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Abstract

Iron is a trace metal, key for the development of living organisms. Its absorption process is

complex and highly regulated at the transcriptional, translational and systemic levels.

Recently, the internalization of the DMT1 transporter has been proposed as an additional

regulatory mechanism at the intestinal level, associated to the mucosal block phenomenon.

The short-term effect of iron exposure in apical uptake and initial absorption rates was stud-

ied in Caco-2 cells at different apical iron concentrations, using both an experimental

approach and a mathematical modeling framework. This is the first report of short-term stud-

ies for this system. A non-linear behavior in the apical uptake dynamics was observed,

which does not follow the classic saturation dynamics of traditional biochemical models. We

propose a method for developing mathematical models for complex systems, based on a

genetic programming algorithm. The algorithm is aimed at obtaining models with a high pre-

dictive capacity, and considers an additional parameter fitting stage and an additional Jack-

knife stage for estimating the generalization error. We developed a model for the iron uptake

system with a higher predictive capacity than classic biochemical models. This was

observed both with the apical uptake dataset used for generating the model and with an

independent initial rates dataset used to test the predictive capacity of the model. The model

obtained is a function of time and the initial apical iron concentration, with a linear compo-

nent that captures the global tendency of the system, and a non-linear component that can

be associated to the movement of DMT1 transporters. The model presented in this paper

allows the detailed analysis, interpretation of experimental data, and identification of key rel-

evant components for this complex biological process. This general method holds great

potential for application to the elucidation of biological mechanisms and their key compo-

nents in other complex systems.

Introduction

Iron is a trace metal, key for the development of living organisms. Its presence is necessary for

several processes, such as the electron transport chain [1], oxygen transport in the blood [2],
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and phagocytic activity of macrophages [3], among others. The concentration of this metal

must be highly controlled given that both iron excess and deficit can cause diseases, such as

hemochromatosis and anemia, the latter recognized by the World Health Organization as the

most common and widespread nutrition related disease [4].

Iron gets into the organism through absorption in the duodenal epithelium via the type of

cell called an enterocyte. Absorption is a highly regulated process. Nevertheless, there is no

controlled excretion mechanism. The only known iron loss mechanisms are due to bleeding

and the exfoliation of epithelial cells. In order to maintain iron homeostasis, control mecha-

nisms act during its absorption process.

The main components of the intestinal iron absorption process are shown in Fig 1. This

process can be divided into three phases: apical uptake, intracellular phase, and basolateral

efflux. Non-haem iron present on the intestinal lumen can be found basically in two forms: fer-

rous (Fe2+) or ferric (Fe3+) ions. In the first case, iron can enter cells from intestinal lumen

through the transporter protein DMT1 [5], located on the apical side (lumen) of the cells. On

the other hand, prior to transport, ferric ions must first be reduced to the ferrous form by Duo-

denal Cytochrome b (Dcytb) [6].

After entering the cell, iron becomes part of a cytosolic pool of weakly bound iron called

the cytosolic labile iron pool (cLIP) [7]. From there it can be distributed to all the cellular pro-

cesses that require this metal, such as cellular respiration in the mithocondria [1], iron storage

in Ferritin [8, 9], or transport outside the cell through the protein FPN1 located on the basolat-

eral side (bloodstream) [10]. Once outside the enterocyte, iron is re-oxidized to Fe3+ by

Hephaestin (Hp) [11] and is captured by the protein Transferrin in the interstitial fluid and

plasma [12, 13].

Different iron absorption regulation mechanisms exist in order to maintain the iron con-

centration in the organism within appropriate ranges [14–16]. Each of them has a different

level of complexity and response time. Among them, the fastest and least studied mechanism

is the mucosal block, a putative process in which an initial dose of iron can reduce the

Fig 1. Schematic representation of the main components of the intestinal iron absorption process.

doi:10.1371/journal.pone.0169601.g001
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absorption of a subsequent dose [16, 17]. It has been proposed that this phenomenon is due to

the endocytosis of DMT1 from the enterocytes’ apical side, which has been observed to occur

experimentally within 30 min after iron exposure [18]. However, only a few research papers

have associated the mucosal block phenomenon with changes in iron absorption fluxes, and in

all cases the experiments were performed in vivo [19–21].

All of the above point to the need for determining and analyzing the behavior of iron

absorption fluxes in the first minutes of cellular iron exposure in highly controlled conditions,

in other words, it is desirable to perform a series of experiments to characterize iron fluxes

after cellular iron exposure in vitro. For these experiments, Caco-2 cells are considered the best

model of the intestinal epithelium [22] and have been used extensively in drug absorption

assays [23–25].

Due to the great relevance and complexity of the iron absorption process, a mathematical

model is required in order to describe all the variables and aspects of the system that affect the

amount of iron that enters an organism under different experimental conditions. In previous

papers, a few models have been developed, focused on different components of this system, for

instance Ferritin [26] and DMT1 [27], or the the behavior of the fluxes in the first hours after a

challenge of iron [20], but none of them have modeled the fluxes of the iron absorption process

in the first minutes.

A detailed knowledge of the system may help identify relevant factors for designing new

therapies for iron-related diseases and assess the effects of new therapeutic drugs quickly and

inexpensively [28]. Unfortunately, little information is available regarding the components

and interactions involved in the mucosal block phenomenon. Hence, what is required is a

method that allows creating a model based on experimental data, without knowing the system

in full detail. In this paper we propose the use of the genetic programming method, which is

often applied to highly complex systems, specifically when the optimum solution is expected

to be highly non-linear.

Genetic programming (GP) is a branch of evolutionary algorithms (EA), which have a

number of applications to optimization problems [29]. This kind of algorithm mimics Dar-

win’s evolutionary theory and presents two main advantages over other optimization methods:

the ability to analyze many search spaces simultaneously, and the ability to solve highly com-

plex problems with minimal information required [30–32]. The latter is due to the fact that

these algorithms allow dealing with different types of objective functions in optimization prob-

lems, defining fitness functions (objective functions) that are stationary, non-stationary, con-

tinuous, discontinuous, or affected by random noise.

