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Characterization of the resistance 
to Vip3Aa in Helicoverpa armigera 
from Australia and the role of 
midgut processing and receptor 
binding
Maissa Chakroun1, Núria Banyuls1, Tom Walsh2, Sharon Downes3, Bill James2 & Juan Ferré1

Crops expressing genes from Bacillus thuringiensis (Bt crops) are among the most successful 
technologies developed for the control of pests but the evolution of resistance to them remains 
a challenge. Insect resistant cotton and maize expressing the Bt Vip3Aa protein were recently 
commercialized, though not yet in Australia. We found that, although relatively high, the frequency of 
alleles for resistance to Vip3Aa in field populations of H. armigera in Australia did not increase over the 
past four seasons until 2014/15. Three new isofemale lines were determined to be allelic with previously 
isolated lines, suggesting that they belong to one common gene and this mechanism is relatively 
frequent. Vip3Aa-resistance does not confer cross-resistance to Cry1Ac or Cry2Ab. Vip3Aa was labeled 
with 125I and used to show specific binding to H. armigera brush-border membrane vesicles (BBMV). 
Binding was of high affinity (Kd = 25 and 19 nM for susceptible and resistant insects, respectively) and 
the concentration of binding sites was high (Rt = 140 pmol/mg for both). Despite the narrow-spectrum 
resistance, binding of 125I-labeled Vip3Aa to BBMV of resistant and susceptible insects was not 
significantly different. Proteolytic conversion of Vip3Aa protoxin into the activated toxin rendered the 
same products, though it was significantly slower in resistant insects.

Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a polyphagous pest feeding on more than 180 species of 
plants of which the most economically important are grain sorghum, corn and cotton1,2. It has one of the widest 
distributions of any agricultural pest, until recently being confined to Asia, Europe, Africa and Australia. It was 
considered a quarantine agricultural pest with no successfully established population in the American continent 
until 2013 when its intrusion to at least twelve Brazilian states caused economic losses up to 4 billion US dollars2 
and in 2015 was detected in pheromone traps in Florida, USA3. Helicoverpa armigera is known for its high level, 
rapid development of resistance to synthetic insecticides4–6. For better control of this pest, Bt crops expressing 
insecticidal proteins from Bacillus thuringiensis have been commercialized globally. China grows first generation 
Bt-cotton expressing Cry1Ac7, while Australia, India and the US introduced dual toxin plants expressing Cry1Ac 
and Cry2Ab8–10. Even before the release of dual toxin cotton in Australia, research showed higher than expected 
levels of resistance alleles in H. armigera and Helicoverpa punctigera to one of the Bt proteins (Cry 2Ab)11,12, and 
resistance risk remains a critical concern. In addition, various field populations of major lepidopteran pests have 
now been reported to have developed resistance to Bt crops10,13,14.

The Vip (vegetative insecticidal proteins) proteins discovered in 1996 from Bacillus cereus and B. thuringiensis 
are compatible with Cry proteins for insect control because they do not share sequence homology and presuma-
bly have different modes of action15. Several members of the Vip3A family have high activity against lepidopteran 
pests16. The vip3Aa gene has been introduced in plants and was first expressed as a single insecticidal protein in 
cotton17, and later used as a pyramided protein in combination with other cry genes, in cotton and in corn, to 
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confer higher protection and delay insect resistance (http://www.epa.gov/oppbppd1/biopesticides/pips/pip_list.
htm). However, a significant threat to Bt-based insect control is the potential development of insect resistance that 
could jeopardize their-long term success. Resistance to Vip3Aa has already been selected in laboratory colonies of 
at least three heliothine species. Selection for Vip3Aa resistance in Heliothis virescens over 13 generations resulted 
in insects with a resistance ratio of 2040-fold relative to susceptible insects18. Of more concern, F2 screens detected 
frequencies of alleles conferring resistance to Vip3Aa as high as 0.03 and 0.01, respectively, in field populations of 
H. armigera and H. punctigera from Australia that had not been exposed to plants expressing the toxin19.

Vip3A is an intestine specific virulence factor; after being ingested, the proteins are processed by the insect 
midgut proteases20–23. The major proteolytic products of Vip3Aa are approximately 62 and 20 kDa fragments that 
are inseparable in size-exclusion chromatography24. The processed protein binds to its specific receptors in the 
midgut epithelial brush border membrane and forms pores20,21,24. Although both Vip3 and Cry proteins need to 
be activated and bind to membrane receptors to exert their toxic action, the two proteins display different levels 
of stability and processing rates in the insect midgut23 and bind to different specific receptors in the BBMV of the 
susceptible insects24–26. These differences in the mode of action are thought to be responsible for the absence of 
cross-resistance to Vip3 proteins observed in Cry-resistant insects from all insect species tested27–34. However, 
studies on cross-resistance to Cry proteins in Vip3-resistant insects are lacking.

