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Abstract: Autonomous vehicles need to have sufficient perception of the surrounding environment
to produce appropriate driving behavior. The Vehicle-to-Vehicle (V2V) communication technology
can exchange the speed, position, direction, and other information between autonomous vehicles to
improve the sensing ability of the traditional on-board sensors. For example, V2V communication
technology does not have a blind spot like a conventional on-board sensor, and V2V communication
is not easily affected by weather conditions. However, it is almost impossible to make every vehicle
a V2V-equipped vehicle in the real environment due to reasons such as policy and user choice.
Low penetration of V2V-equipped vehicles greatly reduces the performance of the traditional V2V
system. In this paper, however, we propose a novel method that can extend the awareness ability of
the traditional V2V system without adding much extra investment. In the traditional V2V system,
only a V2V-equipped vehicle can broadcast its own location information. However, the situation
is somewhat different in our V2V system. Although non-V2V-equipped vehicles cannot broadcast
their own location information, we can let V2V-equipped vehicle with radar and other sensors detect
the location information of the surrounding non-V2V-equipped vehicles and then broadcast it out.
Therefore, we think that a non-V2V-equipped vehicle can also broadcast its own location information.
In this way, we greatly extend the awareness ability of the traditional V2V system. The proposed
method is validated by real experiments and simulation experiments.

Keywords: automated vehicles; V2V communications; non-V2V-equipped vehicle detection;
license plate number recognition; calibration between camera and LiDAR; extension of traditional
V2V systems

1. Introduction

Autonomous vehicles have modules such as environment sensing, behavioral decision making,
path planning, and motion control [1], which can complete the driving task without the need for the
driver. Therefore, they can replace human beings to complete some dangerous, messy, and boring
driving tasks that humans are not willing to do. Autonomous vehicles are a key factor in achieving
an intelligent transportation system and are widely regarded as a promising method to avoid road
collisions and improve traffic conditions [2]. Autonomous vehicles have relied only on on-board
sensors to collect information about the weather, road, and traffic conditions. Although the quality of
these sensors has been greatly improved, they still have certain range and accuracy limitations [3].
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The development of Intelligent Transport System (ITS) has led to the development of Vehicular
Ad Hoc Networks (VANets) [4], which automatically creates a wireless network between vehicles to
exchange messages. V2V technology allows connected vehicles to communicate with each other to get
information about each other’s speed, position, and direction [5]. The messages that are broadcast by
connected vehicles are called Cooperative Awareness Messages (CAM) and Decentralized Notification
Messages (DENM). Therefore, through V2V technology, connected vehicles can communicate with any
other connected vehicles in communication range. V2V technology extends the ability of autonomous
vehicles using only on-board sensors. Autonomous vehicles’ systems can improve transportation
system operations when they are combined with connected vehicles’ systems [6,7]. Improving the
efficiency and reliability of operating autonomous vehicles and saving energy [8] are the main driving
forces for the development of V2V technology.

However, due to the reasons of policy and user selection, the penetration of connected vehicles
is very low in the actual environment, which greatly affects the performance of V2V systems; for
example, in the following scenario (in Figure 1a): In the traditional V2V system, V2V-equipped Vehicle
A cannot detect Vehicles C, D, F, and H, because the non-V2V-equipped vehicles (Vehicles C, D, F,
and H) cannot broadcast their own location information. Given the present situation, this paper
presents a novel idea of letting V2V-equipped vehicles detect location information and license plate
numbers of the surrounding non-V2V-equipped vehicles and broadcast this information. Therefore,
the non-V2V-equipped vehicles seem to have the ability to broadcast CAM as the V2V-equipped
vehicles do. Consequently, in our V2V system, V2V-equipped Vehicle A can perceive Vehicles C, D,
F, and H (see Figure 1b), because V2V-equipped Vehicle B can “tell” V2V-equipped Vehicle A where
non-V2V-equipped Vehicle C is, V2V-equipped Vehicle E can “tell” V2V-equipped Vehicle A where
non-V2V-equipped Vehicle D is, V2V-equipped Vehicle F can “tell” V2V-equipped Vehicle A where
non-V2V-equipped Vehicle G is, and V2V-equipped Vehicle H can “tell” V2V-equipped Vehicle A where
non-V2V-equipped Vehicle I is. In this way, we extend the awareness ability of non-V2V-equipped
vehicles in vehicular networks under the low penetration of V2V-equipped vehicles.

(a)

(b)
Figure 1. Our V2V system can extend the awareness ability of the traditional V2V system.
(a) V2V-equipped Vehicle A cannot detect the non-V2V-equipped Vehicles C, D, F, and H in the
traditional V2V system. (b) V2V-equipped Vehicle A can detect the non-V2V-equipped Vehicles C, D, F,
and H in our V2V system.