Due to the flexibility of this method, it is possible to make some changes to the classical

algorithm in order to solve particular problems [33–35]. In the case of iron absorption, iron

fluxes are determined by several factors, for instance, the intrinsic variability of the intestinal

cells [36]. Hence it is necessary to consider a percentage of error in the experimental data.

Therefore, the most important requirement of the model should be that it captures the general

behavior of iron absorption fluxes instead of only fitting the experimental data. Following

these ideas, the aim of this paper is to determine the short term effect of iron exposure on the

iron absorption fluxes in Caco-2 cells and to analyze this experimental data through a mathe-

matical model developed using genetic programming.

Materials and Methods

In vitro procedure

Caco-2 cell culture. Human Caco-2 cells [HTB-37, American Type Culture Collection

(ATCC), Rockville, MD] were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
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supplemented with 10% fetal bovine serum (FBS, Invitrogen-Gibco Life Technologies) at 37˚C

with 5% CO2-95% air. The cells were grown for 17 to 20 days in 12mm diameter bicameral

inserts (CorningCostar). Before the start of the experiments, the transepithelial resistance

(TER) was measured to assess the integrity of the monolayer. Inserts with TER below

240Ωcm2 were discarded [22].

Measurement of 55Fe iron fluxes. For the iron uptake determinations, the insert-grown

cells were challenged with iron concentrations in apical media of 5, 10 and 20 µM 55FeCl3–

ascorbate (1:20, mol:mol) in DMEM. In these experiments, Fe–ascorbate was preferred over

Fe–NTA, to avoid a possible interference of Dcytb ferrireductase with the uptake process [37].

The apical iron uptake was considered as the 55Fe in the cells plus 55Fe in the basolateral

medium after incubation. The experiments were performed in triplicate between 3 and 15 min

of culture after the iron exposure. The cells were previously incubated overnight in a DMEM

medium with 2% serum.

Measurement of 55Fe initial rates of absorption. The insert-grown cells were challenged

with concentrations of 3, 5, 7, 10 and 20 µM 55FeCl3–ascorbate (1:20, mol:mol) in an apical

medium. After 3 min of incubation, the apical uptake was determined. These experiments

were performed under the same culture conditions as the iron uptake determination

experiments.

In silico procedure

In this paper, we propose a novel empirical modeling approach to capture the general behavior

of iron absorption fluxes. The objective of this approach is to obtain a suitable model capable

of representing the experimental data used for its fitting and, most importantly, capable of pre-

dicting new data.

Models for iron absorption fluxes were built using a symbolic non-linear regression

(SNLR) process based on a genetic programming algorithm [38]. The models have two input

variables: the initial iron concentration in the apical medium, and time. The output variable is

the apical uptake as described above. The experimental data was divided into a training set and

a test set. The training set consists of the absorption data for the first 15 min after the iron

exposure, and was used for the model building process. The test set consists of the initial rates

determined experimentally and was used for the final evaluation of the predictive capacity of

the models. Genetic programming (GP) algorithms aim at solving complex optimization prob-

lems by establishing a parallel with the evolutionary adaptation mechanisms observed in

nature. Specifically for our system, the individuals are the different models that may potentially

be able to represent the experimental data. The models are mathematical expressions com-

posed of operators (addition, multiplication, etc.), functions (cosine, sine, logarithm, etc.), var-

iables (initial concentration and time), and numerical constants. The fitness of the individuals,

i.e., how well they solve the optimization problem, is given by the model’s capacity to satisfac-

torily represent the training dataset.

The classical GP algorithm begins with the random creation of a population of possible

solutions. Then, the population of individuals (models) is evaluated through the fitness func-

tion. If the best individual in the population satisfies any of the termination conditions, then it

is selected as a candidate model for that run and the algorithm ends. Otherwise, the individuals

undergo a selection process. They are then recombined, mutated, or kept (elitism) to form a

new population, leading to a new generation of the algorithm. This process is repeated until a

termination condition is reached. A detailed description of this algorithm can be found in

[38]. The parameters and inputs for the GP algorithm used in this paper were chosen following
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the general recommendations of [39, 40], and are shown in Table 1. A detailed explanation for

each parameter can be found in [41].

For the fitness function, the implementation of a classic GP algorithm for a symbolic regres-

sion problem often uses the Mean Square Error (MSE) between the experimental data (the

training set) and the data calculated using the model. The fitness of every model depends criti-

cally on the values of the numerical constants selected by the GP algorithm, which are not fully

optimized during the training stage [42]. This has consequences, such as: low performance of

the models on the training dataset and wide confidence intervals. Therefore, we added a

parameter fitting stage for every model, following the concepts of the Lamarckian principle of

evolution [43].

Let Ŷ ðkÞ be an individual in the model population generated by the GP algorithm with k
numerical constants. Each constant is replaced by a variable parameter βk, generating the

parameter set β = {β1, β2, . . ., βk}, and the model Ŷ ðβÞ. The parameters of Ŷ ðβÞ are fitted to the

experimental training dataset by minimizing the MSE represented in Eq (1), producing the set

of fitted parameters βMSE.

MSEðβÞ ¼
XN

i¼1

jŶ ðβÞ � Yij ð1Þ

where N is the number of experimental observations in the training dataset.

However, models obtained by minimizing MSE have a tendency to overfit the experimental

training dataset [44]. In such a case, the models are said to lose their generalization capacity,

since they are less capable of predicting new experimental data. The generalization capacity of

a model can be estimated through its generalization error (GE), i.e., how badly the model per-

forms when predicting new experimental data [44]. Therefore, in this paper we use a fitness

function based on an estimation of the generalization error, considering that the lower the GE,

the better the fitness of the individual.

A widely used technique to estimate the generalization error of a model is the “Jackknife”,

or, “leave-one out” cross validation (LOOCV) method [35, 45]. Since the size of the dataset is

modest, it is not convenient to use other re-sampling methods, like k-fold cross validation or

the bootstrap [46]. The Jackknife method consists of repeating the parameter fitting process a

number of times equal to the number of experimental observations N, leaving one of the

experimental training data points out of each iteration, and predicting the value of the element

Table 1. Parameters and criteria used in the GP algorithm.