The mechanisms underlying resistance to the Cry proteins have been studied in some field resistant popula-
tions and laboratory selected populations. In many cases the gene and mutation responsible has been identified. 
For Cry1Ac, a number of mutations in resistant individuals have been identified as responsible for phenotypic 
resistance35 and recently genes involved in Cry1Ca resistance in Spodoptera exigua and in Cry2Ab resistance in 
H. armigera were also isolated36,37. In addition, gene expression alterations have also been characterized in some 
other cases38,39. Most cases of insect resistance to Cry proteins reported to date belong to one of the sequen-
tial steps proposed for their mode of action: impaired proteolysis activation40,41 or decreased binding to midgut 
receptors42,43. However, there are a few cases of resistance to Cry proteins that could not be associated with either 
impaired activation or decreased binding44–46.

The first resistance alleles to Vip3A in field populations of Australian H. armigera were isolated in 2009. 
Pooling F2 screen data across 2009/10 and 2010/11 yielded an r frequency for H. armigera of 0.027 (28 positive 
lines, 273 tested lines) with a 95% CI between 0.019 and 0.038. Complementation tests involving crosses of the 
first two isolates (SP85 and SP477) demonstrated that the F1 progeny were also resistant to Vip3A, implying 
that the resistance in both isolates is due to alleles at a common locus. Characterization of these early isolations 
showed that the resistance to Vip3Aa is recessive and maps to a locus different from that conferring resistance 
to Cry2Ab19,33. Herein, in addition to providing up-to-date information on frequencies of resistance alleles in H. 
armigera field populations and further information on allelism among different resistant families, we provide one 
of the first demonstrations of a lack of cross-resistance to Cry1Ac and Cry2Ab in a Vip3Aa resistant colony. These 
studies provide important context to a further investigation reported herein which examines the possible role of 
Vip3Aa processing and binding to midgut receptors as mechanisms of resistance.

Results
Characteristics of Vip3Aa resistance. Complementation tests involve crossing a standard resistant col-
ony with the new isolate and then testing the offspring by exposing them to the discriminating dose of the toxin. 
If the offspring survive the discriminating dose of Vip3Aa, then the resistance in each colony is due to the same 
mutation or variants (alleles) at the same gene which implies a common mechanism. If a complementation test 
performed on a new resistant isolate is negative (the offspring of a cross between it and the standard colony fail to 
survive), it is likely that different genes are involved in conferring resistance.

Previously we reported data for two isolations of H. armigera which were allelic with SP85 – here we test an 
additional four isolations from two seasons of monitoring (2011/2012 and 2012/2013) using F2 tests. Three of 
these Vip3Aa isolations were found to be clearly allelic to the resistant laboratory line SP85 (11–1112, 12–2602, 
12–2998). In one line (11–2201) there was substantial mortality from Vip3Aa (~60%) in the offspring from the 
crosses to SP85 when compared to the control. This could be explained if another gene is involved in conferring 
the resistance or the tested individuals were heterozygous which would produce approximately 50% mortal-
ity. Unfortunately it was not possible to maintain the 11–2201 line to investigate this issue further. However, 
in all cases the survival rates are greater than would be expected if no resistance allele was present (p = < 0.001 
χ2 =  171432). This result supports the notion of a relatively common mechanism for Vip3Aa resistance in field 
populations of H. armigera in Australia, and justifies using F1 screens to estimate SP85-like Vip3Aa resistance fre-
quencies (Table 1). However, it would be prudent to continue to perform some F2 screens to track whether resist-
ance involving other potential mutations increases in frequency after the deployment of plants expressingVip3Aa.

Mahon et al.19 reports frequencies of Vip3Aa resistance alleles for 2009/10 and 2010/11 based on F2 screens. 
Here we report F2 screen data from 2011/12 to 2012/13, and F1 screen data from 2013/14 and 2014/15. This 
reflects a shift in the approach used for resistance monitoring. Since the allelism data show one common form of 
Vip3Aa resistance, in 2013/14 we shifted our focus to the common resistance using the more efficient F1 screen 
(this shift is outlined in more detail in Walsh et al.33).

F2 screens in 2011/12 and 2012/13 estimated an r frequency for Vip3Aa in H. armigera of 0.025 with a 95% 
CI between 0.017 and 0.036 (14 positive lines, 284 tested lines) and 0.025 with a 95% CI between 0.016 and 0.037 
(12 positive lines, 242 tested lines) respectively. There is no statistically significant difference (Fisher’s Exact test, 
P =  0.05) between these estimates and those obtained in 2009/10 (0.029, 11 positive lines, 108 tested lines) and 
2010/11 (0.028, 17 positive lines, 165 tested lines). Summed across the four years the estimated r frequency for 
Vip3Aa in H. armigera based on F2 screens is 0.034 with a 95% CI between 0.022 and 0.037 (54 positive lines, 799 
tested lines) and has not changed between 2009–2013.

http://www.epa.gov/oppbppd1/biopesticides/pips/pip_list.htm
http://www.epa.gov/oppbppd1/biopesticides/pips/pip_list.htm
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F1 screens in 2013/14 and 2014/15 estimated an r frequency for Vip3Aa in H. armigera of 0.009 with a 95% CI 
between 0.002 and 0.018 (6 positive lines, 321 tested lines) and 0.016 with a 95% CI between 0.007 and 0.025 (10 
positive lines, 313 tested lines) respectively; there is no statistically significant difference between these approx-
imations (Fisher’s Exact test, P <  0.05). Summed across both years the estimated r frequency for Vip3Aa in H. 
armigera based on F1 screens is 0.013 with a 95% CI between 0.006 and 0.019 (16 positive lines, 634 tested lines).