The main focus of the present study is to investigate the awareness ability of connected vehicles
and the whole V2V system under different market penetration rates of connected vehicles. In this
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paper, we used real experiments and simulation experiments; in addition, we designed different
experimental scenarios. In each experimental scenario, we carried out experiments on different vehicle
densities, different V2V-equipped vehicle penetration, and different detection rates to verify the
reliability and feasibility of our method. The experimental results show that our method enables the
awareness ability of non-V2V-equipped vehicles in vehicular networks under the low penetration of
V2V-equipped vehicles.

The paper is structured as follows: in Section 2, an overview of related work is given. Afterwards,
the subsequent Section 3 introduces the system architecture and algorithm implementation detail.
Finally, Section 4 presents quantitative results from real-world test drives. The paper concludes with a
summary in Section 5.

2. Related Work

Non-V2V-equipped vehicle detection is an important part of our V2V system. Non-V2V-equipped
vehicle detection can be divided into laser data point clustering and non-V2V-equipped vehicle
representation. Point clustering is classifying the collected points to make the properties of the
points in the same cluster more similar. Non-V2V-equipped vehicle representation is a specific object
representation problem. The representation model of a non-V2V-equipped vehicle is using some of its
features, such as speed, position, and direction, during its tracking process.

2.1. Laser Data Point Clustering

The method of point clustering is to divide the scanning points into different clusters. There
are some traditional point clustering methods, but these clustering methods do not achieve good
clustering effects when applied to laser data. This is because the data points scanned by the LiDAR are
distributed along the surface of the object being scanned, rather than concentrated around the center
of the cluster. Therefore, the clustering method of laser scanning data cannot adopt the method based
on the distance to the cluster center. Splitting the data into a known number of clustering methods is
also not applicable to LiDAR scan data because the number of surrounding objects is not known when
detecting dynamic environments.

Laser data point clustering can be divided into two methods based on Point Distance (PD) and the
Kalman Filter (KF) [9]. Euclidean distance and Mahalanobis distance are the two most commonly-used
distances in laser data clustering. The most common method is to compare the distance d(pi, pj)
between the two points (pi and pj) and the distance threshold dTh [10,11]. When d(pi, pj)< dTh, point
pi and point pj belong to the same cluster, otherwise they belong to different clusters. The distance
threshold dTh can be defined in different ways; the easiest way is to set dTh to a constant value.
In addition to this, there are other ways to determine the threshold adaptively. The distance threshold
dTh =

ρi−ρj
ρi+ρj

was proposed in [12], which also considers the distance from the surface of the object to the

sensor. In [13], another way to calculate the threshold was given: dTh = C0 + C1 min(ρi, ρi+1), where
C1 =

√
2(1− cos δθ) = d(ρi, ρi+1)/ρi and C0 is a constant value indicating radar noise. Compared with

the previous method, it also considers the angular resolution parameter C1. The algorithm in [14] was
used to segment the raw data into meaningful portions and filter noise.

2.2. Object Representation

Object representation is an important part of our system, including point-based representations,
feature-based representations, and rectangle-based representations. Examples based on point
representation were presented in [15,16], which are suitable for tracking objects of a certainsize.
In addition to the position of the object, we must also take the shape and size of the object into
account. For obstacle detection, linear segments are the most common way of representing objects
in indoor applications. The rectangle-based representation model is commonly used for tracking
of dynamic objects. Since the surface of the vehicle is generally rectangular, the rectangular-based
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representation model not only exhibits the true size of the vehicle, but also has a very compact size.
The rectangle-based representation model is used in our system, which defines a uniform standard for
object representations of different shapes.

3. Method

In order to verify our idea, we developed a simple system that can obtain information (i.e., position,
velocity, and time) of surrounding non-V2V-equipped vehicles and help the non-V2V-equipped vehicle
to broadcast this information. In addition, we carried out simulation experiments to prove the
feasibility of our method.

3.1. System Architecture

The “Where am I?” and “Where are they?” solutions aim to get the state of both the test
vehicle and surrounding vehicles. The vehicle state information includes position, orientation, speed,
and acceleration. Our test vehicle (see Figure 2) used on-board sensors (RT3002, LiDAR, and camera)
to obtain the location information of surrounding non-V2V-equipped vehicles and capture license
plate information.

Figure 2. Experimental vehicle.

