝑏(𝜌𝑖,𝑡), if 𝑌𝑡−𝑖 > 0,

0, if 𝑌𝑡−𝑖 = 0,

where 𝑏(𝜌𝑖,𝑡) is the Bernoulli random variable with probability 𝜌𝑖,𝑡 (0 <
𝜌𝑖,𝑡 ≤ 1). The same definition of ∗ applies to Eq. (1). From Du and
Li [35], the Bernoulli sequences in the paired terms in 𝑌𝑡,𝑖 that is
(𝜌𝑖,𝑡 ∗ 𝑌𝑡−𝑖, 𝜌𝑖′ ,𝑡 ∗ 𝑌𝑡−𝑖′ ) is treated independent.

Until now, the periodic INAR in Eq. (3) has been mostly used in
the literature but is subject to some drawbacks. In fact, under such a
parametrization, the number of model parameters increases amply as
the 𝜌𝑖,𝑡s are time-variant. This impacts on the computational procedures
of the likelihood function.

2. Proposed novelties

Taking into consideration the complications involved in the esti-
mation and computational procedures in the above existing periodic
INAR process, we propose a more straightforward high-ordered INAR
process based on the simple binomial thinning procedure with constant
coefficient and where the error or innovation term is the random
component that accounts for the periodicity by allowing its predictor
function to incorporate harmonic expression of the form

𝐴 sin(2𝜋𝜔𝑡) + 𝐵 cos(2𝜋𝜔𝑡) (4)

where 𝜔 > 0. At the same time, the underlying error distribution
can consider any discrete probability model with their zero-inflated
associate to handle any form of over-dispersion in the data. Under
these assumptions, it is expected that the proposed high ordered INAR
process is workable even though its conditional likelihood function may
involve integrals. In fact, as [13] argued that with changed thinning
mechanism such as the random or generalized binomial thinning, the
computational performance of the conditional likelihood function is
perturbed. This paper clearly aims at developing high ordered INAR
model with simple constant binomial thinning under common inno-
vation distributions with the harmonic structure that depend on the
nature of the data. In the event the series is over-dispersed, the Poisson–
Gamma mixture or the marginal Negative Binomial (NB) is considered
since it proven lately in [36] that for over-dispersed counts, the NB
yields lower fitting criterion like the Akaike Information criterion. This
also implies if the series consist of huge number of zeros, we may
consider the zero inflated Poisson or Negative Binomial.

Note that Eq. (4) is analogous to the definition of periodicity in
the ptest package in R, with 𝜔 as the periodic constant. In addition,
this paper proposes a bivariate INAR model with periodic structure as
specified in Eq. (4) which so far has not been explored. The bivariate
INAR model consists of two INAR processes wherein the two structures
are inter-related by some defined mechanisms. Likewise, in [25], the
cross correlation between the series was induced by the correlated in-
novations but we notice that this condition introduces extra parameter
to estimate as we require the specification of a bivariate distribution.
In this paper, we introduce in Section 5 a new bivariate INAR process
where the second series is allowed to depend on the previous lag of the
first series and without any dependence on the two innovation series.

The organization of the paper is as follows: In Section 3 describes
the model specification, Section 4 summaries some simulation results,
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Section 5 shows the findings after application of the most suitable mod-
els on the COVID-19 new deaths series in South Africa and Mauritius
as well as some forecasting results. Section 5 also proposes to extend
the periodic INAR to a periodic bivariate INAR model for the COVID-
19 analysis. Section 6 finally summaries the important results of this
research.

3. Proposed High-order INteger-valued model

By extending the simple INAR(1) process [8]) in Eq. (1) to order 𝑝,
we obtain the INAR(𝑝) process as described in [11,35]:

𝑌𝑡 = 𝜌1 ∗ 𝑌𝑡−1 + 𝜌2 ∗ 𝑌𝑡−2 +⋯ + 𝜌𝑝 ∗ 𝑌𝑡−𝑝 + 𝑅𝑡, (5)

with 𝜌. ∈ (0, 1) and ∗ as the binomial thinning operator. The same
assumption of [35] holds between the lagged terms but the error or
innovation term 𝑅𝑡 is now defined with its link predictor as a function
of Eq. (4), that is, 𝐴 sin(2𝜋𝜔𝑡) + 𝐵 cos(2𝜋𝜔𝑡). Note from the Lemma 2.1
in [35], the ∑𝑝

𝑗=1 𝜌𝑗 < 1,

𝐸{(𝜌𝑗 ∗ 𝑌𝑡−𝑗 )(𝜌𝑗′ ∗ 𝑌𝑡−𝑗′ )} = 𝜌𝑗𝜌𝑗′𝐸(𝑌𝑡−𝑗𝑌𝑡−𝑗′ ),

and hence,

𝐶𝑜𝑣(𝜌𝑗 ∗ 𝑌𝑡−𝑗 , 𝜌𝑗′ ∗ 𝑌𝑡−𝑗′ ) = 𝜌𝑗𝜌𝑗′𝐶𝑜𝑣(𝑌𝑡−𝑗 , 𝑌𝑡−𝑗′ ).