As part of F2 screens performed during the monitoring program from 2009/10 to 2012/13 we examined 
cross-resistance against Cry1Ac and Cry2Ab by screening isofemale families of H. armigera that scored positive 
for carrying a resistance allele for Vip3Aa. Table 2 summarizes these data and shows that none of the randomly 
selected 16 families examined showed a greater propensity for survival against Cry1Ac and Cry2Ab toxin than 
did a Vip3Aa susceptible laboratory colony. The sample is representative of the 54 families of H. armigera that 
scored positive for carrying a resistance allele for Vip3Aa. We therefore conclude that larvae resistant to Vip3Aa 
are not cross-resistant to Cry1Ac of Cry2Ab.

Vip3Aa processing with midgut juice of susceptible and resistant H. armigera. Since Vip3Aa is 
found in the protoxin form in cotton leaves47, we searched for differences in its conversion to the activate form 
between the susceptible and resistant insects. When midgut juice of GR and SP85 was incubated with Vip3Aa 
protoxin, many proteolytic products were obtained but no difference in the band profile between the two colonies 
was observed (Fig. 1a,b). The major proteolysis products were the 62 and the 20 kDa fragments in both cases. The 
kinetic analysis of the 89 kDa activation and the 62 kDa fragment formation showed a difference in the processing 
rate between the susceptible and the resistant H. armigera colonies (Fig. 1c). The processing of the 89 kDa pro-
toxin was faster in the susceptible colony. After 15 min the protoxin completely disappeared with the midgut juice 
from the susceptible insects, however, with SP85 there was 31% residual protoxin which was completely activated 
after 60 min incubation.

Year isolated Colony crossed to SP85 Exposure Dead Alive Total % Dead

2012 11–1112
buffer 0 20 20 0.0

Vip3Aa 5 20 25 20.0

2012 11–2201
buffer 0 45 45 0.0

Vip3Aa 27 18 45 60.0

2013 12–2602
buffer 5 40 45 11.1

Vip3Aa 7 38 45 15.6

2013 12–2998
buffer 0 45 45 0.0

Vip3Aa 0 45 45 0.0

Various Resistant (SP85)
buffer 0 45 45 0.0

Vip3Aa 0 45 45 0.0

Various Susceptible (GR)
buffer 0 45 45 0.0

Vip3Aa 45 0 45 100.0

Table 1.  Complementation testing of four field isolated Vip3Aa resistant H armigera colonies with the 
SP85 type colony. All crosses were tested with the discriminating dose of Vip3Aa (10 μg/cm2) and scored for 
survival.

Isofemale 
line

Cry1Ac Cry2Ab

Dead Tested % 3rd Dead Tested % 3rd

9.1809 90 90 0.00 85 88 0.00

9.2542 90 90 0.00 85 90 0.00

10.1634 90 90 0.00 90 90 0.00

10.1743 90 90 0.00 90 90 0.00

10.173 90 90 0.00 89 89 0.00

11.1013 82 86 0.00 82 88 0.00

11.1112 89 90 0.00 0 90 0.00

11.2731 90 90 0.00 90 90 0.00

11.3132 87 90 0.00 90 90 0.00

12.2169 90 90 0.00 78 88 0.00

12.2602 89 89 0.00 88 89 0.00

12.2696 90 90 0.00 90 90 0.00

12.3256 90 90 0.00 90 90 0.00

Table 2.  A sample of isofemale lines generated from F2 screens that were confirmed to be homozygous 
resistant for Vip3Aa resistance, and their responses to Cry1Ac and Cry2Ab toxin in the F3 generation. 
Assays were performed on neonates. After 7 days they were scored as being alive and at least 3rd instar, or dead 
or not at 3rd instar.
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125I-Vip3Aa binding to the BBMV of susceptible and resistant H. armigera. Specific binding of 
125I-Vip3Aa to H. armigera BBMV was shown by incubating the labeled toxin in the absence and the presence of 
an excess of unlabeled Vip3Aa (Fig. 2). The difference between total binding and the binding in the presence of 
competitor is a measure of the specific binding. BBMV from the two colonies showed specific binding, indicat-
ing that the resistance was not due to an absence of binding to the epithelial membrane. To determine whether 
quantitative binding parameters were significantly different between the two colonies, competition binding assays 
were performed (Fig. 3). Incubation of a fixed amount of 125I-Vip3Aa with increasing concentrations of unlabeled 
protein showed that Vip3Aa fitted a one-site curve in both the resistant and the susceptible colony. Additionally, 
there were no significant differences in the equilibrium dissociation constants (Kd) and the concentration of bind-
ing sites (Rt) between the two colonies (Table 3). It is worth mentioning that no specific binding could be obtained 
with BBMV prepared from lyophilized tissue and, therefore, this type of preparation method does not preserve 
the binding sites involved in Vip3Aa binding.