3.1.1. Introduction to System Hardware

The IBEO LUX8L-8 LiDAR sensor (Figure 3a) and Velodyne HDL-64E LiDAR sensor were used in
our system to detect the information of surrounding objects. LiDAR sensor has high angular resolution
and good mid-range detection ability. The scanning by laser pulses achieves a 3D representation of the
environment suitable for the traffic scene. We can record the scanned data and use them with software
tools to create models of the V2V-equipped vehicle’s surroundings.

Cameras were installed on the V2V-equipped vehicles to capture images of the surroundings.
These images were then used for license plate number recognition. The cameras (in Figure 3b) we used
were standard Logitech USB WebCam, and the price was only $30.

Our test vehicles were equipped with the RT3002 system to measure the vehicle’s position.
The RT3002 system (in Figure 3d) mounted on our test vehicles is a precise inertial and GPS navigation
system for measuring the motion, position, and direction of the object. It meets the test conditions of
shock resistance and vibration resistance. The RT3002 system includes RT3002, a GPS system, a ground
base station, a digital to analog conversion box, a mounting bracket, an antenna, an analog output
cable, a CAN data transmission line, an RS232serial port cable, an Ethernet cable, an interface converter,
and other accessories and cables. The RT3002 GPS system’s refresh frequency is 100 Hz; positioning
accuracy: no ground base station 1.5 m; ground base station: 0.02 m. The ground base station has the
following characteristics: all weather, waterproof, battery packaging, and signal transmission effective
distance no less than 5 km. The RT3002 system’s output data are the position coordinates and heading
angles in the world coordinate system and the three-axis components of the attitude angle, angular
velocity, and velocity and acceleration in the body coordinate system (gyro coordinate system).
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In order to process the data, we used an embedded PC named NEXCOM (in Figure 3c). Its CPU
performance gives the users the ability to adapt to what they need in any telematics application.
Its powerful graphic engine allows users to take full advantage of this product to achieve smooth,
seamless, and stunning graphic performance on 3 different video outputs (VGA, DP, LVDS). In addition,
the three SIM cards + dual WWAN modules architecture can increase the bandwidth for a faster data
transfer speed.

(a) IBEO LUX8L-8 LiDAR (b) Camera (c) NEXCOM (d) RT3002system

Figure 3. Hardware of the system.

3.1.2. Coordinate System

The coordinate system of our test vehicle is shown in Figure 4a,b, which represents the side
view and the top view of the intelligent car coordinate system, respectively. The green coordinate
system represents the IBEO LiDAR coordinate system CLiDAR(xLiDAR, yLiDAR, zLiDAR); the purple
coordinate system represents the camera coordinate system Ccamera(xcamera, ycamera, zcamera); and the
blue coordinate system represents the coordinate system of the car Ccar(xcar, ycar, zcar).

(a) Side view of the test car coordinate system (b) Top view of the test car coordinate system

Figure 4. The coordinate system of the experimental car.

The information collected by IBEO and the camera is based on its own coordinate system. In order
to unify the coordinate system, we adopted a coordinate calibration method, which will be discussed
in Section 3.1.4. Finally, the IBEO coordinate and camera coordinate will be transformed into the car
coordinate system.
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3.1.3. Vehicle Localization

In order to navigate successfully and safely, the vehicle must know information such as its position
and orientation. This is called the “Where am I?” problem. In our test vehicles, we used RT3002 (see in
Figure 3d) to obtain the position and direction of the car. The RT3000 product is a precise inertial and
GPS navigation system for measuring the motion, position, and direction of the object. The system
uses inertial navigation system technology and combines it with a GPS receiver with a high quality
level. It coordinates the characteristics of the inertial navigation system and GPS to provide solutions.

3.1.4. Calibration between LiDAR and Camera

Calibration between multiple sensors is a prerequisite in multi-sensor fusion-based applications.
The result of the calibration highly influences subsequent fusion processes. A variety of methods have
been developed to calibrate between camera and LiDAR. These calibration methods usually use a
checkerboard and include a two-step process, intrinsic calibrations and extrinsic calibrations [17,18].
Two sources of error in the two-step calibration are likely to be produced.

In our system, however, we adopted a new calibration method between a camera and a 3D LiDAR
using a triangle or diamond polygonal board [19]. The calibration method was to find a point-to-point
correspondence between 2D images and 3D point clouds. The corresponding point pairs were used to
solve the equation to obtain a calibration matrix for the equation. In this way, we only needed to find
the projection matrix between the radar and the camera without estimating the two-step parameters.
We can estimate the combined projection matrix of the extrinsic matrix and the intrinsic matrix without
having to estimate them separately by this calibration method. The overall steps of the calibration
method can be summarized as follows:

• Data acquisition: Place one or more triangle planar boards in front of the camera and 3D LiDAR.
Take camera images, and measure the 3D point clouds of the 3D LiDAR for various locations of
the board. To reduce the measured errors in the 3D LiDAR and to detect vertices of the triangle
planar board in the image easily, it is recommended to use a bright monochromatic color for the
board. Furthermore, the board color should be distinctive from the background, and the size of
the board has to be large enough to include multiple laser scanning lines of the 3D LiDAR on the
board surface.

