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Purpose: The role of vascular endothelial growth factor (VEGF)-B in the eye is poorly understood. The present study
was conducted to evaluate the effect of overexpression of VEGF-B via adeno-associated virus (AAV) gene transfer on
ocular angiogenesis, inflammation, and the blood-retinal barrier (BRB).
Methods: Three recombinant AAV vectors were prepared, expressing the 167 (AAV-VEGF-B167) or 186 amino acid
isoform (AAV-VEGF-B186) of VEGF-B or the green fluorescent protein (GFP) reporter gene (AAV-GFP). Approximately
1×109 viral genome copies of AAV-VEGF-B167, AAV-VEGF-B186, or AAV-GFP were intraocularly injected. The efficacy
of the gene transfer was assessed by directly observing GFP, by immunohistochemistry, or by real-time PCR. A leukostasis
assay using fluorescein isothiocyanate-conjugated Concanavalin A was used to evaluate inflammation. The BRB was
assessed using a quantitative assay with 3H-mannitol as a tracer. Retinal neovascularization (NV) was assessed at postnatal
day 17 in oxygen-induced ischemic retinopathy after intravitreal injection of AAV-VEGF-B in left eyes and AAV-GFP in
right eyes at postnatal day 7. Two weeks after injection of AAV vectors, choroidal NV was generated by laser
photocoagulation and assessed 2 weeks later.
Results: GFP expression was clearly demonstrated, primarily in the retinal pigment epithelium (RPE) and outer retina,
1–6 weeks after delivery. mRNA expression levels of VEGF-B167 and VEGF-B186 were 5.8 and 12 fold higher in the
AAV-VEGF-B167- and AAV-VEGF-B186-treated groups, respectively. There was no evidence of an inflammatory
response or vessel abnormality following injection of the vectors in normal mice; however, VEGF-B increased retinal and
choroidal neovascularization. AAV-VEGF-B186, but not AAV-VEGF-B167, enhanced retinal vascular permeability.
Conclusions: VEGF-B overexpression promoted pathological retinal and choroidal NV and BRB breakdown without
causing inflammation, which is associated with the progression of diabetic retinopathy and age-related macular
degeneration, showing that these complications are not dependent on inflammation. VEGF-B targeting could benefit
antiangiogenic therapy.

Members of the vascular endothelial growth factor
(VEGF) family have been identified as key molecules in the
development of many of the adverse effects of retinopathy of
prematurity (ROP), diabetic retinopathy (DR), age-related
macular degeneration (AMD), and other ischemic and
inflammatory retinopathies. The complications that are
attributable, at least in part, to VEGF include retinal and
choroidal neovascularization (CNV) and other vascular
abnormalities, blood-retinal barrier (BRB) breakdown, and
increased leukostasis.

Three members of the VEGF receptor family have been
identified: VEGFR1, 2, and 3 [1]. Each of these distinct
tyrosine kinase receptors binds only certain VEGF family
members. Ligands of VEGFR1 include VEGF-A, VEGF-B,
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and placental growth factor (PlGF); ligands of VEGFR2
include VEGF-A, VEGF-C, and VEGF-D; and the ligands of
VEGFR3 are VEGF-C and VEGF-D; thus, PlGF and VEGF-
B uniquely bind VEGFR1, and VEGF-E uniquely binds
VEGFR2 [2-6]. In human and monkey retinas, all three VEGF
receptors are expressed in nonvascular areas, but only
VEGFR1 is constitutively expressed in retinal microvessels,
predominantly on pericytes [2,7-10].

There is some confusion regarding the role of VEGF in
BRB breakdown and neovascularization (NV) in ischemic
retinopathies. There is strong evidence suggesting that VEGF
is the primary cytokine causing vascular leakage and NV in
ischemic retinas [2,11-15], but there is mRNA and protein
expression of VEGF-A, VEGFR1, and VEGFR2 in normal
retinas, suggesting physiologic functions for VEGF [2,
16-19]. VEGF is a secreted protein, so it may have paracrine,
as well as autocrine effects [20]. VEGFR1 is believed to
function in inflammation [21], but there is also convincing
evidence that angiogenesis and vascular permeability are
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regulated, directly or indirectly, through VEGFR1 [22]. Most
of the biologic functions attributed to VEGF-A appear to be
mediated through VEGFR2, with the roles of the other
receptor types being less clear [2,7,23]. The function of
VEGFR1 remains controversial, but there is evidence that it
can function as a negative regulator of VEGFR2 [24]. Soluble
forms of VEGFR1 and R2 also exist, and some of these splice
variants have specificities different from those of the
membrane-bound forms [25-27].