Parameters Value or criterion

Population size 500

Number of generations 50

Recombination probability 0.9

Mutation probability 0.1

Elitism Keep the best

Function set cos(), sin(), +, −, *, /, ab, ln(), exp()

Terminal set Variables: C0, t; Constants: 1, 5, 10, 100, 1000

Initial population Ramped-Half-and-Half

Tree depth limit 28

Selection method Tournament

Fitness function Jackknife Mean Square Error (MSEJK). See Eq (2)

doi:10.1371/journal.pone.0169601.t001
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left out using the newly found parameters. This way, on each iteration, the model’s prediction

error is calculated, as well as the variation between the βMSE parameters and the ones obtained

for each data subset (the partial estimate or jackknife replication). This allows obtaining an

estimate of the generalization error, given by the Jackknife Mean Squared Error (MSEJK), at

the end of the process. MSEJK is defined as the sum of the differences between the experimental

value Yi withdrawn in iteration i and the value predicted by the model Ŷ ð� iÞi where the experi-

mental value Yi was left out, as shown in Eq (2).

MSEJK ¼
XN

i¼1

jŶ ð� iÞi � Yij ð2Þ

In addition to the GE, Jackknife allows for an unbiased estimate to be obtained for the

parameter (b
�

k) of the models as well as their standard error, using Eqs (3) and (4), where βi,k is

the kth parameter obtained in the Jackknife process when the experimental data Yi was

removed [47].

b
�

k ¼
1

N

XN

i¼1

ðNb
MSE
k � ðN � 1Þbi;kÞ ð3Þ

ŝb�k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NðN � 1Þ

XN

i¼1
ððNb

MSE
k � ðN � 1Þbi;kÞ � b

�

kÞ
2

r

ð4Þ

Confidence intervals for each parameter b
�

k were calculated using Eq (5), where tα,ν is the

value of Student’s t for α = 0.05 and ν = N − k degrees of freedom, and sb�k
is the standard error

associated to the pseudo-value.

CIðb�kÞ ¼ b
�

k � ta;nŝb�k
ð5Þ

The GP algorithm was run 50 times, and every time the best model was saved. The collec-

tion of 50 best models was manually curated in order to choose the most suitable model for

representing the experimental dataset. Models with a coefficient of determination lower than

0.8 and models that contradict known biochemical behavior (e.g., negative concentrations,

flux directions, etc.) were discarded. From the remaining set, the model with the minimum

generalization error was selected as the “Best GP Model.” The coefficient of determination

(R2) was calculated as follows:

R2 ¼ 1 �

XN

i¼1

ðYi � Ŷ iÞ
2

XN

i¼1

ðYi �
�Y Þ2

ð6Þ

where �Y is the average of the experimental data [48].

It has been shown that R2 is an inadequate measure for the goodness of fit in non-linear

models, since differences in model quality rarely affect its value more than in the third or

fourth decimal place [49]. Therefore, the models will be assessed using the bias-corrected

Akaike Information Criterion (AICc), a measure widely accepted for determining the validity

within a cohort of non-linear models, and frequently used for model selection [50]. In contrast

to R2, the lower the AICc, the better the data representation capacity of the model.

A comparative analysis with classical kinetic biochemical models was performed to evaluate

the Best GP Model. Michaelis–Menten kinetics, Eq (7), is often used to characterize the rates

Using Genetic Programming to Model Intestinal Iron Absorption
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of saturable mediated transport processes, due to its simplicity and effectiveness. However,

some of the assumptions made in the such models are not suitable for the system under study,

for example, the assumption of the presence of a single substrate and a single union site for the

transporter, and of the conservation of the total amount of transporter in the system in time.

Regarding the substrate, it is well known that iron is the main substrate for DMT1. However,

being a symporter protein, it can be affected by the concentration of the co-substrate (H+) in

the medium. For our studies, all experiments were performed at the same pH, so this effect can

be neglected. Regardless, it is possible that the interaction of DMT1 with H+ increases its affin-

ity for the main substrate, and as a result the substrate protein relationship might not remain

at a 1:1 ratio as initially assumed. To take this effect into account, a Hill model was also consid-

ered, as described by Eq (8).

The Michaelis–Menten and Hill equations, Eqs (7) and (8), were used, describing the iron

absorption rate as a function of time and concentration in the apical medium.

d½Fein�

dt
¼

Vmax½Feout�

Km þ ½Feout�

Vap

Vcþb
ð7Þ

d½Fein�

dt
¼

Vmax½Feout�
n

ðKmÞ
n
þ ½Feout�

n
Vap

Vcþb
ð8Þ

The Michaelis–Menten model in Eq (7) has two parameters: the maximum iron transport

velocity Vmax and the Michaelis constant Km. Vmax is strongly dependent on several factors

such as the number of transporter proteins, temperature and pH, while Km depends mainly on

the intrinsic characteristics of the proteins under study [51]. Previous results have reported Km

� 7 µM for the iron transport system [52]. The Hill model in Eq (8) has three parameters:

Vmax, Km and the Hill constant n, which is a measure of the molecular cooperativity in the

transport process. A value of the Hill constant n> 1 indicates a cooperative process for molec-

ular transport, while n< 1 indicates a competitive one [53].

The iron absorption rate in Eqs (7) and (8) is affected by the ratio between the volume of

the apical medium (Va) and the cellular and basolateral media (Vc+b), as these parameters

affect the iron concentration in the transport process. Based on our experimental conditions

and the reported characteristics of Caco-2 cells, we assumed Va = 200 µL and Vc+b = 1000 µL.

All calculations were performed using MATLAB1 [54]. The freely available GPLAB

MATLAB implementation of the GP algorithm was used to perform all simulations [55].

Experimental data (training and test data sets) are available in the S1 and S2 Tables in the sup-

plementary information section. The MATLAB1 code is available upon request.