• Matching 2D-3D point correspondences: Detect vertices of the triangle plane in images,
and identify their corresponding 3D points from the laser scans by estimating the meeting points
of two adjacent sides of the board.

• Estimate the calibration parameters between 3D LiDAR and camera. With the corresponding pairs,
solve the linear equations for the initial estimate and refine the solutions for the final estimates.

3.2. Software Architecture

The process of our system is shown as below (see Figure 5).
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Figure 5. The process of our system.

3.2.1. Get Location Information of the Surrounding Vehicle

Getting the location of the surrounding non-V2V-equipped vehicles is an important part of our
V2V system, which is the premise for the V2V-equipped vehicle to help the non-V2V-equipped vehicle
to broadcast the message. The main task of this part is to process the LiDAR’s point cloud data to
get the non-V2V-equipped vehicles’ relative position (LrelativeX , LrelativeY, LrelativeZ) and then obtain its
own position (Lsel f X , Lsel f Y, Lsel f Z) according to the positioning system on the V2V-equipped vehicle,
thereby obtaining non-V2V-equipped vehicles’ absolute position information (LX , LY, LZ), LX = Lsel f X
+ LrelativeX , LY = Lsel f Y + LrelativeY, LZ = Lsel f Z + LrelativeZ. The steps for obtaining the relative position
information of the non-V2V-equipped vehicle are as follows.

• cluster LiDAR points, and remove the cluster whose point number is too small, so we get the
cluster list.

• get the convex hull of each cluster.
• get the rectangle that represents the non-V2V-equipped vehicle.

There is a problem we should focus on, which is when we get the convex hull of a cluster. In fact,
the convex contour is an open convex-hull, as shown in Figure 6a. This is due to the fact that only a
part of a vehicle is visible. We connected the first and last points of the convex hull. However, this
line cannot be considered as a vehicle edge because it represents the invisible part of the object. We
assumed that the midpoint of this line is Pand that the invisible part of the vehicle and the outline of
the visible part were symmetric about point P (see Figure 6b).

(a) Open convex (b) Closed convex

Figure 6. Open convex and closed convex.
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3.2.2. Determine If a Vehicle Is a Non-V2V Vehicle

In the traditional V2V system, V2V-equipped vehicles do not consider whether a surrounding
vehicle is a V2V-equipped vehicle. However, in our V2V system, it is necessary to judge whether
the surrounding vehicles are non-V2V-equipped vehicle, which is the key to the implementation of
our V2V system. At present, our V2V system uses the license plate number to judge. The specific
judgment process is as follows. First of all, in our V2V system, every V2V-equipped vehicle will be
registered, and information such as the license plate number will be entered into the database. When
the V2V-equipped vehicles detect a nearby vehicle, our system uses the image captured by the camera
mounted on the vehicle to identify the number of the license plate and obtain the number of the license
plate. Then, we query in the database. If the license plate number is in the database, the surrounding
vehicle is a V2V-equipped vehicle, otherwise, the surrounding vehicle is a non-V2V-equipped vehicle.
It does not need to help the non-V2V-equipped vehicle broadcast the location information.

We used EasyPR, which is an open-source license plate recognition system in China to perform
license plate number recognition. Compared with other license plate recognition systems, EasyPR has
the following characteristics:

• It is based on the open source library openCV, which means that all of its code can be
easily acquired.

• It can recognize Chinese.
• It has a higher recognition rate. At present, the character recognition can reach more than

90% accuracy.

As for license plate number recognition, you can learn more in [20–23]. Figure 7 shows the license
recognition model of our V2V system. The left of Figure 7a is the test cases, and the right of Figure 7b
shows the test result of the left test cases.

(a) License plate test case (b) Result of the license plate test case
Figure 7. License recognition.

Delegating safety message dissemination tasks to another vehicle will lead to serious security
issues in V2X communications. For example, direct identification of vehicles such as the plate number
should not be used to identify the other vehicles. We used Algorithms 1 and 2 from [24] to avoid this
privacy exposure issue.

Algorithm 1: Encryption protocol performed by Vb

Input: Pseudonym PN j
(a,i) of Vb and message M.