PlGF is a member of the VEGF family that binds to
VEGFR1, but not VEGFR2. This factor can stimulate
pathological, but not physiologic angiogenesis [28-32], and
the migration and proliferation of endothelial cells [28]. It
potentiates the effect of VEGF on vascular permeability [9,
30,33,34], and it can induce chemotaxis of monocytes, which
express VEGFR1, but not VEGFR2 [22,29,34-36]. These
findings show that PlGF plays a role in angiogenesis and
inflammation, both of which are hallmarks of DR and AMD,
but unlike VEGF, PlGF is not upregulated by hypoxia [37].
Prenatal vascular development in mice is unaffected by a PlGF
deficiency. However, our previous findings demonstrate that
anti-PlGF treatment inhibits retinal and choroidal NV, BRB
breakdown, and inflammation in experimental models [22],
providing support for the possibility that PlGF, through its
binding to VEGFR1, participates in the development of these
complications of ocular disorders. A deficiency in PlGF or the
neutralization of VEGFR1 suppressed laser-induced CNV,
reduced inflammation, and reduced retinal NV in oxygen-
induced ischemic retinopathy (OIR) [29,30,38], as did
deletion of the hypoxia response element from the VEGF
promoter [39]. It is not clear whether PlGF stimulates
pathological angiogenesis and vascular permeability by
signaling through VEGFR1 or by displacing VEGF-A from
VEGFR1, thereby increasing the fraction available to activate
VEGFR2 [9]. Nonetheless, depletion of PlGF clearly inhibits
these complications in experimental models of ocular disease.

Despite its early discovery and high sequence homology
to the other VEGF family members, the biologic function of
VEGF-B remained debatable for a long time. VEGF-B, like
PlGF, binds to VEGFR1, but not VEGFR2. It has a wide tissue
distribution, with the greatest abundance in the heart, skeletal
muscles, and diaphragm [40,41]; however, the VEGF-B
promoter lacks a hypoxia response element, so it is not
induced by hypoxia as VEGF-A is [33]. Neither VEGF-B nor
PlGF were able to compensate for VEGF-A during its
blockade, and mice lacking either factor displayed only minor
developmental defects [42]. VEGF-B knockout mice were
viable and fertile, but had subtle cardiac abnormalities [43,
44]. There are two isoforms of VEGF-B (VEGF-B167 and
VEGF-B186) due to alternative splicing [45,46]. The
predominant isoform, VEGF-B167, which is four times more
abundant than VEGF-B186, has a COOH-terminal heparin-
binding domain, allowing it to bind to pericellular heparin-

like glycosaminoglycans, thus anchoring it to the extracellular
matrix [46].

Contrasting results were obtained by analyzing the
angiogenic effects of VEGF-B in normal and pathologic
conditions, with some studies showing that VEGF-B is
angiogenic [47-50] and others reporting that it is not [42,44,
51-53]. In particular, VEGF-B167 was reported to have
significantly increased revascularization of the infarcted
myocardium; however, it failed to enhance vascular growth
in the skin or ischemic limb [54]. Another recent study,
involving the delivery of VEGF-B186 after infarction in pigs
and rabbits, indicated that the factor induced myocardial-
specific angiogenesis and arteriogenesis [55]. This study,
however, used gene transfer with adenoviral vectors, which
notoriously induce inflammation and an immune response.
Finally, gene delivery of VEGF-B167 to the heart using
adeno-associated vectors (AAVs) has shown that the factor
has a marked beneficial effect after myocardial infarction in
rats [56] or pacing-induced heart failure in dogs [57], in the
absence of a significant angiogenic effect. Another recent
study showed that VEGF-B was not essential for the growth
of new vessels, but it was critical for their survival [58],
affecting endothelial cells, pericytes, smooth muscle cells, and
vascular progenitor cells. Through the use of AAV vectors,
the present study was conducted to investigate the effect of
continuous expression of both isoforms of VEGF-B directly
on the retina.

METHODS
Production, purification, and characterization of
recombinant adeno-associated virus vectors: Three
recombinant AAV vectors expressing green fluorescent
protein (GFP) and the 167 and 186 amino acid isoforms of
mouse VEGF-B (AAV-GFP, AAV-VEGF-B167, and AAV-
VEGF-B186, respectively) were prepared by the AAV Vector
Unit at ICGEB Trieste. All the vectors were pseudotyped
following a cross-packaging approach whereby the AAV type
2 vector genome was packaged into AAV capsid serotype 9
[59,60]. Methods for production and purification were
previously described [61,62]. Briefly, viral vector stocks were
obtained in HEK293 cells by high-scale calcium phosphate
co-precipitation of the AAV backbone plasmid along with
helper plasmids, expressing the AAV genes coding for the
replicative and capsid proteins and the adenovirus helper
functions supporting AAV replication. Viral vector particles
were then purified from crude cell lysates by cesium chloride
gradient ultracentrifugation followed by dialysis of pooled
fractions. Among the different serotypes that were used for
retinal gene delivery, AAV serotype 9 (AAV9) showed robust
and widespread transduction in the outer retina, inner retina,
retinal ganglion cell (RGC) layers [63,64], and synaptic layers
[65,66]. Based on these results, we decided to develop an
AAV9-based vector for VEGF-B expression in the retina in
our experimental settings. The vectors used in this study
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express the exogenous gene under the control of the strong,
constitutive, immediate early promoter from the human
cytomegalovirus (CMV).

Mice for gene transduction studies: Pathogen-free C57BL/6
mice from Charles River Laboratories (Wilmington, MA)
were treated in accordance with the Association for Research
in Vision and Ophthalmology Statement for the Use of
Animals in Ophthalmic and Vision Research, the guidelines
of the Johns Hopkins University Animal Care and Use
Committee, and the guidelines of the Institute for Laboratory
Animal Research (Guide for the Care and Use of Laboratory
Animals).