Results and Discussion

Kinetics of iron uptake in Caco-2 cells

The amount of iron entering the cell was measured for initial iron concentrations of 5, 10 and

20 µM in the apical media, for 15 min after the iron exposure. Fig 2 shows that in an apical

medium with a larger iron concentration, there is a larger iron uptake by the cells. Between 3

and 12 min after the iron exposure, there is a significant decrease in the rate of iron absorption

compared to its initial value. Nevertheless, during the next five minutes, the rate increases

again. This behavior is observed for the three initial apical iron concentrations. The experi-

mental patterns observed in the absorption rates over time for the three extracellular iron con-

centrations studied drift away from the standard behavior of a transport system that could be

described using a Michaelis–Menten or Hill type of expression. This behavior can be attributed

Using Genetic Programming to Model Intestinal Iron Absorption
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to the variation in the amount of DMT1 present in the apical membrane after the iron expo-

sure, as suggested by Nuñez et al. [18]. As reported in the literature, Caco-2 cells have a large

natural variability between cultures [36], which results in the substantial standard deviation

observed in Figs 2 and 3A.

The initial iron absorption rates were determined for the first three minutes, for apical iron

concentrations of 3, 5, 7 and 20 µM. A higher iron absorption rate with a higher initial apical

iron concentration can be observed, as shown in Fig 3A. A Michaelis–Menten model, Eq (7),

was fitted to this experimental data. The Michaelis constant Kexp
m ¼ 10:36 μM and maximum

velocity Vexp
max ¼ 0:0145 μM min� 1 were obtained. Experimental values for Km for DMT1 have

been previously reported at different pHs [52]. The value of Km reported by Linder et al. at pH

of 7 is KLinder
m ¼ 7 μM [52], slightly lower than the one calculated directly from our experimen-

tal data. This difference can be attributed to the high incubation time (20 min) used to obtain

the reported values in [52], which would underestimate the value for Km compared to standard

initial velocity experiments like the ones performed in this research, which use incubation

times on the order of 3–15 min.

The simulation results for the initial rates and apical uptake are shown in Fig 3A and 3B,

respectively. It can be observed that the Michaelis–Menten model with parameters Kexp
m and

Fig 2. Apical uptake experimental data for different iron challenge concentrations. Amount of iron

transported into the cell over time after an iron challenge of 5 µM (blue), 10 µM (green) or 20 µM (red) in the

apical medium. Circles correspond to the average value of the sample and error bars indicate its standard

deviation.

doi:10.1371/journal.pone.0169601.g002
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Vexp
max can describe reasonably well the experimental data for the initial rate, but perform poorly

on the apical uptake experimental dataset. In fact the coefficients of determination obtained

on these datasets are R2
Test ¼ 0:645 and R2

Train ¼ � 0:550 for the initial rate dataset and the api-

cal uptake dataset, respectively. The negative coefficient of determination indicates that the

average experimental data value represents the experimental data better than the model. Since

Kexp
m is of the same order of magnitude as the values reported in the literature, the model’s over-

estimation of the apical iron uptake could be due to an overestimation of the value for the

parameter Vexp
max. The mucosal block phenomenon described in [16, 17] would decrease the

amount of DMT1 in the apical membrane, therefore the overestimation of Vexp
max could be due

to the reduction in the amount of DMT1 available for iron transport.

Classic biochemical transport models

In order to establish a baseline to study the models generated by the proposed GP algorithm,

the generalization capacities of the Michaelis–Menten and Hill models were determined for

the training experimental dataset. Four models were generated to fit the training dataset, con-

sidering combinations of parameters reported in the literature (KLinder
m [52]), experimentally

determined parameters (Kexp
m ), and parameters obtained from fitting the Michaelis–Menten

and Hill models to the training dataset (Vfit
max, K

fit
m , nfit) as described in Table 2. The parameter

fitting results for each model on the training set as well as the coefficient of determination for

both datasets, the AICc indicator, and the generalization error of each model, are also shown

in Table 2. The simulation results for iron uptake at 20 µM apical iron concentration for the

three Michaelis–Menten based models are shown in Fig 3B.

Fig 3. Initial rates and apical uptake experimental data and model simulations. A) Initial iron absorption rates. B) Apical iron uptake after a 20 µM iron

challenge. Circles correspond to the average value, error bars indicate standard deviation for each sample.MMðKfitm ;V
fit
maxÞ=BMbest best biochemical model

simulation (green line); Hill model (red line);MMðKexpm ;VexpmaxÞmodel (blue line); Best GP Model (gray line) and Pruned GP Model (black line).

doi:10.1371/journal.pone.0169601.g003
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The assessment of the representation capacity of the models obtained using the coefficient

of determination R2 and the AICc indicator are consistent for all the models studied. For

instance, in Table 2 columns R2
Train (b

MSE
k ) and AICcTrain (b

MSE
k ) show that the higher the value of

R2 the lower the value of the corresponding AICc. Hence, from now on, all the discussions

referring to the models’ performance will be based on the coefficient of determination only.

As can be seen in Table 2, for all models, the confidence intervals obtained for every param-

eter are large, in some cases even exceeding the value of their respective parameters. Further-

more, the parameters obtained by fitting the experimental training dataset (βMSE
k ) and the ones

obtained using the Jackknife method (b
�

k) are quite different from each other, which may lead

to a significant difference in the performance of these models, both on the training dataset and

the test dataset. More specifically, the models that use the unbiased parameters provided by

Jackknife validation (β�k) reach higher R2 in the test dataset, indicating a better predictive

capacity.

The MMðKfit
m ;V

fit
maxÞmodel has a higher R2 on the iron absorption fluxes dataset than the

MMðKexp
m ;Vexp

maxÞmodel; however the Km value obtained in this case is considerably higher than

in the MMðKexp
m ;Vexp

maxÞmodel (Kfit
m ¼ 28:45 vs. Kexp

m ¼ 10:36), resulting in significantly lower

values for the predicted initial rates, which explains the low R2 values obtained for the initial

rate dataset. It is important to take into account that the generalization error for

MMðKfit
m ;V

fit
maxÞ is 1.82, which sets a lower bound for the expected generalization capacity of

the models generated with the GP algorithm.