1: Verify SIG(τ
j
(a,i), t(a,i), SRi ), and compute λ

j
(a,i) = e(τ j

(a,i), σ
j
aP)

2: Choose k ∈ {0, 1}n randomly.
3: Compute ρ = H2(k, M)

4: Compute cipher text as
C = 〈H(ρP)⊕ (λ

j
(a,i))

k, e(P, σ
j
a|P)k, M⊕ H1(e(σ

j
aP, H(ρP)P))〉

5: Transmit C to Va.
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Algorithm 1 expounds the encryption protocol used by Vb to send a message to Va, where τ
j
(a,i) is

the pseudonym, t(a,i) is the pseudonym expiration time, SRi is the private key, and SIG(τ
j
(a,i), t(a,i), SRi )

is the signature to ensure that Va is a genuine member of the system and has been authenticated by an
RSU. For verification, Vb first verifies CertR using PMD and then uses Ri from CertR to verify signature
SIG(τ

j
(a,i), t(a,i), SRi ). If verification is successful, Vb computes λ

j
(a,i) = e(τ j

(a,i), σ
j
aP). To encrypt the

plain-text message M ∈ {0, 1}n for Va with pseudonym PN j
(a,i), Va performs Steps 2–4 of Algorithm 1.

Symbol ⊕ stands for the XOR operation.

Algorithm 2: Decryption protocol performed by Va

Input: C = 〈U, V, W〉, Sj
(a,i)

1: Compute Γj
(a,i) = U ⊕VSj

(a,i)

2: Retrieve M = W ⊕ H1(e(σ
j
aP, Γj

(a,i)P))

Algorithm 2 expounds the decryption protocol used by Va to decrypt ciphertext C sent by Vb.
We denote ciphertext C using the tuple C = 〈U, V, W〉, where U = H(ρP)⊕ (λ

j
(a,i))

k, V = e(P, σ
j
a|P)k,

and W = M ⊕ H1(e(σ
j
aP, H(ρP)P)). The protocol is fairly self-explanatory. The decryption of it is

performed using private key Sj
(a,i).

3.2.3. The Strategy of Receiving Safety Messages

Assume a scenario where there is more than one V2V-equipped vehicle around a
non-V2V-equipped car. Therefore, this non-V2V-equipped vehicle is detected by multiple
V2V-equipped vehicles at the same time, and these nearby V2V-equipped vehicles broadcast the
location information (i.e., position, velocity, and time) of this non-V2V-equipped vehicle simultaneously.
The other V2V-equipped vehicles in the LANmay receive multiple packets of information about the
same non-V2V-equipped car simultaneously. Therefore, how does the other car choose these data
packets? Does the other car choose one or all of these packages? In order to avoid accidental errors
caused by receiving only one packet, we adopt the strategy of receiving all these packets. Then, how
do we deal with these packets? The easiest way is to calculate the average of the data in these packets.
The V2V-equipped vehicles that broadcast data packets of this non-V2V-equipped vehicle are marked
as v1, v2, ..., vn, and the broadcast data packets are respectively recorded as Pv1, Pv2, ..., Pvn, while
the corresponding position information in the data packet is respectively marked as Lv1, Lv2, ..., Lvn,
the speed information as Vv1, Vv2, ..., Vvn, the time information as t1, t2, ..., tn, and the timestamp of the
packets as tp1, tp2, ..., tpn. The time of a V2V-equipped vehicle in a local area network receiving multiple
packets of a non-V2V-equipped vehicle is marked as Trecv1, Trecv2, ..., Trecvm. When a V2V-equipped
vehicles in the LAN received multiple packets of the same non-V2V-equipped vehicles, we used the
following calculation strategy: When this V2V-equipped vehicle first receives the packet about this
non-V2V-equipped vehicle, the time of receiving this packet is marked as Tf irst, and the timestamp in
the packet (the timestamp in the packet represents the time that the V2V-equipped vehicle detects the
non-V2V-equipped vehicle) is marked as first. We do not need to do any calculation at this time, just put
the packet into a packet queue. Then, when the data packet broadcast by other V2V-equipped vehicles
of this non-V2V-equipped vehicle is received, the data packet is added to the above queue as long as
the receiving time Trecvi and the timestamp ti in the data packet satisfy the following two conditions.{

Tf irst 6 Trecvi 6 Tf irst + Tth
|t f irst − ti| 6 tth 1 6 i 6 m

(1)
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The value mrepresents the size of the queue, that is the number of packets in the queue. Tth is a
time threshold. Finally, we calculate the average position (L̄), average speed (V̄), and other information
of the non-V2V-equipped vehicle at the time point tx according to the data packets in the queue.

t̄x = ∑m
i=1 tm

m

L̄ = ∑m
i=1 Lvm

m

V̄ = ∑m
i=1 Vvm

m

(2)

4. Experiments and Simulation Results

We will conduct actual experiments and simulation experiments to verify the reliability and
feasibility of our method, respectively. The traditional V2V system means that all V2V-equipped
vehicles in the system will only broadcast their own location information, while our V2V system
means that the V2V-equipped vehicles in the system will help the nearby non-V2V-equipped vehicles
broadcast location and other information.