Intraocular injections of adeno-associated virus vectors in
mice: Subretinal or intravitreous injections were administered
with a Harvard pump microinjection apparatus and pulled
glass micropipets, as previously described [67]. Briefly, under
a dissecting microscope, the sharpened tip of a micropipette
was passed through the sclera, just behind the limbus into the
vitreous cavity. Each micropipet was calibrated to deliver
1 μl of vehicle containing approximately 1×109 viral genome
copies (vgc) of AAV-VEGF-B167, AAV-VEGF-B186, or AAV-
GFP, upon depression of a foot switch.

Real-time PCR: Total RNA was isolated from retinas using
the RNeasy Mini Kit (Qiagen, Alameda, CA), and RNA
quality was measured using a NanoDrop1000
spectrophotometer (Thermo Scientific, Waltham, MA). The
cDNA was prepared using the SuperScript First-Strand
Synthesis System (Invitrogen, Carlsbad, CA), then used as a
template for real-time PCR amplification to detect the
expression levels of murine VEGF-B167 and 186. Real-time
PCR was performed using iQ SYBR Green Supermix and
MyiQ Single-Color Real-Time PCR Detection System
(BioRad, Hercules, CA). The forward and reverse primers that
were used are shown in Table 1. All primers were synthesized
by Integrated DNA Technologies (Coralville, IA). Five serial
eightfold dilutions of one of the samples were used to establish
a standard curve in each experiment with the primer Actb (β-
actin). The expression level of each gene was normalized to
that of Actb. Samples were prepared in at least triplicate, and
real-time PCR measurement of each sample was done in
triplicate. The formation of a single product was also
confirmed by observing the melting-curve graph that was
generated by the thermal cycler machine, MyiQ, for each
reaction tube. Agarose gel electrophoresis was used to
confirm that reaction products had the expected size.

Fluorescence microscopy after subretinal injection of AAV-
GFP: To verify the expression of AAV vectors in retinas, 1
to 6 weeks after subretinal injection of the AAV-GFP vector
or phosphate buffered saline (PBS; 137 mM NaCl, 2.7 mM
KCl, 8 mM Na2HPO4, and 2 mM KH2PO4), mice were
humanely sacrificed and eyes were rapidly removed and
immersed in 10% formalin for at least 3 h at room temperature.
Some eyes were used to make choroidal or retinal flatmounts,
the others for preparing cryosections. To prepare retinal
flatmounts, the anterior segments of eyes were removed and
the entire retina was carefully dissected from the remaining
eyecups. Radial cuts were made from the edge to the equator
of the retina, and the retina was flatmounted in aquamount
(Thermo Fisher Scientific, Waltham, MA) with the
photoreceptors facing down. For choroidal flatmounts, radial
cuts were also made in the remaining eyecups, which were
flatmounted with the sclera facing down. To prepare
cryosections, the cornea and lens were removed and the
eyecups were cryoprotected in 20% sucrose in PBS overnight
at 4 °C. Eyes were then embedded in optimal cutting
temperature embedding compound (OCT; Miles Diagnostics,
Elkhart, IN) and frozen in a slurry of dry ice and isopentane.
Ten-micron frozen sections were cut, then dried in air for 20
min, rinsed in PBS, and mounted with aquamount containing
0.2 μg/ml 4´, 6-diamidino-2´-phenylindole, dihydrochloride.
Flatmounts and sections were examined using fluorescence
microscopy (Axioskop microscope; Zeiss, Thornwood, NY),
and images were digitized using a three-color charge-coupled
device video camera (IK-TU40A; Toshiba, Tokyo, Japan) and
a frame grabber.
Immunofluorescence staining for vascular endothelial growth
factor-B: Mice treated with a subretinal injection were
humanely killed after 4 weeks, and the eyes were removed and
fixed with 4% paraformaldehyde in PBS for 15 min. Then, the
anterior segments were removed, and the remaining posterior
retina was immersed again in a 4% paraformaldehyde solution
at 4 °C overnight. Eyes were sequentially washed with PBS
and 12.5% and 25% sucrose, and then embedded in OCT. Ten-
micron frozen sections were cut, air dried, and washed with
PBS. Specimens were blocked with 10% normal goat serum
in PBS for 30 min at room temperature to prevent nonspecific
binding. The slides were incubated with a 1:50 dilution of
mouse monoclonal antihuman/antimouse VEGF-B antibody
(MAB751; R&D), which identifies both VEGF-B isoforms,
in 2% normal goat serum /PBS overnight at 4 °C in a
humidified chamber, then washed with PBS three times, 5 min