Under the binomial thinning assumption,

𝜌 ∗ 𝑌𝑡 ∣ 𝑌𝑡 ∼ 𝐵𝑖𝑛(𝑌𝑡, 𝜌)

𝐸(𝑌𝑡) =
𝑝
∑

𝑘=1
𝜌𝑘𝐸(𝑌𝑡−𝑘) + 𝐸(𝑅𝑡)

where 𝐸(𝑅𝑡) = 𝜇𝑡 and,

𝑉 𝑎𝑟(𝑌𝑡) =𝐸(𝑌𝑡) +
𝑝
∑

𝑘=1
𝜌2𝑘[𝑉 𝑎𝑟(𝑌𝑡−𝑘) − 𝐸(𝑌𝑡−𝑘)]+

2
𝑝
∑

𝑘=1

𝑝
∑

𝑘<𝑘′
𝜌𝑘𝜌𝑘′𝐶𝑜𝑣(𝑌𝑡−𝑘, 𝑌𝑡−𝑘′ ) + [𝑉 𝑎𝑟(𝑅𝑡) − 𝐸(𝑅𝑡)]

Using the above, we compute the Fisher index of dispersion (𝐹𝐼𝑡,𝐵) as
a means to measure the level of over-dispersion in the INAR process of
order 𝑝 at time t, is given by:

𝐹𝐼𝑡,𝐵 =
𝑉 𝑎𝑟(𝑌𝑡)
𝐸(𝑌𝑡)

= 1+

∑𝑝
𝑘=1 𝜌

2
𝑘[𝑉 𝑎𝑟(𝑌𝑡−𝑘) − 𝐸(𝑌𝑡−𝑘)] + 2

∑𝑝
𝑘=1

∑𝑝
𝑘<𝑘′ 𝜌𝑘𝜌𝑘′𝐶𝑜𝑣(𝑌𝑡−𝑘 , 𝑌𝑡−𝑘′ ) + [𝑉 𝑎𝑟(𝑅𝑡) − 𝐸(𝑅𝑡)]
𝐸(𝑌𝑡)

]

hus, for ∀ k ∈ {1,p}, given 𝐹𝐼𝑡−𝑘,𝐵 > 1 and positive covariances, then
𝐼𝑡 >1, iff, 𝑅𝑡 is equi- or over-dispersed.

Let 𝑡 =
{

𝑌𝑡−1,… , 𝑌𝑡−𝑝
}

, then, the PGF in Eq. (2) is extended to

𝑌𝑡|𝑡
(𝑠) =

𝑝
∏

𝑘=1
(1 − 𝜌𝑘 + 𝜌𝑘𝑠)𝑌𝑡−𝑘 × 𝐺𝑅𝑡

(𝑠).

he density function 𝑓𝑦𝑡 (𝑌𝑡) is simply obtained as:

𝑦𝑡 (𝑌𝑡) = 𝐹𝑦𝑡 (𝑌𝑡) − 𝐹𝑦𝑡 (𝑌𝑡−1). (6)

here from [37],

𝑦𝑡 (𝑌𝑡) =
1
2
− 1

2𝜋 ∫

𝜋

−𝜋
𝑅𝑒

[

𝐺𝑦𝑡|𝑡
(𝑒𝑖𝑠, 𝜌𝑘)𝑒−𝑖𝑠𝑌𝑡

1 − 𝑒−𝑖𝑠

]

(7)

nd hence the log-likelihood equation is obtained as

(𝜃) = log(
𝑇
∏

𝑡=1
𝑓𝑦𝑡 (𝑌𝑡)) (8)

here 𝜃 is the vector of the model parameters. Basically, 𝜃 consists of
he regression effects such as the contributory effects of the different
xplanatory variables, the mean, covariance and dispersion parameters.
n Section 5, the different parameters defining the vector 𝜃 are stated.
3

Fig. 1. Simulated data with 𝑇 = 100, 𝜔 = 0.01.

The log-likelihood is optimized using the optim function in R.
From Bu et al. [38],Pedeli et al. [39],Lu [40], the vector of the esti-
mated model parameters denoted by ̂(𝜃) and the asymptotic properties
of 𝜃̂-𝜃 ∼ 𝑁(0, 𝐼−1(𝜃)) where 𝐼(𝜃) is the Hessian, is obtained from the
𝑜𝑝𝑡𝑖𝑚$ℎ𝑒𝑠𝑠𝑖𝑎𝑛 in R.