On the other hand, MMðKLinder
m ;Vfit

maxÞ and MMðKexp
m ;Vfit

maxÞ have similar GEs and coeffi-

cients of determination for both datasets. In both cases, the value of the maximum velocity

obtained, Vfit
max, is approximately 50% that of the Vexp

max determined experimentally from the data

for the initial rates. Given that the Km’s for both models are similar, Vmax is the only parameter

that controls the slope of the initial rates curve—see Eq (7). Since Vfit
max is lower than Vexp

max, this

leads to an underestimation of the initial rates. In addition, both models exhibit a worse gener-

alization capacity than the MMðKfit
m ;V

fit
maxÞmodel.

Table 2. Statistical assessment of classic biochemical models.

R2
Train R2

Test AICcTrain AICcTest

Model Parameters* b
MSE
k

b
�

k CI**(b
�

k)

(95%)
b
MSE
k

b
�

k b
MSE
k

b
�

k b
MSE
k

b
�

k b
MSE
k

b
�

k GE***

Hill Kfitm 1.05 × 101 5.45 ± 6.58 × 101 0.816 0.760 0.135 0.210 1.88 × 102 2.03 × 102 5.02 × 101 4.87 × 101 1.823

Vfitmax 8.09 × 10−3 6.02 × 10−3 ± 3.35 × 10−2

nfit 1.52 1.46 ± 7.04

MMðKfitm ;V
fit
maxÞ Kfitm 2.85 × 101 2.41 × 101 ± 1.46 × 102 0.813 0.724 0.150 0.151 1.86 × 102 1.87 × 102 4.65 × 101 4.65 × 101 1.820

Vfitmax 1.44 × 10−2 1.28 × 10−2 ± 5.19 × 10−2

MMðKLinderm ;VfitmaxÞ KLinderm [52] 7.00 - - 0.754 0.754 0.199 0.200 2.02 × 102 2.02 × 102 4.55 × 101 4.54 × 101 2.106

Vfitmax 6.99 × 10−3 7.00 × 10−3 ± 4.11 × 10−3

MMðKexpm ;VfitmaxÞ Kexpm 1.04 × 101 - - 0.784 0.784 0.194 0.195 1.95 × 102 1.95 × 102 4.56 × 101 4.55 × 101 1.923

Vfitmax 8.23 × 10−3 8.23 × 10−3 ± 4.46 × 10−3

MMðKexpm ;VexpmaxÞ Kexpm 1.04 × 101 - - -0.550 - 0.645 3.01 × 102 3.08 × 101 -

Vexpmax 1.45 × 10−2 - -

* Parameters units:

Km: [µM]

Vmax: [µM min−1]

** Confidence Interval

*** Generalization Error

doi:10.1371/journal.pone.0169601.t002
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The value of Vfit
max obtained for the Hill model also leads to an underestimation of the initial

rates. However, the Km for the Hill model is similar to the one obtained experimentally

(Kexp
m ¼ 10:36 μM), allowing a better performance of this model in terms of R2, both for the

training and test sets. The generalization error and coefficient of determination in the training

set obtained by the Hill model are similar to the best Michaelis–Menten model

(MMðKfit
m ;V

fit
maxÞ), but the Michaelis–Menten model has slightly better performance on the test

dataset; it also has one less parameter than the Hill model and narrower confidence intervals

(CI). Taking all this into consideration, MMðKexp
m ;Vfit

maxÞ was selected as the best model

obtained from the Michaelis–Menten and Hill equations, and will be referred to as the Best
Biochemical Model (BMbest).

Simulation results for the best classic biochemical model, both for the training (Fe 20 µM)

and test datasets, are shown in Fig 3B and 3A, using the parameters βMSE
k . This model provides

a suitable representation of the training data. But it performs poorly on the test dataset, as it

underestimates the initial rate for most concentrations. This poor performance is confirmed

by the indicators presented in Table 2, where the coefficient of determination between the

model and the experimental data reaches values below 0.4 for the test dataset.

The model linearly follows the general increasing trend observed for the experimental data.

However, the distribution of the experimental results over time suggests changes in the iron

absorption velocity during the experiments. This characteristic can not be captured by either

the Michaelis–Menten model or the Hill model. Therefore, a model capable of representing

greater complexity is required.

Genetic Programming Models

Procedure for the selection of the best model obtained by genetic programming. The

genetic programming algorithm was run 50 times, starting from different initial populations.

The best model was selected for each run, based on its generalization error (the lower the bet-

ter), generating a set of 50 GP candidate models. Models that contradict known biochemical

behavior, such as iron concentrations and iron absorption velocities being greater than or

equal to zero, were discarded. In addition, candidate models whose functions exhibited singu-

larities at some point in the domain of the variables (t� 0 min and C0� 20 µM) were also

removed from the set of candidate GP models. In this way, a final set of ten candidate models

was obtained. The candidate model with the best coefficient of determination in the training

dataset was selected as the best model generated by the GP algorithm (“Best GP Model”).

The Best GP Model is represented by Eq (9) and the tree in Fig 4. In Eq (9), ApUp represents

the apical iron uptake in Pmolinsert−1, C0 corresponds to the initial apical iron concentration

in µM, t is the time in minutes, and βi are the fitted parameters. The tree in Fig 4 is an equiva-

lent computational representation of Eq (9), where the nodes represent the mathematical oper-

ations, variables, and parameters found in the equation.

Table 3 shows that the coefficient of determination between the model and the experimen-

tal iron absorption data and between the model and the initial rates data are R2 = 0.849 and R2

= 0.561, respectively. The validation results for the model using the Jackknife method are char-

acterized by narrow confidence intervals for the model’s parameters and a low generalization

error, as shown in Table 3. All parameters are identified as significant at 95% confidence levels,

since all the p-values are lower than 0.05 (t-test).