TABLE 1. PRIMERS USED FOR REAL-TIME PCR

Genebank Primers Forward Reverse Size (bp) Species
NM_011697 VEGF-B167 CCTGGAAGAACACAGCCAAT GGAGTGGGATGGATGATGTC 164 mouse
NM_011697.2 VEGF-B186 CCAGACAGGGTTGCCATA GCTGGAGTGGGATGGATG 110 mouse
NM_007393.2 β-actin GCCTTCCTTCTTGGGTATGG GCAATGATCTTGATCTTCATGG 204 mouse
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each time, and incubated with Alexa Fluor 594 goat antimouse
IgG (H+L) secondary antibody (Molecular Probes, Carlsbad,
CA) for 1.5 h at 37 °C. After washing, the slides were mounted
with aquamount containing 0.2 μg/ml 4´, 6-diamidino-2´-
phenylindole, dihydrochloride. For a parallel negative
control, the primary antibody was omitted and PBS was
substituted. Sections were examined using fluorescence
microscopy (Axioskop microscope; Zeiss) and confocal
microscopy (Zeiss LSM 710), and images were taken under
the same conditions for optimal comparison.
Histological examination: Four weeks after vector injections
into 4-week-old normal C57BL/6J mice, mice from each
group were euthanized. Cryosections were prepared as
described above. Eyes were serially sectioned at 10 μm
thickness, mounted onto Superfrost/Plus microscope slides
(Fisher Scientific, Pittsburgh, PA), stained with hematoxylin
and eosin, and examined by light microscopy.
Quantitative measurement of leukostasis: Leukocytes were
labeled with fluorescein isothiocyanate (FITC)-conjugated
Concanavalin A (Vector Labs, Burlingame, CA) as previously
described [68]. Briefly, mice were perfused with PBS to
remove erythrocytes and non-adherent leukocytes, followed
by a perfusion with fluorescein-conjugated concanavalin A to
label leukocytes. Another PBS perfusion was used to flush out
unbound fluorescein. Retinal flatmounts were prepared and
examined with the Axioskop microscope. The total numbers
of leukocytes adhering to the retinal vessels were counted at
200× by the same investigator, with the investigator being
masked as to the nature of the specimen.
Quantitative assessment of the blood–retinal barrier:
Quantitative measurement of the breakdown of the BRB was
performed as previously described [68,69]. Briefly, mice
subretinally injected with AAV-VEGF-B167, AAV-VEGF-
B186, or AAV-GFP control vector were sedated and given an
intraperitoneal injection of 1 μCi/g bodyweight of [3H]-
mannitol after 4 weeks. One hour after injection, the mice
were sedated, retinas were rapidly removed and dissected to
free them from the lens, vitreous, and any retinal pigment
epithelium (RPE) that has been extruded. The retinas were
then placed into preweighed scintillation vials. The thoracic
cavity was opened, and the left superior lobe of the lung was
removed, blotted to remove excess blood, and placed in
another preweighed scintillation vial. A left dorsal incision
was made, and the retroperitoneal space was entered without
entering the peritoneal cavity. The renal vessels were clamped
with a forceps, and the left kidney was removed, cleaned of
all fat, blotted, and placed into a preweighed scintillation vial.
The remaining droplets on the tissues were allowed to
evaporate for 20 min. The vials were weighed, and the tissue
weights were calculated and recorded. One ml of NCSII
solubilizing solution was added, and the vials were incubated
overnight in a 50 °C water bath. The solubilized tissue was
brought to room temperature and decolorized with 20%

benzoyl peroxide in toluene in a 50 °C water bath. After re-
equilibrating it to room temperature, 5 ml of Cytoscint ES
(Fisher Scientific) and 30 μl of glacial acetic acid (Sigma, St.
Louis, MO) were added, and the vials were stored for several
hours in darkness at 4 °C to eliminate chemoluminescence.
Radioactivity was counted with a Wallac 1409 Liquid
Scintillation Counter. The CPM/mg tissue measured for the
lungs, kidneys, and retinas from the experimental and control
groups was used to calculate the retina-to-lung (RLLR) and
retina-to-renal leakage ratios (RRLR). The ratios obtained for
retinas treated with AAV-VEGF-B167 or AAV-VEGF-B186
were compared with those treated with AAV-GFP control
vectors by Student’s unpaired t test for populations with
unequal variances.
Animal model of oxygen-induced ischemic retinopathy:
Postnatal day 7 (P7), C57BL/6J mice were given an
intravitreal injection of 1 μl of vehicle containing
approximately 1×109 vgc of AAV-GFP, AAV-VEGF-B167, or
AAV-VEGF-B186 and placed in a 75% oxygen box for 5 days.
At P12, the mice were returned to room air. At P17, the mice
were humanely sacrificed. Eyes were enucleated and fixed in
4% paraformaldehyde for 30 min at room temperature.
Retinas were dissected and stained overnight at room
temperature with fluoresceinated Griffonia Simplicifolia
Isolectin B4 (Alexa Fluor 594–conjugated I21413; 1:100
dilution; Molecular Probes) in PBS. Following three washes,
the retinas were whole-mounted onto Superfrost/ Plus
microscope slides with the photoreceptor side down.

Quantification of retinal NV was performed as described
previously [70,71]. Briefly, images of each of the four
quadrants of whole mounted retinas were taken at 5×
magnification on a Zeiss Axioplan 2 microscope and imported
into Adobe Photoshop (Adobe Systems, Inc., San Jose, CA).
Retinal segments were merged to produce an image of the
entire retina. Neovascular tuft formation was quantified by
comparing the number of pixels in the affected areas with the
total number of pixels in the retina. Percentages of NV from
mouse retinas treated with AAV-VEGF-B167 or 186 were
compared with those from the retinas treated with AAV-
GFP. Measurement of retinal NV was done blind to the
identity of the sample.
Animal model of laser-induced choroidal neovascularization:
Two weeks after vector injection, Bruch’s membrane was
ruptured by laser photocoagulation at three locations in each
eye as previously described [72]. Briefly, C57BL/6 mice were
anesthetized with ketamine hydrochloride (100 mg/kg
bodyweight), and their pupils were dilated. Laser
photocoagulation (75 μm spot size, 0.1 s duration, 120 mW)
was performed in the 9, 12, and 3 o’clock positions of the
posterior pole of each eye with the slit-lamp delivery system
of an OcuLight GL diode laser (Iridex, Mountain View, CA),
and a handheld coverslip was used as a contact lens to view
the retina. Production of a tissue bubble by the laser, which
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indicates ruptures of Bruch’s membrane, is an important
factor in obtaining CNV; therefore, only burns in which a
bubble was produced were included in the study.