The reader can refer to [13,35,38,41] for more properties in the
INAR(𝑝) process. The estimation of the model parameters is handled by
the Conditional maximum likelihood approach, based on the likelihood
generated from the probability generating function principle explained
in [37]. The R codes can be made available on request from the reader.

4. Simulation

From Section 4, we now consider an INAR(4) process with Poisson
innovations as:

𝑌𝑡 = 𝜌1 ∗ 𝑌𝑡−1 + 𝜌2 ∗ 𝑌𝑡−2 + 𝜌3 ∗ 𝑌𝑡−3 + 𝜌4 ∗ 𝑌𝑡−4 + 𝑅𝑡

where the 𝑅𝑡 ∼ Poisson(𝜆𝑡) with 𝜆𝑡 = exp(2 sin 2𝜋𝜔𝑡 + 3 cos 2𝜋𝜔𝑡),
with 𝜔 > 0. Let assume 𝜌1 = 0.2, 𝜌2 = 0.1, 𝜌3 = 0.1, 𝜌4 = 0.05 and
= 0.01, 1.25, 3.50. Using these values, we simulate 100, 500 and 1000

bservations. The graphs and properties of these time series are shown
elow:

1. 𝑇 = 100 Using the set.seed(1234), the data summary for 𝜔 = 0.01
gives a minimum value of 0 and a maximum of 72 with the
mean and variance at 15.7 and 502.6. The data also consists
of around 30% of zeros. The ptestg gives a 𝑝-value of less than
0.0001 and hence confirms the harmonic or periodic nature of
the generated time series. Now with 𝜔 = 1.25 and set.seed(1235),
we obtain the minimum value of 1 and maximum of 51, with
no zero observations and has mean at 14.4 and variance 151.4.
The periodicity test gives significant 𝑝-values. For 𝜔 = 3.50 and
set.seed(1236), the minimum is 1 and maximum at 18 with mean
6.76 and variance 16.49 and significant periodic test.
The time series plots are:

2. 𝑇 = 500 We repeat the same experiments with same values
of the thinning coefficients and 𝜔 and stored in set.seed(2234),
set.seed(2235) and set.seed(2236).

In the above simulated data at 𝑇 = 500, the mean and variance at
𝜔 = 0.01 are 14.6 and 450.4 while for 𝜔 = 1.25, the moment values
are at 12.4 and 69.4 and at 𝜔 = 3.50, they are 6.72 and 17.8. The
periodic tests are all significant. It is noticeable that for the different
combination of 𝜔, the data are over-dispersed, and as 𝜔 increases,
the level of periodicity also increases. For small 𝜔, the Fisher-index of
dispersion becomes more larger.

Using the above values for 𝜌. and 𝜔, we generate the periodic series
assuming the following three scenarios of 𝑅𝑡 since the specifications on
the assumed 𝑅𝑡 are suitable to capture the periodicity features as shown
in Figs. 1 to 6 in Section 3.



N.M. Khan, A.D. Soobhug, N. Youssef et al. Healthcare Analytics 2 (2022) 100086
Fig. 2. Simulated data with 𝑇 = 100, 𝜔 = 1.25s.

Fig. 3. Simulated data with 𝑇 = 100, 𝜔 = 3.50.

Fig. 4. Simulated data with 𝑇 = 500, 𝜔 = 0.01.

Moreover, since the paper focused on COVID-19 analysis in coun-
tries like Mauritius, where there was a preponderance of zero COVID-19
infected and death cases in the early detection, we then consider the
zero-inflated and hurdle Poisson versions in the simulations as these
can mimic the actual trend of the COVID-19 in countries like Mauritius
to a large extent :

1. 𝑅𝑡 is Poisson with mean 𝜆𝑡
2. 𝑅𝑡 is Zero inflated Poisson (ZIP) with mean 𝜆𝑡 and with the

proportion of zeros 𝜋 = 0.4. In this case, we use the ZIM package
to obtain simulated zero-inflated Poisson data using the built in
function rzip. For the ZIP, we assume that the PGF of the ZIP
4

Fig. 5. Simulated data with 𝑇 = 500, 𝜔 = 1.25.

Fig. 6. Simulated data with 𝑇 = 500, 𝜔 = 3.50.

is given by 𝐺𝑅(𝑡)(𝑠) = (1 − 𝜋) +
[

𝜋 × exp(𝜆𝑡(𝑠 − 1))
]

, where the 𝜋
indicates the proportion of zeros and let 𝜋 = exp(𝜂)

1+exp(𝜂) .