ApUpðC0; tÞ ¼ b1 � C0 � sinðb6Þ � t � C0 � ðC0 þ b3 þ sinðC0 � expðb2ÞÞ � b5 � t � b4

t
Þ ð9Þ
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Fig 4. Tree representation of the Best GP Model. Black branches and leaves are conserved in the

subpopulation with best fitness. Red branches and leaves present different structures and parameters in the

subpopulation.

doi:10.1371/journal.pone.0169601.g004
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Analysis of population diversity and convergence of the GP algorithm. In order to

determine whether there are relevant patterns in the individual’s population, the best model

and the last generation of that specific run were analyzed. Fig 5 presents a histogram for the

number of individuals versus their fitness, showing that a large percentage of the population

has a fitness close to or equal to the best model’s fitness. Moreover, when calculating the popu-

lation’s variety to study the final population’s diversity [38], we observed that only 48% of the

population genotypes were unique. This can be explained by the fact that there are a large

number of copies of the best individual in the population (24.6% of the total population). But

this could also be due to individuals with a fitness close to the Best GP Model sharing key fea-

tures with it. In order to identify the main characteristics of the models closely related to the

Best GP Model, the genotype of the best individual was compared to the subpopulation’s geno-

type within a 10% fitness range. This allowed the identification of conserved structural motifs

in models that exhibit good fitness. The results are shown in Fig 4, where over the tree of the

Best GP Model, the structural motifs conserved in all individuals of the studied subpopulation

are shown in black, while structural changes both in branch structure as well as in leaf values

are highlighted in red. Of the nodes of the Best GP Model tree, 57.7% are conserved. The con-

served nodes include all of the model’s variables, parameters, basic mathematical operations,

and an exponential type term b
t
4
, which is the only non-linear term conserved. The non-con-

served branches are an exclusive characteristic of the Best GP model. They include all the

other parameters and a sinusoidal term dependent on the initial apical iron concentration C0,

which is also a non-linear term. In what follows, we analyze the effect of each of these terms on

the model’s characteristics.

In order to analyze the convergence towards a solution, the median of the fitness for each

generation in every run was determined. The results are shown in Fig 6. It can be observed

that the population converges after the 20th generation, reaching a median fitness that is 32%

of the initial population’s median fitness. The largest reduction in the median fitness is

observed in the first ten generations. This indicates that a choice of generation number equal

to 50 generations is sufficient to achieve convergence.

Structural analysis of the Best GP Model obtained. Both in Eq (9) and in Fig 4, the pres-

ence of highly nonlinear components such as sine functions and exponentials can be identi-

fied, in agreement with the non-linear characteristics observed in our experimental data. Each

of the non-linear components in Eq (9) was selected by the GP algorithm through its evolu-

tionary mechanism, in order to provide the model with the maximun generalization capacity.

Table 3. Main Jackknife validation results for the Best GP Model.

Parameter βMSEk
β�k Confidence Intervals (α = 0.05) p-value

β1 -7.93 × 10−3 -7.10 × 10−3 ± 1.38 × 10−3 6.11 × 10−85

β2 2.15 × 102 2.15 × 102 ± 4.06 × 10−5 0

β3 -6.25 × 101 -8.57 × 101 ± 1.15 × 101 5.76 × 10−85

β4 4.39 × 10−1 4.34 × 10−1 ± 5.03 × 10−3 2.17 × 10−138

β5 1.39 × 102 1.76 × 102 ± 2.24 × 101 1.64 × 10−86

β6 1.01 × 102 1.01 × 102 ± 3.85 × 10−4 8.09 × 10−295

R2

Trainðβ
MSE
k Þ R2

Trainðβ
�

kÞ R2

Testðβ
MSE
k Þ R2

Testðβ
�

kÞ M SEjk

0.849 0.382 0.561 0.432 1.46

AICcTrainðβ
MSE
k Þ AICcTrainðβ

�

kÞ AICcTestðβ
MSE
k Þ AICcTestðβ

�

kÞ

1.86 × 102 2.61 × 102 5.21 × 101 5.67 × 101

doi:10.1371/journal.pone.0169601.t003
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Each of these terms plays a different role in the main model, in varying degrees, therefore, in

order to gain a deeper insight into the model, a relation between each term in Eq (9) and its

effect on the obtained fluxes and velocities must be established.

The model in Eq (9) has terms that depend on the initial apical iron concentration C0 and

time t. To facilitate the analysis, C0 was assumed to be constant and only terms that depend on

time were considered to be variable. With this, Eq (9) becomes Eq (10), where ai are lumped

parameters defined to facilitate the analysis.

ApUpðtÞjC0¼Const
¼ a0 þ a1t þ a2 � t2 � at

3
ai > 0 8i ð10Þ

Two components can be identified in Eq (10): a linear term a0 + a1t and a quadratic contri-

bution combined with an exponential expression a2t2at
3
. Fig 7B shows the simulation results

for each of these terms over time. Even though the linear component is responsible for the sys-

tem’s overall dynamics, the quadratic-exponential component captures the more interesting

complexity of the system, exhibiting a bell-shaped behavior. The quadratic-exponential com-

ponent is responsible for the variation in iron absorption velocity during the first minutes after

the iron challenge. In consequence, it is responsible for the difference observed in the absorp-

tion profiles obtained by the Best GP Model and the quasi-linear profiles obtained by the Hill

Fig 5. Final fitness distribution of the population where the Best GP Model appeared. The fitness

distribution was calculated for the 400 best individuals of the final generation of the run where the Best GP

Model was obtained.

doi:10.1371/journal.pone.0169601.g005
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and Michaelis–Menten models. This term accounts for the variation in the content of DMT1

on the apical membrane previously reported in the literature [18], as a result of the movement

of DMT1 from the membrane to the cytoplasm after an iron challenge.

The effect of concentration in Eq (9) was studied by keeping the time constant and equal to

t = 3 min, which is the final time point of the initial rate studies. With this, Eq (9) can be refor-

mulated as Eq (11), which has three main components: a linear component a1C0, a quadratic

component � a2C2
0
, and a sinusoidal component a3 � C0 � sin(a4 � C0).

ApUpðC0Þjt¼Const ¼ a1 � C0 � a2 � C2
0
þ a3 � C0 � sin ða4 � C0Þ ai > 0 8i ð11Þ

The simulation results for each component in Eq (11) are shown in Fig 7C. It can be

observed that the contribution of the quadratic and linear terms in Eq (11) is much larger than

that of the sinusoidal term. The sinusoidal component only introduces small oscillations as a

function of the iron concentration. For instance, at Fe 20 µM, this term represents only 0.96%

of the total iron absorption velocity. In addition, this term is not a conserved branch on the

sub-population of models with better fitness. Hence, the sinusoidal term does not contribute

meaningfully to either the data representation ability of the model or to its generalization

capacity, and therefore can be removed from the model.