After 2 weeks, the mice were perfused with 1 ml of PBS
containing 50 mg/ml of fluorescein-labeled dextran (2×106 Da
average molecular mass; Sigma-Aldrich, St. Louis, MO), and
choroidal flatmounts were examined by fluorescence
microscopy. Images were captured at 20× magnification on a
Zeiss Axioplan 2 microscope. Image analysis software
(Image-Pro Plus; Media Cybernetics, Silver Spring, MD) was
used to measure the total area of CNV at each rupture site,
with the investigator masked with respect to treatment group.
This is a widely used and accepted method for assessing
experimental CNV [72,73].
Statistical analysis to determine significance: Data were
expressed as mean±SEM. Statistical analysis was performed
using Student’s t test; p<0.05 was considered significant.

RESULTS
Construction and characterization of recombinant adeno-
associated virus vectors: Three vectors based on the AAV
serotype 9 (AAV9) were constructed, respectively, expressing
the 167 and 186 amino acid isoforms of mouse VEGF-B
(AAV-VEGF-B167 and AAV-VEGF-B186) or the green
fluorescence protein gene (AAV-GFP) under the control of the
human CMV promoter (Figure 1A). For the three vector
preparations, titers were approximately 1.0×1012 vgc/ml.
Transgene expression of recombinant adeno-associated virus
vectors in the mouse retina: To determine the location and the
time course of rAAV expression in mouse retinas, 4-week-old
C57BL/6J mice received subretinal injections of AAV-GFP or
PBS. Animals were killed 1–6 weeks after injection. Under
fluorescence microscopy, GFP expression was clearly
demonstrated at 4 weeks postinjection, primarily in the RPE
and the outer retina (Figure 1B-D) in mice treated with 108 or
109 vgc, but not 107 or 106 vgc, of the AAV-GFP vector,
whereas animals injected with PBS showed no green
fluorescence during the 1 to 6 weeks after subretinal injection.
GFP expression was maximal at 4 weeks.

Analogous results were obtained by subretinal injection
with the AAV vectors expressing VEGF-B167 and 186.
Immunofluorescence performed with the mouse monoclonal
antibody reacting with both isoforms of mouse VEGF-B at 4
weeks after injection showed that expression of VEGF-B167
(Figure 1E) or VEGF-B186 protein (Figure 1F) was greater
in retinas of AAV-VEGF-B injected mice, mainly in the RPE,
outer segments (OS), outer plexiform layer (OPL), inner
nuclear layer (INL), inner plexiform layer (IPL), ganglion cell
layer (GCL), and endothelial cells than in mice from the GFP
control group (Figure 1G). Data was not shown for the other
time points. Real-time PCR assay further confirmed that the
mRNA expression levels of VEGF-B167 (Figure 1H) and 186
(Figure 1I) in treated groups were significantly higher (5.8

fold and 12-fold respectively) than in the AAV-GFP control
group. Administration of 108 vgc or less of AAV-VEGF-
B167 or 186 did not result in increased expression, probably
because this was a subthreshold level or because the increase
in expression was too small for our assay to detect. Our data
for GFP expression was similar to those of previous reports
[74,75]; therefore, the same dosage of 109 vgc/μl of AAV
vectors was used for all ensuing experiments.
Neither VEGF-B167 nor 186 induced an obvious
inflammatory response: Based on published references and
our own studies, VEGF-A notably induced not only
neovascularization, but also an inflammatory response and
vasopermeability [68,76-78]. Therefore, we questioned
whether intraocular overexpression of both isoforms of
VEGF-B would induce similar inflammatory effects.
Hematoxylin and eosin staining did not show evidence of
inflammatory cell infiltration or edema on retinal sections
from the control and experimental groups (Figure 2A-C) and
the retinas and their vasculature had relatively normal
configuration.

To determine more definitively the inflammatory
response to VEGF-B167 and 186, a leukostasis assay was
performed and the numbers of leukocytes adherent to retinal
vessels were counted. Four weeks after subretinal injection of
AAV-vectors, neither AAV-VEGF-B167 nor AAV-VEGF-
B186 caused significant leukostasis compared to AAV-GFP
controls (AAV-VEGF-B167: 8.8±0.9 adherent leukocytes/
retina, n=10; AAV-VEGF-B186: 7.75±1.2 adherent
leukocytes/retina, n=8; AAV-GFP: 7.3±0.9 adherent
leukocytes/retina, n=10; PVEGF-B167/GFP=0.14; PVEGF-B186/