3. 𝑅𝑡 is Hurdle-Poisson with 𝜋 = 0.4. Here we refer to the iZID
package using the sample.h function. The 𝐺𝑅(𝑡)(𝑠) = (1 − 𝜋) + 𝜋 ×
[

𝜋 × exp(𝜆𝑡(𝑠−1))
exp(𝜆𝑡)−1

]

In cases 2 and 3, 𝜂 is thus computed as −0.4055. The simulation results
based on 500 replications are tabulated below:

Below, the boxplot representing the simulated mean estimates under
Poisson innovation is given in Fig. 7:

The boxplot with the simulated mean estimates under ZI-Poisson
innovation is given as Fig. 8:

The boxplot with the simulated mean estimates under Hurdle-
Poisson innovation is given as Fig. 9

From the simulated results in Tables 1–3, it can be concluded that
the simulated mean estimates of the model parameters on the 500
replications, in particular for the 𝝆 and 𝜂 are consistent with their
corresponding population parameters. In fact, by comparing the biases,
we note that the periodic INAR(4) with ZIP innovation distribution
model provides estimates with lower standard errors than the other
competitive INAR(4) under stationary scenario. In fact, as the number
of time points increases, the standard errors of the estimates decrease
thus we can say that the consistency is unaffected by the 𝜔. Also,
computationally, simulations at 𝑇 = 500 and 𝑇 = 1000 are very
time consuming. We also attempt higher order INAR with 𝑝 > 4 and
notice that the computational procedures become very slow and time
consuming.
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Fig. 7. Boxplot for simulated Poisson innovation with 𝑇 = 100, 𝜔 = 0.01.
Fig. 8. Boxplot for simulated ZI-Poisson innovation with 𝑇 = 500, 𝜔 = 1.25.
5. Data analysis

5.1. The COVID-19 in South Africa

The plot below of the COVID-19 deaths in South Africa demon-
strates three main oscillations (see Fig. 10):

The periodic test in R is also highly significant and this entails a
number of significant lags. The sample mean and variance are com-
puted as 147.8 and 23219.9 respectively and hence the high-ordered
INAR model in Section 3 represents a relevant choice to analyse the
5

COVID-19 death series in South Africa. Below, the autocorrelation
(ACF) and partial autocorrelation (PACF) plots have been displayed.
They clearly illustrate the existence of serial auto correlation and the
number of orders (see Fig. 11):

In the presence of the above features, we fit three models to the
South African COVID-19 data using the INAR(4) with Poisson inno-
vations (Model 1), the periodic INAR (4) with Poisson innovations
(Model 2) and the periodic INAR(4) with Negative Binomial innova-
tions (Model 2 (NB)). Note that the purpose of fitting using Model
1 is to reflect on the biasedness that may occur when we ignore the
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Table 1
Simulated mean estimates for 𝜔 = 0.01.

Model 𝑇 𝜌1 = 0.2 𝜌2 = 0.1 𝜌3 = 0.1 𝜌4 = 0.05 𝜔 = 0.01 𝜂 = −0.4055

Poisson

100 0.215 0.101 0.111 0.048 0.014 −0.3956
(0.016) (0.015) (0.018) (0.009) (0.019) (0.005)

500 0.204 0.095 0.128 0.053 0.013 −0.4025
(0.015) (0.013) (0.014) (0.008) (0.016) (0.003)

1000 0.189 0.101 0.146 0.046 0.009 −0.4061
(0.011) (0.009) (0.012) (0.006) (0.011) (0.001)

ZIP

100 0.208 0.099 0.137 0.053 0.011 −0.4056
(0.009) (0.006) (0.012) (0.009) (0.013) (0.009)

500 0.215 0.145 0.122 0.05 0.010 −0.3949
(0.005) (0.004) (0.008) (0.005) (0.008) (0.005)

1000 0.186 0.111 0.105 0.054 0.012 −0.4022
(0.003) (0.002) (0.005) (0.002) (0.006) (0.003)

HP

100 0.198 0.112 0.077 0.048 0.013 −0.410
(0.005) (0.006) (0.010) (0.008) (0.009) (0.006)

500 0.220 0.149 0.105 0.055 0.011 −0.389
(0.003) (0.004) (0.009) (0.006) (0.008) (0.004)

1000 0.218 0.116 0.142 0.053 0.014 −0.406
(0.002) (0.002) (0.007) (0.004) (0.004) (0.003)
Table 2
Simulated mean estimates for 𝜔 = 1.25.