Fig 6. Evolution of the median of the fitness as a function of the generation number. The median of the

fitness and its standard deviation was calculated for each run of the genetic programming algorithm

throughout 50 generations.

doi:10.1371/journal.pone.0169601.g006
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Based on the previous discussion, we propose a Pruned GP Model, defined as the Best GP

Model after the branch containing the sine function is removed: Eq (12).

ApUpðC0; tÞ ¼ b1 � C0 � sinðb6Þ � t � C0 � ðC0 þ b3 � b5 � t � b
t
4
Þ ð12Þ

The simulation results for the iron absorption and initial rates for this model are shown in

Figs 7A and 3A, respectively. The coefficients of determination and GE values for the Pruned

GP Model are shown in Table 4. It can be observed that the coefficients of determination for

the pruned model are better than those obtained for the Best GP Model (Table 3). Neverthe-

less, its generalization error (GE) is slightly higher (7.5%), which explains why the GP algo-

rithm did not select the Pruned GP Model in the first place. This highlights the relevance of

analyzing the models obtained with the GP algorithm since, even though the algorithm deliv-

ers a good model in statistical terms, it can be improved by taking into account biological con-

siderations specific to the system under study.

The simulation results for the initial rates (test set) obtained by the Pruned GP Model are

shown in Fig 3A. The overall trend of the Pruned GP Model is similar to those of the Michae-

lis–Menten (green line) and Hill (red line) models. However, the initial rates obtained by the

Pruned GP Model (gray line) are in good agreement with the average experimental data in the

test set, which is noteworthy, as this dataset was not used to build this model. Removing the

branch associated to the sinusoidal term slightly improves the coefficient of determination,

from R2 = 0.561 to R2 = 0.575, and reduces the number of parameters, while eliminating the

high frequency oscillations introduced by this term. In addition, the Pruned GP Model exhib-

ited a slight increase in the coefficient of determination for describing iron absorption fluxes

(training set), which considered along with the small change observed in the jackknife error

indicates a negligible increase in the model’s overfitting.

Fig 7. Best GP model simulation of the apical iron uptake and study of its mathematical components.

A) Simulation and experimental data. Circles correspond to the average value, error bars indicate standard

deviation for each sample, and the curve plotted corresponds to simulation results for the model described by

ApUp, Eq (9). B) Time components of Best GP Model. The curves plotted correspond to simulation results for

the components of the model described by Eq (10) with C0 = 20 µM. (red) linear component and (green)

quadratic-exponential component. C) Concentration components of Best GP Model. The curves plotted

correspond to simulation results for the components of the model described by Eq (11). (red) linear

component; (green) oscillatory component and (blue) quadratic component.

doi:10.1371/journal.pone.0169601.g007

Table 4. Main Jackknife validation results for the Pruned GP Model.

Parameter βMSEk
β�k Confidence Intervals (α = 0.05) p-value

β1 8.79 × 10−3 9.03 × 10−3 ± 6.75 × 10−2 1.73 × 10−15

β3 -5.40 × 101 -4.88 × 101 ± 2.28 × 101 3.52 × 10−74

β4 4.39 × 10−1 4.46 × 10−1 ± 1.75 × 10−1 2.22 × 10−75

β5 1.48 × 102 4.133 × 101 ± 2.48 × 102 1.28 × 10−44

β6 1.01 × 102 1.01 × 102 ± 9.12 × 10−4 1.65 × 10−307

R2

Trainðβ
MSE
k Þ R2

Trainðβ
�

kÞ R2

Testðβ
MSE
k Þ R2

Testðβ
�

kÞ M SEjk

0.854 0.646 0.575 0.610 1.57

AICcTrainðβ
MSE
k Þ AICcTrainðβ

�

kÞ AICcTestðβ
MSE
k Þ AICcTestðβ

�

kÞ

1.81 × 102 2.28 × 102 4.60 × 101 4.44 × 101

doi:10.1371/journal.pone.0169601.t004
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Analysis of the domain of validity of the Pruned GP Model. As can be observed in

Fig 8, for the simulations of the training and test datasets, the Pruned Model satisfies the bio-

logical restrictions imposed, that is, positive concentrations and absorption velocities for the

first 15 min of simulation. In addition, for the test dataset (see Fig 3A), the initial rates increase

as the initial iron concentration in the apical media is increased, as expected for the transport

system under study. Based on these observations, we consider this model to capture the biolog-

ical characteristics of the system under study for the time and concentration intervals assessed

experimentally.

In order to examine the performance of this model outside the experimental range, simula-

tions were performed for longer time and concentration intervals. Fig 9A and 9B show the

iron absorption fluxes up to 200 min, and the initial velocities for up to 100 µM initial apical

iron concentration, respectively. It can be observed in Fig 9A that for longer times the model

follows a linear trend as a function of time, without reaching a steady state. For our experimen-

tal setting, changes in the apical iron concentration are negligible, and it can therefore be con-

sidered as constant. As a result, the model is a function of the initial iron concentration C0,

and does not account for changes in iron concentration as a result of the transport process.

This characteristic restricts the model’s use to simulation times where the iron concentrations

are negligible.

Fig 8. Apical iron uptake experimental data and Pruned GP Model simulation. Circles correspond to the

average value, error bars indicate standard deviation for each sample, and the curve plotted corresponds to

simulation results for the model described by Eq (12).

doi:10.1371/journal.pone.0169601.g008
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As shown in Fig 9B, the initial rates reach a maximum at 48 µM initial apical iron concen-

tration, and then decrease to zero ca. 96 µM. The initial rate is expected to reach a maximum

when the transport system saturates with iron, but for iron concentrations higher than the sat-

uration point, it should remain at its maximum. The maximum value observed in Fig 9B is

3.02 × 10−3 µM min−1 insert−1, and can be interpreted as similar to the parameter Vmax in the

Michaelis–Menten equation. In this case, the value for the maximum initial rate is lower than

what was obtained for Vmax in the Michaelis–Menten models (see Table 2). This feature of the

Pruned GP Model is coherent with the mucosal block phenomenon, where the system’s Vmax

would decrease as a result of the reduction of the amount of DMT1 transporters in the

membrane.