4.1. Method Feasibility Simulation

We will validate the feasibility of our method in the crossroads scenario (Figure 8a) and bend
scenario (Figure 8b), respectively. A Java simulation platform was developed to simulate road
scenarios and vehicle models and generate relevant data, and then, MATLAB was used to render
data. The red rounded rectangle and white rounded rectangle represent the V2V-equipped vehicle and
non-V2V-equipped vehicle, respectively. The red dotted circle represents the visual detection range of
the V2V-equipped vehicles. Table 1 gives some parameters of the V2V system.
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(a) Scenario of crossroads
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(b) Scenario of curved road

Figure 8. Scenario of method feasibility simulation.

As can be seen from Figure 9, whether in the traditional V2V system or our V2V system,
the system’s perception ability sysDetectAbility will increase with the increase of V2VRate. However,
our V2V system was obviously better than the traditional V2V system, especially when V2VRate was
in the interval [0.3, 0.7].
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Table 1. Parameters introduced into the V2V system.

Parameters Meaning

Vi V2V-equipped vehicles

detectR2 visual detection radius of Vi

R1 communicate radius of Vi

totalV2VVehicles the number of total V2V-equipped vehicles in the V2V system

ni the number of vehicles in the visual detection radius (detectR2) of Vi

vni the number of V2V-equipped vehicles in the visual detection radius (detectR2) of Vi

nni the number of non-V2V-equipped vehicles in the visual detection radius (detectR2) of Vi

cannni the number of non-V2V-equipped vehicles that can be detected by the on-board sensors
of Vi

detectRate detection ratio of Vi, detectRate= cannni
nni

Ni the number of vehicles in the communicate radius of Vi

VNi the number of V2V-equipped vehicles in the communicate radius (R1) of Vi

NNi the number of non-V2V-equipped vehicles in the communicate radius (R1) of Vi

CANNNi the number of non-V2V-equipped vehicles that other V2V-equipped vehicles “tell” Vi
about (excluding cannni)

detectAbilityi the perception ability of Vi, in the traditional V2V system, dectectAbility = VNi
Ni

, in our

V2V system, detectAbility = VNi+CANNNi
Ni

sysDetectAbility the perception ability of the whole V2V system, sysDetectAbility =

∑totalV2VVehicles
i=1 detectAbilityi

V2VRate the proportion of V2V-equipped vehicles in the V2V system

vehicleRate vehicle density of the V2V system
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Figure 9. The influence of V2VRate on sysDetectAbility.

As can be seen from Figure 10, vehicle density did not have a significant impact on the system’s
perception ability in the traditional V2V system. However, in our V2V system, the system’s perception
ability will increase significantly with the increase of vehicle density. Moreover, our V2V system was
obviously better than the traditional V2V system under the same vehicle density. It can also be seen
from Figure 10 that when the vehicle density was very high, especially when it was greater than 0.5,
the increase of vehicle density had less and less influence on the system’s perception ability.
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Figure 10. The influence of vehicleRate on sysDetectAbility.

As can be seen from Figure 11, visual detection range did not have any impact on the system’s
perception ability in the traditional V2V system. However, in our V2V system, the system’s perception
ability will increase significantly with the increase of visual detection range. Moreover, our V2V system
was significantly better than the traditional V2V system under the same visual detection range. As can
be seen from the figure, the system’s perception ability did not increase significantly with the increase
of visual detection range when the visual detection range was small (it is less than five meters in our
figure). This is because when the visual detection range is small, there will not be many vehicles in the
visual detection range of V2V-equipped vehicles, let alone many non-V2V-equipped vehicles. When
the visual detection range was of a medium size (it is larger than five meters and less than 10 m in
our figure), the system’s perception ability increased significantly with the increase of visual detection
range; when the visual detection range exceeded a certain size (it is larger than 10 m in our figure),
the system’s perception ability did not change significantly with the increase of visual detection range.
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Figure 11. The influence of detectR2 on sysDetectAbility.