Model 𝑇 𝜌1 = 0.2 𝜌2 = 0.1 𝜌3 = 0.1 𝜌4 = 0.05 𝜔 = 1.25 𝜂 = −0.4055

Poisson

100 0.199 0.126 0.112 0.044 1.205 −0.4052
(0.021) (0.016) (0.019) (0.025) (0.011) (0.006)

500 0.214 0.117 0.106 0.051 1.196 −0.3998
(0.018) (0.013) (0.013) (0.018) (0.009) (0.004)

1000 0.208 0.089 0.078 0.049 1.239 −0.4059
(0.016) (0.009) (0.010) (0.015) (0.007) (0.002)

ZIP

100 0.238 0.069 0.096 0.043 1.244 −0.4023
(0.019) (0.013) (0.012) (0.014) (0.019) (0.009)

500 0.201 0.112 0.099 0.058 1.231 −0.3965
(0.012) (0.006) (0.010) (0.006) (0.018) (0.005)

1000 0.222 0.126 0.089 0.051 1.249 −0.4019
(0.008) (0.005) (0.008) (0.005) (0.015) (0.001)

HP

100 0.192 0.119 0.115 0.052 1.223 −0.4046
(0.015) (0.011) (0.005) (0.008) (0.013) (0.004)

500 0.204 0.122 0.134 0.046 1.251 −0.4056
(0.009) (0.007) (0.003) (0.006) (0.009) (0.003)

1000 0.239 0.102 0.144 0.045 1.196 −0.4002
(0.008) (0.004) (0.002) (0.005) (0.008) (0.001)
Table 3
Simulated mean estimates for 𝜔 = 3.50.

Model 𝑇 𝜌1 = 0.2 𝜌2 = 0.1 𝜌3 = 0.1 𝜌4 = 0.05 𝜔 = 3.50 𝜂 = -0.4055

Poisson

100 0.177 0.125 0.067 0.053 3.489 −0.410
(0.015) (0.020) (0.026) (0.012) (0.019) (0.021)

500 0.191 0.108 0.089 0.046 3.523 −0.406
(0.011) (0.015) (0.022) (0.009) (0.017) (0.019)

1000 0.224 0.114 0.123 0.049 3.489 −0.390
(0.008) (0.011) (0.019) (0.005) (0.013) (0.015)

ZIP

100 0.207 0.142 0.107 0.050 3.556 −0.406
(0.012) (0.019) (0.021) (0.009) (0.016) (0.017)

500 0.176 0.134 0.131 0.057 3.516 −0.405
(0.009) (0.015) (0.016) (0.007) (0.011) (0.013)

1000 0.221 0.066 0.127 0.055 3.489 −0.403
(0.007) (0.008) (0.014) (0.006) (0.009) (0.011)

HP

100 0.179 0.112 0.133 0.049 3.467 −0.400
(0.019) (0.011) (0.008) (0.016) (0.012) (0.009)

500 0.219 0.096 0.149 0.045 3.562 −0.400
(0.012) (0.007) (0.006) (0.009) (0.009) (0.006)

1000 0.237 0.089 0.106 0.052 3.502 −0.403
(0.008) (0.005) (0.004) (0.006) (0.005) (0.004)
periodicity in the data analysis. The estimates of the parameters under
these models and their standard errors and AIC are tabulated as (see
Table 4):

The parameter estimates under all models are all significant with the
𝑝 values less than 0.0001. Hence, the estimates confirm that the COVID-
19 death series in South Africa are to be analysed using the periodic
6

INAR(4) process. It is noticeable that when we consider the periodicity
in Model 2 and Model 2 (NB), their Akaike information criteria (AIC)
have decreased and hence these two models are suitable to yield better
fits. This it is important to consider the harmonic specification in the
definition of the link predictor function 𝜆𝑡.
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Table 4
Estimates of the model parameters under both INAR (4) processes: South Africa.

Models Parameters 𝜌1 𝜌2 𝜌3 𝜌4 𝜆 𝜔 AIC

Model 1 Estimates 0.4261 0.1698 0.1936 0.0303 0.4389 14523StdError 0.0002 0.0002 0.0002 0.0003 0.0004

Model 2 Estimates 0.2632 0.2267 0.2135 0.0836 0.0158 14503StdError 0.0001 0.0001 0.0001 0.0002 0.0001

Model 2 (NB) Estimates 0.4553 0.2105 0.2241 0.0824 0.0147 14489StdError 0.0001 0.0001 0.0001 0.0001 0.0000
Fig. 9. Boxplot for simulated Hurdle-Poisson innovation with 𝑇 = 1000, 𝜔 = 3.50.
Fig. 10. COVID-19 deaths in South Africa from 27.03.2020 to 22.11.2021.

In addition, we consider the effects of some influential time-varying
factors on the COVID-19 deaths such as the COVID-19 stringency
index and the number of COVID-19 infected cases. The 𝜆𝑡 is then
re-formulated as

𝜆𝑡 = exp(𝛽0 sin 2𝜋𝜔𝑡 + 𝛽1 cos 2𝜋𝜔𝑡) × infected𝛽2 × stringency𝛽3 (9)

The COVID-19 stringency index has been computed based on nine met-
rics, namely school closures; workplace closures; cancellation of public
events; restrictions on public gatherings; closures of public transport;
stay-at-home requirements; public information campaigns; restrictions
on internal movements; and international travel controls. This index
7

gives an indication of the strictness of the sanitary restrictions imposed
in relation to the COVID-19 pandemic and the higher the value of the
index, the stricter are the mentioned sanitary measures.