GFP=0.38) (Figure 2D-G). A comparative image showing
VEGF-A-induced retinal leukostasis is shown in Figure 2H.
Overexpression of VEGF-B186, but not VEGF-B167,
significantly increased vasopermeability of the retina: Our
previous experiments have demonstrated that determining the
amount of [3H]-mannitol that enters the retina from the blood,
relative to the amount that enters from the lung or kidney, is
a sensitive and reproducible technique for quantifying the
breakdown of the BRB [55]. Mice treated with a subretinal
injection of AAV-VEGF-B167 showed that the RLLR (Figure
3A) and RRLR (Figure 3B) were 1.44±0.5 (n=8) and 1.48±0.5
(n=8), respectively, which was almost a threefold increase.
This was not statistically different compared to those ratios
from the AAV-GFP control mice (RLLR: 0.55±0.13, n=5;
RRLR: 0.52±0.09, n=7; PRLLR=0.10; PRRLR=0.05). However,
mice treated with AAV-VEGF-B186 showed an RLLR or
RRLR of 2.58±0.86 (n=7) or 1.92±0.61 (n=9), respectively,
about a four- to fivefold increase that was statistically different
compared to those ratios from the AAV-GFP control mice
(PRLLR=0.04; PRRLR=0.03).
Both VEGF-B167 and VEGF-B186 increased choroidal
neovascularization: To determine whether the overexpression
of VEGF-B would provide any increase in NV, we compared
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Figure 1. This figure shows the transgene expression of recombinant adeno-associated virus (rAAV) vectors in the retinas of 4-week-old
C57BL/6J mice, 4 weeks after subretinal injection of approximately 1×109 vgc recombinant adeno-associated virus vectors. A: This shows
the schematic representation of the three rAAV vectors used in this study for transducing vascular endothelial growth factor (VEGF)-B167,
VEGF-B186, and the marker GFP gene. Terminal repeats (TR), AAV terminal repeats; cytomegalovirus (CMV), human cytomegalovirus
immediate–early promoter; pA, polyadenylation site. B–D: Expression of GFP protein is demonstrated in flatmounts of the choroid (B), retina
(C), and a section of eye (D); note the greatest expression of green fluorescent protein (GFP) in the retinal pigment epithelium (RPE; B and
D, red arrow) and the outer retina (C and D, black arrow). E–G: Immunofluorescence staining indicated that the VEGF-B167 (E) and VEGF-
B186 proteins (F) are more strongly expressed in retinas from experimental groups—mainly in the RPE—than in retinas from the GFP control
group (G). Cell nuclei were stained with 4´, 6-diamidino-2´-phenylindole dihydrochloride. Images E–G were taken under the same conditions
for optimal comparison. H–I: Real-time PCR analysis of VEGF-B167 (H) and 186 (I) expression shows that mRNA expression levels of
VEGF-B167 and 186 in the AAV-VEGF-B167 and 186 groups are significantly higher than those in the AAV-GFP control group (in arbitrary
units normalized against mouse β-actin; *p<0.05, **p<0.001). Data are espressed ±SEM and sample sizes were 3. B–G: Scale bar represents
50 µm.
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Figure 2. No obvious induction by vascular endothelial growth factor (VEGF)-B167 or 186 of inflammatory response 4 weeks after subretinal
injection of adeno-associated virus (AAV)-VEGF-B167 and 186 in C57BL/6J mice. A–C: Hematoxylin and eosin staining; D–G: Leukostasis
assay indicated that neither AAV-VEGF-B167 (E, G) nor AAV-VEGF-B186 (F, G) caused significant retinal leukostasis compared to the AAV-
GFP control (D). Data are presented as mena±SEM. Sample sizes for GFP and VEGF-B167 are 10 and for VEGF-B186 is 8. For GFP versus
VEGF-B167, p=0.13; for GFP versus VEGF-B186, p=0.3. H: An image for comparison showing vascular endothelial growth factor (VEGF)-
A-induced leukostasis 6 h after intravitreal administration of 1×10−6 M VEGF-A. Arrows are pointing to leukocytes adhering to the vessel
wall. Original magnification was ×20.
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the AAV-VEGF-B167, AAV-VEGF-B186, and AAV-GFP-
treated eyes in an experimental model of CNV. Four weeks
after vector injection and two weeks after rupture of Bruch’s
membrane with laser photocoagulation, the area of CNV at
Bruch’s membrane rupture sites appeared larger in eyes that
had been given subretinal injections of AAV-VEGF-B167 or
AAV-VEGF-B186 (Figure 4A,B) when compared with those
given a subretinal injection of AAV-GFP (Figure 4C).
Measurement of the area of CNV at rupture sites by image
analysis, with the investigator masked with respect to
treatment group, confirmed that the mean area of CNV was
significantly greater in eyes given subretinal injections of
either AAV-VEGF-B167 (0.019±0.003 mm2, n=22, p=0.02) or
AAV-VEGF-B186 (0.021±0.017 mm2, n=19, p=0.02) (Figure
4D) when compared with eyes given AAV-GFP
(0.012±0.002 mm2, n=20) by the corresponding route of
administration.

Both VEGF-B167 and VEGF-B186 increased retinal
neovascularization in oxygen induced ischemic retinopathy:
Given that overexpression of VEGF-B167 and 186
significantly increased the area of CNV, we next explored
whether they would increase the area of pathological retinal
NV. Developing retinal NV in the mouse model of OIR has
proven reliable and quantifiable over 17 days, and is widely
used to clarify the molecular changes in neovascular eye
diseases and to screen anti-angiogenic compounds [79-81]. At
P7, pups received an intravitreal injection of AAV-VEGF-

B167, AAV-VEGF-B186, or AAV-GFP vectors and were then
placed in a 75% oxygen box for 5 days. Thereafter, pups were
returned to room air for another 5 days. At day 3, 6, 8, and 10
after vector delivery, three AAV GFP-injected pups were
killed to observe the GFP protein expression, which was
initially and focally seen in the retina at day 3, and became
stronger and more diffuse at day 6 and 10 (Figure 5).
Therefore, protein expression of the GFP reporter gene at the
above time points indicated that AAV VEGF-B167 or 186
could also effectively be expressed at these time points. At
P17 (10 days after receiving the AAV vectors), increased
expression of VEGF-B was also confirmed in AAV-VEGF-
B-injected pups by quantitative PCR. At P17, mice treated
with AAV-VEGF-B167 (18.6%±2.1%, n=10, p<0.001) or
AAV-VEGF-B186 (16.2%±0.89%, n=8, p=0.001) developed
more extensive retinal NV than control mice treated with
AAV-GFP (9.97% ± 1.3%, n=13; Figure 6A-D).