Figure 1. Kinetics of the proteolytic processing of Vip3Aa incubated with midgut juice from H. armigera 
larvae. Incubations were performed at 30 °C and 0.1% of midgut juice total protein referred to Vip3Aa protein. 
Samples from susceptible (a) and resistant (b) insects were subjected to SDS-PAGE at different time intervals 
and the bands of protoxin (89 kDa, solid lines) and activated protein (62 kDa, broken lines) were quantified 
by densitometry (c). GR (susceptible) (⦁ ) and SP85 (resistant) (⚬ ) colonies. Data points represent the mean of 
three replicates with the standard error indicated by error bars.
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Discussion
In Australia monitoring for resistance to Vip3Aa in field populations of H. armigera has been ongoing since 
2009 which enabled isolation of resistant alleles and development of colonies with these genes in the laboratory. 
These colonies will help with the understanding of Vip3Aa resistance in this global pest. This is timely because 
despite our ability to detect resistance alleles, until recently, H. armigera was not exposed to significant selection 
pressure by Vip3Aa. However, with the recent incursion of H. armigera into the New World2 there is enormous 
potential selection for resistance primarily due to the large areas of corn expressing Vip3Aa proteins to control the 
closely related Helicoverpa zea and other lepidopteran corn pests. The bioassays performed herein to characterize 
Vip3Aa resistance support previous research which demonstrates that resistance alleles can readily be detected in 
Australian field populations despite no obvious selection (for more detail see Mahon et al.19). This relatively high 
baseline level of resistance may reflect selection at a low level from naturally occurring Vip3 toxins and/or direct 
or indirect (e.g. linkage) selection to something other than Vip3Aa. Our results suggest that natural variation 

Figure 2. Binding of 125I-Vip3Aa to BBMV from GR (susceptible) (⦁, ⚬, solid lines) and SP85 (resistant) 
(▪, ▫, broken lines) colonies at increasing concentrations of BBMV. The figure is representative of two 
independent experiments with different batches of labeled toxin.

Figure 3. Binding of 125I-Vip3Aa to BBMV from resistant and susceptible H. armigera at increasing 
concentrations of unlabeled Vip3Aa. Each data point represents the mean of at least two independent 
replicates.

Protein

Mean ± SEM

Rt (pmol/mg)Kd (nM)

Susceptible 25 ±  4 139 ±  33

Resistant 19 ±  5 141 ±  25

Table 3.  Equilibrium dissociation constant (Kd) and concentration of binding sites (Rt) of Vip3Aa with 
BBMV from susceptible and resistant H. armigera.
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exists in insect populations that could drive resistance once crops expressing Vip3Aa are introduced unless appro-
priate resistance management measures are implemented (mean expression levels of Vip3Aa in cotton plants is 
25 μg/g dry weight, not substantially different from the discriminant dose used in our study)47.

The frequency of Vip3Aa resistance alleles in Australian populations of H. armigera has not increased signif-
icantly in the six seasons that monitoring has taken place, the last four of which are presented herein. F2 screens 
were performed from 2009/10 until 2012/13 and F1 screens were performed in 2013/14 and 2014/15. This is 
not surprising given that products expressing Vip3A have yet to be commercialized. Interestingly, the estimates 
obtained using F2 screens, which can yield false negatives at least for Cry2Ab (S. Downes, unpublished data), are 
substantially higher than those obtained using F1 screens. It is possible that the different r frequencies from these 
methods reflect actual changes in frequencies over time but unlikely given the absence of Bt-crops that could 
impact on selection for Vip3A resistance (although see above for alternative explanations). Regardless of the rea-
son(s), our data verify that Vip3A resistance alleles exist at relatively high frequencies, and are not rising. This is in 
contrast to Cry2Ab which has been more variable. In 2010–2012 in particular, Cry2Ab resistance in H. armigera 
doubled compared to the baseline which could have signaled the beginning of a significant resistance problem in 
response to cotton expressing this toxin48 (see also Downes et al.11 for a similar response in the closely related H. 
punctigera). In the 2014/15 season, the frequency for Cry2Ab declined to baseline levels, which reflects the vari-
ability of the presence of this resistance allele, and Cry1Ac resistance remains rare (Downes, unpublished data). 
For the Vip3Aa alleles detected to date using F2 screens, cross-resistance to Cry2Ab and Cry1Ac was assessed 
and not identified. This is one of the first demonstrations of a lack of cross-resistance to Cry proteins in a Vip3Aa 
resistant colony, in contrast to previous studies in which Cry-resistant colonies were tested for cross-resistance 
to Vip3Aa.