Refer to Table 5, Models 1 and 2 yield reliable estimates of the
different parameters at very low standard errors and hence with signifi-
cant p-values. However, Model 2 (NB) gives better AIC, which confirms
that the periodicity in such series has to be accounted. Based on the
highly significant estimates of the COVID-19 stringency index, it can
be deduced that indeed the implementation of sanitary measures in
South Africa like stringent lockdown, limited mobility and gatherings
and legislation such as the Disaster Management Act as part of its
preparedness plan, allowed South African authorities to timely detect
variants and come up with proper remedial actions to strengthen the
health system. This ultimately helped in reducing the COVID-19 new
infection cases.

5.2. COVID-19 deaths in Mauritius

We now fit similar models to the Mauritius COVID-19 death se-
ries from 21.03.2020 to 25.04.2021 using the same influential fac-
tors as in Eq. (9). The time series plot in Figs. 12 and 13 indi-
cates two oscillations which confirms the usage of the high ordered
INAR(4) with harmonic features and even depicts over-dispersion via
the 𝑞𝑐𝑐.𝑜𝑣𝑒𝑟𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛.𝑡𝑒𝑠𝑡 from the package 𝑞𝑐𝑐. The mean and vari-
ance of COVID-19 death series in Mauritius is around 0.03 and 0.08,
respectively.

A periodic test 𝑝-value of 0.0285 from the ptestg function in the
package ptest in R, was obtained. The application results are
(see Table 6):
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Table 5
Estimates of the model parameters under both INAR(4) with covariates: South Africa.

Models Parameters 𝜌1 𝜌2 𝜌3 𝜌4 𝛽0 𝛽1 𝛽2 𝛽3 𝜔 AIC

Model 1 Estimates 0.4588 0.1704 0.1784 0.0202 0.0086 0.0078 14352StdError 0.0001 0.0001 0.0004 0.0024 0.0002 0.0003

Model 2 Estimates 0.4527 0.1557 0.1839 0.0295 0.0081 0.0059 0.0151 0.0059 0.0113 14246StdError 0.0002 0.0002 0.0003 0.0003 0.0032 0.0002 0.0002 0.0003 0.0002

Model 2 (NB) Estimates 0.4426 0.1601 0.1855 0.0249 0.0083 0.0057 0.0147 0.0048 0.0109 14219StdError 0.0001 0.0002 0.0001 0.0002 0.0024 0.0002 0.0002 0.0004 0.0002
Table 6
Estimates of the INAR(4): COVID-19 Mauritius death series.

Models Parameters 𝜌1 𝜌2 𝜌3 𝜌4 𝛽0 𝛽1 𝛽2 𝛽3 𝜔 AIC

Model 1 Estimates 0.2125 0.1071 0.1071 0.0537 0.0107 0.0079 25030StdError 0.0036 0.0063 0.0089 0.0051 0.0042 0.0069

Model 2 Estimates 0.1421 0.0925 0.1067 0.0572 0.0145 0.0123 0.0132 0.0151 0.0042 25024StdError 0.0117 0.0192 0.0099 0.0128 0.0033 0.0056 0.0046 0.0031 0.0126

Model 2 (NB) Estimates 0.1650 0.0856 0.1029 0.0500 0.0092 0.0107 0.0104 0.0111 0.0116 20080StdError 0.0100 0.0071 0.0062 0.00678 0.0063 0.0035 0.0032 0.0028 0.0087
Table 7
Estimates of Parameters of INAR(4) with ZI and HP Poisson and Negative Binomial innovations: Mauritius COVID-19 Death series.

Models Parameters 𝜌1 𝜌2 𝜌3 𝜌4 𝛽0 𝛽1 𝛽2 𝛽3 𝜔 𝜂 AIC

Model 1 Estimates 0.1438 0.1119 0.1085 0.0524 0.0114 0.0115 0.9212 25025StdError 0.0051 0.0095 0.0099 0.0071 0.0025 0.0021 0.0041

Model 2
(ZIP)

Estimates 0.1414 0.1111 0.1064 0.0513 0.0109 0.0109 0.0107 0.0116 0.0105 0.9310 25019StdError 0.0094 0.0062 0.0041 0.0055 0.0034 0.0028 0.0024 0.0037 0.0023 0.0027

Model 2
(ZINB)

Estimates 0.1754 0.0981 0.0907 0.0492 0.0112 0.0113 0.0084 0.0092 0.0105 0.9112 20078StdError 0.0071 0.0054 0.0034 0.0042 0.0026 0.0033 0.0022 0.0032 0.0021 0.0023

Model 3
(HP)