In addition, we also present the results in the packet delivery ratio, delay, and throughput.
Figure 12 depicts the effects of vehicle density, detectRate, and packet length on the Packet

Delivery Ratio (PDR). As can be seen from the figure, PDR decreased as the vehicle density increased,
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because when the vehicle density increased, the error rate of the data packet became large, and the
data packet that cannot be received in time became an invalid data packet. The increase of detectRate
will cause the V2V-equipped vehicles in the V2V system to help the non-V2V-equipped vehicles to
transmit more data packets, causing the channel to be busy, increasing the probability of the node
losing the packet, and PDR decreasing. In addition, the longer the length of the data packet, the higher
the arrival rate, and the smaller the PDR, because in this case, the service time of the channel is too
long, causing the channel to be busy, resulting in packet transmission failure.
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Figure 12. The influence of vehicle density, detectRate, and packet payload size on the packet
delivery ratio.

Figure 13 depicts the effect of detectRate and vehicle density on delay. As can be seen from the
figure, the delay time increased as the vehicle density increased, as each V2V-equipped vehicle needed
to compete with more neighbors for channel access. At the same time, the delay time increased as
the detectRate increased. Because the V2V-equipped vehicles needed to help the non-V2V-equipped
vehicles to deliver more data packets, resulting in a busy channel and a large delay.
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Figure 13. The influence of vehicle density and detectRate on delay.

Figure 14 depicts the effects of vehicle density, detectRate, and packet length on throughput.
As can be seen from the figure, as the vehicle density increased, the trend of throughput increased first
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and then decreased. In addition, the detectRate determined the drop point of throughput. For example,
when detectRate = 0.3, the throughput decreased when the vehicle density was 45. In addition,
the throughput increased as the length of the packet increased, so appropriately increasing the length
of the packet can improve the reliability of vehicle communication.
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Figure 14. The influence of vehicle density, detectRate, and packet payload size on throughput.

4.2. Method Reliability Experiment

We conducted a Forward Collision Warning (FCW) experiment and Collision Warning At
Crossroads (CWAC) experiment separately to test the reliability of our system.

4.2.1. Forward Collision Warning Experiment

The experiment scenario is shown in Figure 15a. There was a sharp turning road with three
vehicles on it. Vehicles B and C were V2V-equipped vehicles, and Vehicle A was a non-V2V-equipped
vehicle. Vehicle C moved from the right to the left, and Vehicle B moved from the bottom to the
top. For some reason, Vehicle A temporarily stopped on the edge of the road. Vehicle A was in the
perception range of Vehicle B, but not in the perception range of Vehicle C due to the angle or other
reasons. Moreover, Vehicle A was a non-V2V-equipped vehicle, which could not broadcast its own
location information, so Vehicle C could not perceive the existence of Vehicle A in time, which would
undoubtedly have a potential collision risk. However, in our system, Vehicle B detected the location
information of Vehicle A and broadcast it. Therefore, it seems that the Vehicle A was broadcasting
information on its own. Vehicle C can have a corresponding reaction by the location information of
Vehicle A broadcast by Vehicle B to avoid potential collision risk.

In order to simplify the experiment, we made Vehicle C start with a uniform linear motion.
Vehicle C should perform a linear motion of deceleration when it is 10 m away from Vehicle A, and the
final braking position of Vehicle C should be two meters away from Vehicle A. In our experiments,
we gave Vehicle C different initial speeds and different initial positions to validate the reliability of our
experiments. The corresponding experimental results are shown in Figures 16 and 17. We drew the
curve of real FCW distance and velocity and experimental FCW distance and velocity, respectively,
and compared the fitting degree of the curves as the basis of the reliability of our experiment.
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(a) (b)

Figure 15. Scenario of our experiment. (a) Scenario of the Forward Collision Warning (FCW)
experiment. (b) Scenario of the Collision Warning At Crossroads (CWAC) experiment.
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Figure 16. Result of FCW Experiment 1. (a) Initial FCW distance is 50 m, and initial velocity is 10 m/s.
(b) Initial FCW distance is 50 m, and initial velocity is 15 m/s.
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Figure 17. Result of FCW Experiment 2. (a) Initial FCW distance is 25 m, and initial velocity is 10 m/s.
(b) Initial FCW distance is 25 m, and initial velocity is 15 m/s.

Table 2 is the sampling data of our FCW experiment. We sampled every 0.5 s and recorded the
truth location (position and velocity) and the experiment location. Then, we calculated the average
error of two groups of experiments respectively. It can be seen in the table that the error rate was
very small (2.65% and 4.95%), which means that our system was very reliable in the forward collision
warning scenario.

Table 2. Data samples of the FCW experiment.