A number of the different H. armigera Vip3Aa lines were further characterized by performing complemen-
tation tests with the first isolated Vip3Aa resistant line (SP85). In the complementation tests, three of them were 
found to be allelic with the lines previously identified and isolated while the results for another line were less 
convincing. This suggests that the mechanism present in SP85 is relatively frequent but raises the possibility of 
other mechanisms/genes being involved in the other F2 isolated Vip3A resistant detections. In the case of Cry1Ac 
and Cry2Ab resistance in H. armigera, multiple alleles were identified in the same gene which had the same 
phenotypic effect37,49. The fact that the majority of resistant lines tested were allelic allows us to characterize the 
mechanism of Vip3Aa resistance in a single line and gives us more confidence in extrapolating the findings to the 
whole population.

The Vip3Aa protein is produced in planta as a full length protein of ca. 89 kDa and its purification from cotton 
leaves indicates that the protein is stored in its protoxin form47. Upon ingested by the insect larva, the Vip3Aa 
protoxin is cleaved by serine proteases to several fragments, with two main products of around 62 kDa and 20 kDa 
when the incubation is performed under mild conditions (reviewed by Chakroun et al.50). We chose conditions 
that yielded the 62 kDa and 20 kDa bands as the main products of the Vip3Aa incubation with H. armigera mid-
gut juice to search for differences between the two colonies. Although no differences were observed in the band 
pattern, the conversion of protoxin (89 kDa) into active toxin (the 62 kDa fragment) was faster, under the same 
experimental conditions, with midgut juice from the susceptible insects than from their resistant counterparts 
(Fig. 1). It is difficult to evaluate how this difference in the activation rate may contribute to the resistance to 
Vip3Aa. In some cases, the kinetics of the protoxin processing to the active toxin has been proposed to be one 
of the factors determining the potency of Vip3A proteins22,23,51. However, given the narrow spectrum of resist-
ance observed, it is unlikely that a protease-based mechanism is the only factor contributing to the resistance to 
Vip3Aa42,43. On the contrary, binding site alteration is a well-documented mechanism of resistance to Cry1A and 
Cry2A toxins42,43,52. This type of alteration is very specific and cross-resistance is found only in those toxins that 
bind to the altered binding site.

Specific binding of Vip3A proteins to lepidopteran BBMV has been shown in several insect species using 
biotin-labeled Vip3Aa competed by unlabeled toxin (reviewed in Chakroun et al.50), in particular, in H. armigera53.  
The use of 125I-labeled ligands allows to increase sensitivity and to obtain quantitative results out of the bind-
ing assays. Conditions to successfully label Vip3Aa with 125I, to perform binding analyses, were set up with S. 
frugiperda BBMV24. We have used these conditions and shown specific binding of 125I-Vip3Aa to H. armigera 
BBMV (Fig. 2). Equilibrium binding parameters did not show any significant difference between insects from 
the two colonies (Table 3), indicating that alteration of the binding to the epithelial membrane does not seem 
to be the reason for the difference in susceptibility of the two insect colonies to Vip3Aa. This result is somewhat 
unexpected, since binding site alteration confers high levels of resistance to a very small set of structurally related 
toxins. Several studies have shown that Cry1A and Cry2A toxins do not share binding sites with Vip3A tox-
ins24–26,53–55. The fact that Vip3Aa-resistant SP85 insects are not cross-resistant to Cry1Ac or Cry2Ab, suggests a 
highly specific change in the resistant insects but, similarly to other cases of resistance to Cry toxins, this change 
does not seem to affect binding to the epithelial membrane of the midgut29,56,57.

In conclusion, alleles for Vip3Aa resistance occur at a relatively high frequency in the field in Australian 
populations of H. armigera, despite the fact that Bt crops expressing this toxin are not yet prevalent in the agro-
ecosystem. Complementation tests with the various alleles isolated by the F2 test in isofemale lines indicate that 
all alleles identified so far are alleles of the same gene. Biochemical analyses of resistant and susceptible insects 
have shown no differences at the level of binding and minor differences in the activation rate of the Vip3Aa pro-
toxin, which may or may not contribute to resistance. Since the mode of action of Vip3 proteins is not yet well 
understood, further study with resistant insects may shed light on specific targets of Vip3A proteins which so far 
are not known.
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Methods
Insect colonies. The H. armigera Vip3Aa resistant colony used in this experiment (SP85) is described in 
detail elsewhere19. Briefly, it is a laboratory colony which was isolated using an F2 screen during the summer of 
2009–10 from individuals collected as eggs on non-Bt cotton from St. George, Queensland, Australia. This resist-
ant colony was outcrossed five times to the susceptible laboratory colony (GR) to maintain fitness and to produce 
a colony that was 96.2% isogenic with the susceptible colony. Following each outcross, the colony was reselected 
with levels of toxin that killed all genotypes except those that were homozygous resistant to Vip3A. All subsequent 
generations were selected at this dose. The assays reported here were performed with individuals from the 3rd to 
the 5th generation. However, most of the analyses were conducted with assays on the near-isogenic 5th outcross 
in order to reduce the potentially misleading effects of hybrid vigor that may be evident when crossing colonies 
of H. armigera.