Based on the discussion presented above, the domain for the variables of the Pruned GP

Model, t and C0, where the model behaves adequately in biological terms, corresponds to C0 2

[0, 50] µM and t within the range where the apical iron concentration can be considered as

constant.

Parameters and statistical analysis of the Pruned GP Model. Note that the Pruned GP

Model shown in Eq (12) has five parameters, while the Michaelis–Menten and Hill models

have two and three parameters, respectively. Since the Pruned GP Model has a larger number

of parameters, it has fewer degrees of freedom, and can therefore be expected to perform better

on the training dataset (e.g., a higher R2). However, the Pruned GP Model not only has a larger

determination coefficient but also exhibits a lower generalization error, which suggest a greater

predictive capacity than the Michaelis–Menten and Hill models. In fact, this can be observed

in the simulation of the test dataset as shown in Fig 3A, where, unlike the other models, the

Pruned GP Model curve goes through the experimental data points.

To analyze the statistical significance of each of the parameters in the Pruned GP Model,

the p-value for each of them was calculated (see Table 4). All parameters are identified as sig-

nificant at 95% confidence levels, since all p-values are lower than 0.05 (t-test).

Fig 9. Study of the domain of validity of the Pruned GP Model. A) Long term simulation of apical iron uptake. B) Simulation of initial rates up to high iron

concentrations in the apical medium.

doi:10.1371/journal.pone.0169601.g009
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As shown in Table 4, the fitted parameters β�k , which are calculated as the average parameter

on each iteration during the validation stage, are within the same order of magnitude as the

βMSE
k . This indicates that the parameter set can be estimated precisely for the experimental data-

set [56], making the model robust and more resistant to experimental errors.

Final remarks

The models generated by the genetic programming algorithm perform better, in statistical

terms, on the training dataset and exhibit a better predictive capacity on the test dataset. It

must be noted that the analysis of the mathematical expression of the Pruned GP Model sug-

gests specific biological features for the experimental system in the experimental time and con-

centration domains, that can be associated to the movement of DMT1 from the membrane.

However, the Hill and Michaelis–Menten models show a more biologically sound behavior at

high iron concentrations and longer simulation times. This is due to the fact that, unlike the

models generated by genetic programming, they have a mechanistic base that assumes a con-

stant amount of transporter on the membrane.

On the other hand, the models generated by genetic programming allow representing the

experimental data without a detailed knowledge of the phenomenon. In addition, their study

allows obtaining a deeper insight into the relevant components in describing the phenomenon,

for instance, changes in iron absorption velocities observed in time that might be associated to

changes in the amount of transporters present in the membrane as a result of mucosal block.

This study poses new questions regarding the system under study in terms of the transport

mechanisms, transporter internalization, key factors controlling this process, and its depen-

dence on extracellular iron levels.

Conclusions

Iron absorption fluxes in Caco-2 cells were determined experimentally, and a mathematical

model was developed that allows predicting the amount of iron entering the cell at a given

time, considering different initial iron concentrations in the intestinal lumen (apical side). The

model was developed using a symbolic nonlinear regression process based on a genetic pro-

gramming algorithm with two additional stages: a parameter optimization and measurement

of a generalization error. These additional steps allowed obtaining better confidence intervals

for the model’s parameters in the studied functions and reducing the generalization error,

thereby increasing the predictive capacity of the model. The model obtained can accurately

represent the experimental data and captures the main characteristics of the biological phe-

nomenology of the system.

Experimental data reveal a complex dynamic in the iron absorption process, which is

reflected in the noticeable changes in apical iron uptake observed. This complex dynamic

could be associated to the interaction between iron and the DMT1 transporter and to previ-

ously reported phenomena, namely the internalization of DMT1 transporters and the mucosal

block. Therefore, the iron internalization mechanism has a greater biological complexity,

which can not be represented by the Michaelis–Menten and Hill mechanisms, since these

models assume an equilibrium relation between the free iron and the iron–transporter com-

plex, and the constancy of the amount of transporters present in the membrane during the

process. This gives rise to the need to develop new methods that can capture and represent the

complexity of a biological system, even without a detailed knowledge of the system.

Genetic programming algorithms have proven to be a successful tool for modeling complex

dynamic problems even when there is incomplete information regarding the characteristics of

the system, generating models that perform better than classic biochemical models in terms of
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representing the experimental data and predictive capacity, without overfitting. In fact, in this

work, we designed a fitness function aimed specifically at avoiding model overfitting, thereby

enhancing the model’s predictive capacity. The stages of parameter fitting and calculating the

generalization error proposed using the Jackknife method allowed a model that better repre-

sents the experimental data to be obtained with a higher predictive capacity.

The empirical model obtained using the proposed algorithm captures the key characteris-

tics of the biological phenomena observed experimentally in the apical iron absorption fluxes

and initial iron uptake rates. In addition, the subsequent analysis of the model improved the

model’s capacity for representing the phenomena and allowed elucidating the contribution of

each of the terms that compose the model. In particular, the exponential-quadratic term was

associated to the change in the iron uptake velocity, resulting from the internalization of the

DMT1 transporters. These results lead to new questions related to this matter, for instance,

whether the movement of transporters (or the nonlinear components of the system) are only

relevant during the first five minutes of the experiment or if their effect endures, producing

new oscillations in the fluxes.

The increasing availability of large biological datasets produced by high-throughput equip-

ment stresses the need for better tools for the mathematical modeling of these data, effectively

obtaining information and detecting patterns in an automated manner, especially for systems

where the phenomenological knowledge is scarce. In this context, methods like the one pre-

sented in this paper are fundamental for data analysis and interpretation, and for the elucida-

tion of biological mechanisms and their key components in complex systems.
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