DISCUSSION
Overexpression of VEGF-B can be achieved using an AAV
vector, and the source of the gene product is widespread in the
retina. Both intravitreal and subretinal administration of the
vector were effective, with subretinal administration leading
to the greatest increase in VEGF-B expression in adult mice.
In adult mice, intravitreal administration was not as effective
as subretinal delivery (data not shown). That is why we chose
subretinal delivery in adult mice. However, in pups, whose

Figure 3. Increased vasopermeability of retinas from B186 but not from B167 vascular endothelial growth factor. Quantitative blood brain
barrier (BRB) assays were performed as described in Methods following subretinal injection of AAV-VEGF-B167, AAV-VEGF-B186, or
AAV-green fluorescent protein (GFP) control vectors in C57BL/6J mice. The retina to lung leakage ratio is shown in A; the retina to renal
leakage ratio is shown in B. Each bar represents the mean (±SEM) ratio of CPM per milligram of retina to CPM per milligram of lung or
kidney. Sample sizes for A: GFP is n=5; VEGF-B167 is n=8; VEGF-B186 is n=7. B: GFP is n=7; VEGF-B167 is n=8; VEGF-B186 is n=9.
P-values for the retina to lung leakage ratio relative to GFP were 0.10 for VEGF-B167 and 0.04 for VEGF-B186. P-values for the retina to
renal leakage ratio relative to GFP were 0.05 for VEGF-B167 and 0.03 for VEGF-B186, determined by unpaired t test, from the GFP control
retinas.
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retinas are still developing and whose inner limiting
membranes are not yet well developed, the vector can easily
penetrate the entire retina from the vitreous; therefore,
intravitreal administration of the vectors was implemented,
since it yielded the same expression profile and was
technically less difficult than subretinal injection in neonates.
Previous attempts have been made using an adenovirus vector,
which resulted in phenotypic changes such as retinal folding
and occasional CNV, but these effects were largely due to an
inflammatory response caused by the adenovirus vector.
Inflammation was eliminated by using the AAV vector, so that
the true effect of VEGF-B could be evaluated.

The functions of VEGF-B in normal and pathological
conditions are poorly understood, but since it binds to
VEGFR1, as does PlGF, it was thought that these activities
might be similar to those of PlGF. AAV vector constructs
were generated to investigate whether VEGF-B promoted
pathological angiogenesis and inflammation, as did PlGF
[22,29,32], and whether its overexpression elicited any
phenotypic changes in the retina. The vasoproliferative and
vasopermeability activities of VEGF have generally been
attributed to VEGFR2, but the finding that anti-PlGF inhibits
pathological angiogenesis [22] shows that VEGFR1 also
plays a role. The present study shows that overexpression of
VEGF-B enhances retinal NV resulting from ischemia and

Figure 4. Increased choroidal neovascularization caused by overexpression of adeno-associated virus-vascular endothelial growth factor
(AAV-VEGF)-B167 and 186 at rupture sites in Bruch’s membrane. A–C: Two weeks after subretinal injection of AAV-VEGF-B167 (A), AAV-
VEGF-B186 (B), or AAV-GFP (C), mice underwent laser photocoagulation that ruptured Bruch’s membrane in three locations in each eye.
Fourteen days later, mice were perfused with fluorescein-labeled dextran, and choroidal flatmounts were prepared and examined by
fluorescence microscopy. Compared to eyes treated with a subretinal injection of AAV-GFP (C), the area of choroidal neovascularization at
Bruch’s membrane rupture sites was significantly increased in eyes given a subretinal injection of AAV-VEGF-B167 (A, D) or 186 (B, D).
The arrows define the limits of the choroidal neovascularization. D shows that the area of choroidal neovascularization (CNV), expressed in
mm2, is significantly increased following a subretinal injection of AAV-VEGFB-B167 or 186. Data are expressed as mean±SEM. Statistical
comparisons were made by unpaired t test (*p<0.05). Images A to C have the same scale. Scale bar represents 100 μm.
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CNV following laser treatment, providing further evidence
that VEGFR1 plays a role and suggesting that PlGF and
VEGF-B share signaling mechanisms. The finding that
VEGF-B is highly expressed in the CNV area, 7 days after
laser treatment, and that anti-VEGF-B reduces CNV, supports
the conclusions about its role in CNV formation and its
potential as a target molecule [58].