Individuals from the SP85 colonies survive the maximum concentration of Vip3Aa toxin that can be 
practically delivered in a surface treatment assay (220 μg/cm2) and larvae develop at the same rate as siblings 
reared on non-treated diet. Resistance for this colony is essentially recessive, with heterozygotes exhibiting 
concentration-response characteristics that are similar to those of susceptible insects19. Reciprocal backcrosses 
of heterozygotes to resistant colonies produced results for concentration-response assays which confirmed that 
resistance is essentially recessive –that is, 50% of offspring are homozygous resistant while the remainder are het-
erozygous and thus phenotypically susceptible19. These data are also consistent with the hypothesis that resistance 
is conferred by a single gene.

The GR colony used in our assays is susceptible to Vip3Aa, Cry1Ac and Cry2Ab toxins. This susceptibility is 
monitored regularly. The susceptible colony was employed during every screen to verify that a correctly adminis-
tered discriminating concentration of toxin-containing material was applied. It has been in culture since the mid-
1980s and is derived from material collected from cotton fields in the Namoi Valley, northern NSW Australia. 
On occasions it has been supplemented with additional collections from the same area that were screened for 
resistance and found to be susceptible.

Source of toxins. Bioassays to characterize Vip3Aa resistance. A Vip3Aa clone in E. coli was used as a 
source of toxin. Production and calibration of the Vip3Aa toxin was described elsewhere19.

Cry1Ac toxin was produced by the HD-73 strain of B. thuringiensis var. kurstaki (producing only the Cry1Ac 
toxin and spores). Mass production via fermentation of HD-73 was performed by Genesearch (Brisbane, 
Australia) with a resulting spore/crystal mix. The pellets produced were resuspended and washed three times 
before use. The extract was used without activating the toxin by trypsin treatment.

Dried and ground corn leaf material was used as a source of Cry2Ab toxin. This corn powder was provided by 
Monsanto (US) as a lyophilized Zea mays leaf powder containing transgenically expressed B. thuringiensis crystal 
protein, Cry2Ab2 at a concentration of 6 mg/g of powder.

Biochemical tests. The E. coli BL21 expressing Vip3Aa1658 used for the biochemical tests was kindly supplied by 
Dr. Slim Tounsi, CBS (Sfax, Tunisia).

Bioassays to characterize Vip3Aa resistance. Whole organism bioassays were conducted in 45 well 
(2.7 cm2) trays which contained approximately 2 ml of rearing diet that was overlaid with an aqueous solution 
of toxin and allowed to air dry. Concentrations were calculated as μg of toxin per cm2 of diet surface. After the 
addition of one neonate larvae per well, trays were heat sealed and maintained at 25 °C and 45–55% RH. Each 
bioassay consisted of a control (diet with no toxin), plus one toxin concentration. The concentration used was 10 
μg of toxin per cm2. After 7 days, the larvae were scored as “alive” (exhibiting normal movement) or “dead” (dead, 
moribund, uncoordinated movement). The mortality of neonates in controls was minimal for all assays (mean 
mortality 4.1 ±  5%, range 0–11%, n =  242 neonate larvae in 6 control assays).

Allelism of different isolations of Vip3Aa resistance. Complementation tests were performed after spending 2 to 
5 generations (include the two-generation F2 tests) in the laboratory. They involved setting up reciprocal crosses 
between new Vip3Aa-resistant colonies and the SP85 colony. To determine if the characteristics of the captured 
alleles were similar to those of SP85, the response to a discriminating concentration of toxin in bioassays was 
determined for the progeny from the above cross and from the parental colonies (SP85, the new resistant colony, 
and GR). Forty five insects were normally tested in the control per test and the same number exposed to 10 μg/cm2  
Vip3Aa in 45 well trays (control =  242, tested =  270 in 6 toxin bioassays).

Current frequencies of Vip3Aa resistance. Assays to identify resistant insects included F2 and F1 screens that 
were conducted using published protocols12. We aimed to expose 90 neonate larvae to Vip3Aa toxin for each 
line.

(i) F2 method. Eggs collected from field hosts of H. armigera were reared to pupae. On emergence, single male 
and female moths were placed in individual 850 ml plastic containers with a dilute honey solution. Eggs laid 
on the gauze opening of the container were collected every 1–2 days. If they were fertile, around 135 hatch-
ings were reared to establish isofemale lines. On pupation, individuals were sexed and equivalent numbers of 
males and females were placed in a 5 litre container and allowed to mate.
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F2 offspring generated from these parents were challenged with a discriminating dose. If either field-collected 
insect carried a ‘resistant allele’, we would expect at least 6.25% of the toxin-exposed larvae to be homozygous for 
that allele and thus survive and grow to at least 3rd instar by day 759.