Estimates 0.1456 0.1122 0.1054 0.0523 0.0109 0.011 0.0111 0.0121 0.0107 0.0105 25020StdError 0.0095 0.0065 0.0041 0.0052 0.0036 0.0031 0.0022 0.0032 0.0021 0.0027

Model 3
(HNB)

Estimates 0.1456 0.1122 0.1054 0.0523 0.0109 0.011 0.0111 0.0121 0.0107 0.0105 21010StdError 0.0095 0.0065 0.0041 0.0052 0.0036 0.0031 0.0022 0.0032 0.0021 0.0027
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From the above results, it is clear that the Model 2 (NB) gives
etter AIC. The over-dispersion parameter is estimated at 0.4282 with
d 0.0362. Overall, all models yield significant estimates with low
-values. Furthermore, since the series contain an excess of zeros
mounted to 97.3% as compared to the South African COVID-19 data,
e may choose to re-run the periodic INAR model with the zero-

nflated Poisson (ZIP) and zero-inflated Negative-Binomial innovations
Model 2: ZINB) or the Hurdle Poisson innovation (Model 3: HP) and
urdle Negative-Binomial (Model 3:HNB). The results are shown in
able 7:

The Model 1 is the INAR(4) with ZI Poisson innovations without
ny periodicity feature. The Model 2 (ZINB) outperforms the others
ith an over-dispersion estimated at 0.4281 and with standard errors
t 0.0023, which implies that such COVID series can better be modelled
sing the periodic INAR with NB innovations. Timely imposition of new
mmediate sanitary measures during the peak COVID-19 phases like
anitary curfew/lockdown, sanitization and sensitization campaigns
nd safe shopping guidelines, allowed Mauritius in 2020, to be among
hose countries which have curbed the COVID-19 pandemic, in a record
ime. At that time, COVID-19 stringency index was on the higher
ide. In 2021/2022, by re-enforcing the COVID-19 related laws like
andatory vaccination with booster dose and wearing of face-masks

n public places, the COVID-19 situation was under controlled.

.3. Forecasts

The forecasts for Mauritius and South Africa are estimated from
he periodic model. For South Africa, the period from 23.11.2021 to
2.12.2021 is considered using the Model 2 results in Table 5 while for
auritius, the forecasting period starts from 26.04.2021 to 05.05.2021

sing the Model 2 (ZINB) in Table 7 since it yields the best AIC (see
ig. 14).
 𝜆

8

The forecasts reaped satisfactory RMSEs notably for South Africa
which was around 5.29 whilst for Mauritius, around 1.73. Below, is
the confidence interval (see Fig. 15):

5.4. Extension

We can consider an extension of the periodic INAR to a periodic
bivariate INAR model of the following form for the COVID-19 analysis:

𝑌𝑡,1 =𝜌11 ∗ 𝑌𝑡−1,1 + 𝑅𝑡,1

𝑌𝑡,2 =𝜌21 ∗ 𝑌𝑡−1,2 + 𝜌22 ∗ 𝑌𝑡−1,1 + 𝑅𝑡,2

where 𝑌𝑡,1 measures the number of COVID-19 infected cases at the
𝑡th time point and 𝑌𝑡,2 is the corresponding number of COVID-19
deaths, with 𝑅𝑡,1 ∼ NegBinom(𝑐, 𝜆𝑡,1), where 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚 is the Negative-

inomial (NB) distribution with size 1∕𝑐 and mean 𝜆𝑡,1 and 𝑅𝑡,2 is
he Zero-inflated Poisson (ZIP) with mean 𝜆𝑡,2 and probability of zeros
enoted by 𝜋2. The choice of the NB model for 𝑅𝑡,1 is because the series
𝑡,1 is found to be hugely over-dispersed, while the ZIP model for 𝑅𝑡,2
s justified since the death series is characterized by 97.5% number of
eros. The covariance between 𝑌𝑡,1 and 𝑌𝑡,2 is given by

𝐶𝑜𝑣(𝑌𝑡,1, 𝑌𝑡,2) = 𝐶𝑜𝑣(𝜌11 ∗ 𝑌𝑡−1,1, 𝜌21 ∗ 𝑌𝑡−1,2)

+ 𝐶𝑜𝑣(𝜌11 ∗ 𝑌𝑡−1,1, 𝜌22 ∗ 𝑌𝑡−1,1)

here 𝐶𝑜𝑣(𝑅𝑡,1, 𝑅𝑡,2) = 0. The ∗ operator is the usual binomial thinning.
he assumption on the previous lagged term 𝑌𝑡−𝑗,𝑘 and 𝑅𝑡,𝑘 holds as

n the classical INAR time series model. The Bernoulli sequences in
he paired terms in 𝑌𝑡,2 that is (𝜌21 ∗ 𝑌𝑡−1,2, 𝜌22 ∗ 𝑌𝑡−1,1) is treated
ndependent. The marginal means of 𝑅𝑡,1 and 𝑅𝑡,2 are given as:

𝑡,1 = exp(𝛽10 sin 2𝜋𝜔1𝑡 + 𝛽11 cos 2𝜋𝜔1𝑡) × ×stringency𝛽12
𝛽22
𝑡,2 = exp(𝛽20 sin 2𝜋𝜔2𝑡 + 𝛽21 cos 2𝜋𝜔2𝑡) × ×stringency
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Fig. 11. ACF and PACF plots for COVID-19 deaths in South Africa.
Fig. 12. COVID-19 deaths in Mauritius from 21.03.2020 to 25.04.2021.

Table 8
Estimates of the BINAR process.

Parameters 𝜌11 𝜌21 𝜌22 𝜌21 𝜔1 𝜔2

Estimates 0.0581 0.0582 0.0225 0.9351 0.4318 0.7805
StdError 0.0044 0.0039 0.0042 0.0076 0.0001 0.0001

Table 9
Estimates of the BINAR process.

Parameters 𝜋2 𝛽10 𝛽11 𝛽12 𝛽20 𝛽21 𝛽22
Estimates 0.9698 0.3172 0.1426 0.3194 0.4227 0.2226 0.2851
StdError 0.0107 0.0113 0.0105 0.0004 0.0485 0.0753 0.0251

The representations of the Negative-Binomial and Zero-inflated Poisson
are given in Appendix. Since the COVID-19 series from Mauritius did
not consist of huge values for both cases and deaths, we apply the
proposed periodic BINAR(1) and the results are summarized in (see
Tables 8 and 9):

The AIC is 1825.681 with log-likelihood value as 925.8406.
9

6. Conclusion

This paper brings an important finding in the class of integer-valued
auto-regressive models. For series with harmonic or periodic structure,
it is inevitable to consider the periodic feature with some harmonic
functions in the definition of the innovation predictor function. This
subsequently impacts on the significance of the explanatory variables
and fitting criteria of the time series models. Whilst, the choice of
the error term is determined by the level of over-dispersion in the
data and the presence of zeros. Thus, the proposed INAR(𝑝) model is
quite flexible as it accommodates for all these possible features. In the
presence of over-dispersion and excess zeros, we consider the Poisson
and Negative-Binomial and their zero inflated associates in the error
term specification. Such specification suits the pattern shown in the
COVID-19 series for South Africa and Mauritius. Additionally, if the
series has comfortably lower integer-values, the periodic INAR with
Poisson mixture innovations is recommended. The paper explores the
periodicity in the high ordered integer-valued INAR models and also
extends prominently to the bivariate INAR model. Under both cases,
the results are reliable and helpful to the authorities in terms of the
COVID-19 stringency monitoring campaigns. The proposed periodic
high ordered models with their bivariate extension can be applied to
other countries’ COVID-19 data with additional official information on
the explanatory variables to better infer their respective influences on
the COVID-19.
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Fig. 13. ACF and PACF plots of COVID-19 deaths in Mauritius.

Fig. 14. Forecasts for next 10 days.

10
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Fig. 15. The forecasts within 95% CI.
Appendix

The NB with size 𝑐 and mean 𝜆𝑡,1 is given as:

𝑃 (𝑅𝑡 = 𝑟) =
𝛤 (𝑟 + 𝑐−1)
𝛤 (𝑟 + 1)𝑐−1!

[

𝑐−1

𝜆𝑡,1 + 𝑐−1

]𝑐−1 [
𝜆𝑡,1

𝜆𝑡,1 + 𝑐−1

]𝑟

and has 𝐸(𝑅𝑡) = 𝜆𝑡,1 and 𝑉 (𝑅𝑡) = 𝜆𝑡,1(1 + 𝑐𝜆𝑡,1), where 𝑐 > 0. The ZIP
with parameters 𝜋2 and 𝜆𝑡,2 is expressed as

𝑃 (𝑅𝑡 = 𝑟) =

{

𝜋2 + (1 − 𝜋2)𝑃 (𝑟 = 0), 𝑟 = 0

(1 − 𝜋2) exp(−𝜆𝑡,2)
𝜆𝑟𝑡,2
𝑟! , 𝑟 = 1, 2, 3,…

with 𝐸(𝑅𝑡) = 𝜆𝑡,2(1 − 𝜋2) and 𝑉 (𝑅𝑡) = 𝜆𝑡,2(1 − 𝜋2)(1 + 𝜆𝑡,2𝜋2) with
𝜆 > 0, 0 < 𝜋2 < 1. By assessing the Fisher index of dispersion for both
models, we can notice that both NB and ZIP are suited for modelling
the overdispersion in the COVID-19 cases and death series.
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