Sampling Time (s) Truth Position (m) Test Position (m) Truth Velocity (m/s) Test Velocity (m/s)

0.1 42.8 41.5054 −14.3604 −14.4186
0.6 35.3000 34.4359 −14.2387 −14.7245
1.1 27.8000 26.6357 −14.0598 −13.9693
1.6 20.3000 19.9314 −13.7710 −13.9774
2.1 12.8000 12.9106 −13.2265 −13.6934
2.6 5.9490 5.7122 −8.5547 −8.1722
3.1 2.4154 2.4615 −2.4063 −2.3768
3.2 2.1413 2.1830 −1.3771 −1.5846
3.3 2.0115 2.0859 −0.3896 −0.3336

average error 2.65% 4.95%

max error 4.85% 24%

4.2.2. Collision Warning at Crossroads Experiment

The CWAC experiment scenario is shown in Figure 15b. There were three vehicles (A, B, C) driving
at a crossroads. Vehicles B and C were V2V-equipped vehicles, and Vehicle A was a non-V2V-equipped
vehicle. Vehicle C was driving from left to right, and Vehicle B and Vehicle A were driving from bottom
to up. We assumed that Vehicle A turned right at the intersection and Vehicle C kept moving from
left to right. It is easy to see that Vehicle C and Vehicle A will collide at point O. We can find out the
coordinates of the collision point O according to the direction information of Vehicle A and Vehicle C.
Then, we calculated the time t1 and time t2 required for A and C to reach point O in real time. The time
difference t (t = t1− t2) was calculated as a standard to measure the level of collision risk. We drew
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the curve of the real t and experiment t, respectively, and compared the fitting degree of the two curves
as the basis of the reliability of our experiment.

In order to simplify the experiment, we let Vehicle A and Vehicle B maintain uniform linear
motion and Vehicle C perform variable speed straight line motion. In the first group of experiments,
the speed trend of Vehicle C was a sine function. In the second group of experiments, the speed trend
of Vehicle C was a cosine function. The experiment result of the first group of experiments and the
second group of experiments is shown in Figure 18a,b, respectively. The red curve and blue curve in
Figure 18a,b show the real collision time and the experimental collision time, respectively. As we can
see from Figure 18a,b, the red curve and blue curve had a very high fitting degree, which means our
system is very reliable.
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Figure 18. Result of the CWAC experiment.

Table 3 is the sampling data and truth data of our experiments. The truth data were the theoretical
value of the formula calculation, that is the speed of the vehicles followed a mathematical function.
We can calculate the truth data (truth velocity and truth position) by mathematical function and
integration. We sampled every 0.8s and recorded the truth collision time and the experimental collision
time, respectively. Then, we calculated the average error rate of experiments. It can be seen from
Table 3 that the error rate of the experiments was very small (1.49% and 5.28%), which means that our
system is very reliable in the CWAC scenario.

Table 3. Data samples of the CWAC experiment.

Sampling
Time (s)

Truth Collision
Time 1 (s)

Test Collision
Time 1 (s)

Truth Collision
Time 2 (s)

Test Collision
Time 2 (s)

0.1 9.8096 10.2855 2.7760 2.0849
0.9 7.1614 7.0127 3.4905 3.6553
1.7 6.6381 6.6739 4.9770 5.4012
2.5 7.8600 7.5681 7.2779 6.5011
3.3 10.8155 10.7973 10.0125 10.0022
4.1 14.8072 14.8008 11.6181 11.4639
4.9 16.1760 16.2989 10.6826 10.8824
5.7 13.2747 12.9067 8.5324 8.5928

average error 1.49% 5.28%

max error 4.85% 23.8%

5. Conclusions and Future Work

In this paper, we proposed a novel method to solve the problem of low penetration of
V2V-equipped vehicles (connected vehicles) and improve the awareness ability of the traditional
V2V system. In the traditional V2V system, it is difficult to ensure that all vehicles are V2V-equipped
vehicles in the real environment, which greatly reduces the reliability of the entire V2V system.
V2V-equipped vehicles only periodically broadcast their own location information (location, speed,
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etc.) in the traditional V2V system. In view of this, we proposed a novel method for expending
the traditional V2V system. The core of our idea was that the V2V-equipped vehicles help the
surrounding non-V2V-equipped vehicles broadcast location information. Therefore, it seems that
non-V2V-equipped vehicles have the ability to broadcast their own location information, which greatly
expands the awareness ability of the traditional V2V system. In the experimental part, we verified the
feasibility and reliability of our method. We will do further research on the performance of license
plate recognition to improve the reliability of our system.
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