(ii) F1 method. This technique makes use of colonies of resistant insects in a similar fashion to that used by Gould 
et al.60 to determine the frequency of resistance in H. virescens. Field-collected eggs were reared to pupae and 
male and female pupae were placed in groups in separate cages. As moths emerged, a male was placed in an 
850 ml container with two virgin SP85 females. Similarly, a female was placed in an 850 ml container with two 
SP85 males.

If fertile eggs were obtained from such crosses, F1 offspring were exposed to a discriminating dose. If the 
field-derived individual tested in this process was heterozygous for resistance, we would expect approximately 
50% of the larvae to be homozygous for resistance and therefore to thrive. In the unlikely event that we collected 
and tested homozygotes from the field, the frequency of survivors would be close to 100%.

Cross-resistance to Cry1Ac and Cry2Ab in Vip3A resistant colonies. We present data for a sub-set of isofemale 
lines that were confirmed to be homozygous for alleles conferring resistance to Vip3A toxin and were challenged 
in the F3 generation as neonates against Cry1Ac and Cry2Ab. The discriminating concentration for Cry1Ac was 
0.25 μg/cm2 of Cry1Ac delivered in a 50 μl/well solution. After 7 days this concentration killed 95.7 ±  1.8% of a 
susceptible general rearing colony (n =  628 larvae in 10 assays conducted over 7 days) and no surviving larvae 
grew beyond 2nd instar. The discriminating concentration for Cry2Ab was 1 μg/cm2 of Cry2Ab delivered in a 50 μl/  
well solution. After 7 days this concentration killed 99.6 ±  0.4% of a susceptible general rearing colony (n =  286 
larvae in 6 assays conducted over 7 days) and no surviving larvae grew beyond 3rd instar.

Vip3Aa purification for biochemical analyses. Conditions for bacterial culture and expression of the 
Vip3Aa16 protein was described previously22. For proteolysis assays the expressed Vip3Aa was purified from an 
E. coli cell lysate using a HisTrap FF affinity purification column (GE Healthcare) following the manufacturer 
instructions. Fractions of 1 ml were eluted from the column and collected in tubes containing 50 μl of 0.1 M 
EDTA. The most concentrated fractions were pooled and dialyzed against 20 mM Tris, 150 mM NaCl, pH 9, 
before storage at −20 °C.

For binding assays, Vip3Aa protein was purified as described previously24. In brief, the Vip3Aa in the E. coli 
cell lysate was precipitated adjusting the pH to its isoelectric point using acetic acid. The precipitated protein was 
recovered in the pellet after centrifugation, dissolved in 20 mM Tris-HCl, 150 mM NaCl, pH 9, and treated with 
1% trypsin for 2 h at 37 °C. The protein that was used for labeling was further purified by anion-exchange chro-
matography in an AKTA explorer 100 system (GE Healthcare, UK).

Midgut juice preparation. Midguts from ten 5th instar larvae of Vip3Aa resistant (SP85) and susceptible 
(GR) H. armigera colonies reared on standard diet were dissected and the peritrophic membrane extracted with 
its bolus content, which was then homogenized and centrifuged for 10 min at 16000 g. The supernatant was col-
lected and distributed in small aliquots, flash frozen in liquid nitrogen and stored in −80 °C. Total protein con-
centration in the midgut juice was quantified with Bradford reagent using BSA as standard.

Proteolytic processing of Vip3Aa. Proteolytic processing of Vip3A protoxin by the midgut juice of the 
susceptible (GR colony) and resistant (SP85 colony) H. armigera was first performed with different midgut juice 
dilutions to select the optimal dilution to perform the kinetic study. To compare the kinetics of Vip3Aa activation 
by the midgut juice of the susceptible and resistant H. armigera, 50 μg of affinity-purified protoxin was incubated 
with midgut juice at 1/250 (w/w, midgut juice: Vip3Aa) in 70 μl final volume of 20 mM Tris, 150 mM NaCl, pH 
9, and incubated for 5, 10, 15, 20, 25, 30 and 60 min at 30 °C. The reaction was stopped by adding the SDS-PAGE 
loading buffer and heating for 5 min at 99 °C, after which the samples were loaded in 12% polyacrylamide gel. 
For a quantitative comparison of the processing rate, the amount of Vip3Aa protoxin (89 kDa) and activated 
toxin (62 kDa) at the different incubation times was quantified densitometrically using the TotalLab 1D v 13.01 
software. The densitometry values from the 89 kDa and 62 kDa bands were relativized to the input values in each 
gel, and the background was corrected. Graphical representation was performed using the software GraphPad 
Prism v 5.00.