Previous studies have reported apparently contradictory
results on the angiogenic properties of VEGF-B, with findings

varying from VEGF-B having no angiogenic effect at all
[42,51,53] to its promotion of unrestricted angiogenesis [47],
its ability to potentiate rather than induce angiogenesis when
it is transgenically expressed in endothelial cells [49], or its
ability to induce selective revascularization of the ischemic
myocardium but not the revascularization of other organs
[54,55]. We have previously reported that when VEGF-B is
injected into the nonischemic myocardium, it elicits only a
modest angiogenic response consisting of the generation of

Figure 5. Representative images show transgene expression after intravitreous delivery of recombinant adeno-associated virus-green
fluorescent protein (AAV-GFP) in the oxygen induced ischemic retinopathy (OIR) model. At postnatal day 7, pups received an intravitreal
injection of AAV-GFP vector and were then placed in a 75% oxygen box for 5 days. Thereafter, pups were returned to room air for another 5
days. At day 10 after injection (postnatal day 17), pups were killed. Choroidal flatmounts (A, B) and cryosections (C, D) were prepared. Green
fluorescent protein expression was directly observed using fluorescence microscopy. Original magnifications were as follows: A: ×5, B: ×40,
C, D: ×20. The figure shows increased expression of the reporter gene, GFP. The following layers are illustrated: RPE: retinal pigmental
epithelium, OS: outer segment, OPL: outer plexiform layer, INL: inner nuclear layer, IPL: inner plexiform layer, GCL: ganglion cell layer.
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enlarged vessels devoid of α-SMA-positive cells [56,57]. Our
work here demonstrates that both of the VEGF-B isoforms
exert a significant angiogenic effect under conditions of
ocular damage, potentiating pathologic blood vessel
formation in animal models of CNV and retinal NV. Previous
studies that failed to show an angiogenic effect of VEGF-B
evaluated different systems, used a different type of vector
(adenovirus), or administered the protein, rather than the gene.
It appears clear that the retina and heart respond differently to
the overexpression of VEGF-B. The adenovirus vector is
proinflammatory, and the influence of inflammatory cells may
alter the effect of VEGF-B. It could also be that continuous

exposure to elevated VEGF-B levels achieved by gene
transduction, rather than by intermittent increases from
injections of the protein, is necessary for revealing VEGF-B’s
angiogenic effect in the retina and choroid. This possibly
explains why the present study’s results differ from those of
earlier studies in which the absence of an angiogenic effect
was observed following the injections of VEGF-B protein
[58]. Zhang et al. [58] showed that blocking VEGF-B resulted
in the inhibition of CNV and retinal NV. The present study
clearly shows that increased expression of VEGF-B enhances
choroidal and retinal NV.

Figure 6. Both vascular endothelial growth factor-B167 and 186 increased retinal neovascularization in oxygen induced ischemic retinopathy.
At postnatal day 7 (P7), pups received an intravitreal injection of AAV-VEGF-B167, AAV-VEGF-B186, or AAV-GFP vectors, then were placed
in a 75% oxygen box for 5 days and returned to room air at P12 for another 5 days. At P17, mice were sacrificed, retinal-whole mounts
prepared, and retinal neovascularization quantified as described in Methods. Images from A to C are representative retina whole mounts from
mice that received AAV-GFP (A), AAV-VEGF-B167 (B), or AAV-VEGF-B186 (C). Original magnification was ×5. All images were taken
under the same conditions for optimal comparison. D: Statistical analysis indicated that both isoforms of VEGF-B significantly increased the
retinal neovascularization area compared with the GFP control group. The graph shows that AAV-VEGF-B167 and 186 promote increased
retinal neovascularization in the oxygen induced ischemic retinopathy model. Data are expressed as mean±SEM.
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We also showed that VEGF-B186 promotes vascular
permeability, confirming the role of VEGFR1 in this activity
as well. The finding that VEGF-B167 does not significantly
increase vascular permeability, although our results do appear
to show a trend in that direction, is likely due to the greater
capacity of VEGF-B186 to diffuse through the retinal tissue
due to the absence of the heparin-binding moiety. With a
greater sample size, VEGFB-167 will also possibly
demonstrate a significant increase in vascular permeability,
but this effect is enhanced by the 186 isoform. The pro-
inflammatory activity of VEGF has generally been associated
with VEGFR1, but VEGF-B does not appear to be pro-
inflammatory, even though anti-PlGF inhibits inflammatory
infiltration into CNV lesions [22]. This observation further
supports the conclusion that VEGF-B and PlGF activate
VEGFR1 in a subtly different manner, possibly through the
use of different coreceptors.

The present study gives insight into the isolated effect of
VEGF-B on the retina and choroid in the absence of disease-
associated stimuli or stimuli that normally cause VEGF
upregulation. In DR, neovascular AMD, and retinal vasculitis,
VEGF upregulation is seen with inflammation, and if an
intravitreal VEGF inhibitor is administered, the inflammation
is reduced. This leads to the suspicion that VEGF is a primary
inflammatory mediator in these inflammatory disorders and
that VEGF may simply be a mediator that compromises the
BRB, allowing cytokines, antibodies, complement, and
leukocytes to leave the blood stream if there is the appropriate
stimulus for doing so [82,83]. The present study demonstrates
that, if there is no primary cause of inflammation, then the
opening of the BRB will not, by itself, cause inflammation.

Upregulation of VEGF-B, to our knowledge, has not been
clinically demonstrated in ocular disease, but it has in renal
cell carcinoma [84]. The finding that VEGF-B promotes
retinal and choroidal NV and BRB breakdown suggests that
VEGF-B may contribute to the complications of
vasoproliferative ocular disorders and that it could be a
therapeutic target for treating angiogenic ocular disorders and
disorders leading to macular edema.
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