Vip3Aa radiolabeling. Trypsin-activated Vip3Aa was labeled using the chloramine-T method as previously 
described61,62. The labeled protein was separated from the excess of iodine by size-exclusion chromatography in a 
PD10 (GE Healthcare) column. The purity of the labeled protein was checked by analyzing the elution fractions 
by SDS-PAGE with further exposure of the dried gel to an X-Ray film at −20 °C. The calculated specific activity 
of the protein was 0.38 mCi/mg.

BBMV preparation. Fifth-instar larvae of H. armigera from both the susceptible (GR) and the resistant 
(SP85) colony reared on standard diet were dissected and the midguts (without the bolus content) were washed 
in MET buffer (300 mM mannitol, 5 mM EGTA, 17 mM Tris, pH 7.5) and frozen in liquid nitrogen and preserved 
at −80 °C until required. Alternatively, midguts in MET buffer were lyophilized and kept at 4 °C63. Brush border 
membrane vesicles (BBMV) were prepared from the frozen or the lyophilized midguts by the differential mag-
nesium precipitation method63,64, and then frozen in liquid nitrogen, and stored at −80 °C until use. The protein 
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concentration in the BBMV preparations was determined by Bradford65 using bovine serum albumin (BSA) as 
standard.

Binding assays with 125I-labeled Vip3Aa. Prior to use, the buffer of the BBMV was changed to bind-
ing buffer (20 mM Tris, 150 mM NaCl, 1 mM MnCl2, pH 7.4) supplemented with 0.1% BSA. To determine the 
appropriate concentration of BBMV to be used for the binding assays, 125I-Vip3Aa (1.2 nM) was incubated with 
increasing amounts of BBMV. An excess of unlabeled Vip3Aa was used to calculate the non-specific binding. The 
reaction was stopped by centrifuging the tubes at 16,000 g for 10 min at 4 °C and the pellet was washed once with 
500 μl of cold binding buffer. The radioactivity retained in the pellet was measured in a model 2480 WIZARD2 
gamma counter.

Competition experiments were performed by incubating 20 μg/ml of BBMV, from both the susceptible and 
resistant colonies, with 1.2 nM 125I-Vip3Aa in 0.1 ml final volume of binding buffer for 90 min at 25 °C in the 
presence of an increasing amount of unlabeled Vip3Aa protein. The reaction was stopped and the remaining 
radioactivity measured as described above. The dissociation constant (Kd) and the concentration of binding sites 
(Rt) were calculated using the LIGAND program66.

References
1. Pogue, M. G. A new synonym of Helicoverpa zea (Boddie) and differentiation of adult males of H. zea and H. armigera (Hübner) 

(Lepidoptera: Noctuidae: Heliothinae). Ann. Entomol. Soc. Am. 97, 1222–1226 (2004).
2. Tay, W. T. et al. A brave New World for an Old World pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. Plos ONE 8(11), 

e80134, doi: 10.1371/journal.pone.0080134 (2013).
3. Hayden J. E. & Brambila, J. Helicoverpa armigera (Lepidoptera: Noctuidae), the Old World Bollworm (2015) Available at: http://

freshfromflorida.s3.amazonaws.com/Media%2FFiles%2FPlant-Industry-Files%2FPest-Alerts%2FPEST +  ALERT +  Helicoverpa +   
armigera.pdf (Accessed on 3rd December, 2015).

4. Fitt, G. P. The ecology of Heliothis species in relation to agroecosystems. Annu. Rev. Entomol. 34, 17–52 (1989).
5. Fitt, G. P. Cotton pest-management: Part 3. an Australian perspective. Annu. Rev. Entomol. 39, 543–562 (1994).
6. Forrester, N. W., Cahill, M., Bird, L. J. & Layland, J. K. Management of pyrethroid and endosulfan resistance in Helicoverpa armigera 

(Lepidoptera, Noctuidae) in Australia. Bull. Entomol. Res. R1–132 (1993).
7. Jin, L. et al. Dominant resistance to Bt cotton and minor cross-resistance to Bt toxin Cry2Ab in cotton bollworm from China. Evol. 

Appl. 6, 1222–1235 (2013).
8. Downes, S. et al. Adaptive management of pest resistance by Helicoverpa species (Noctuidae) in Australia to the Cry2Ab Bt toxin in 

Bollgard II® cotton. Evol. Appl. 3, 574–584 (2010).
9. Fabrick, J. A. et al. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink 

bollworm to Bt cotton in India. Plos ONE 9(5), e97900, doi: 10.1371/journal.pone.0097900 (2014).
10. Tabashnik, B. E., Brévault, T. & Carrière, Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31, 

510–521 (2013).
11. Downes, S., Parker, T. & Mahon, R. Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II cotton. Plos 

ONE 5(9), e12567 doi: 10.1371/journal.pone.0012567 (2010).
12. Mahon, R. J., Olsen, K. M., Downes, S. & Addison, S. Frequency of alleles conferring resistance to the Bt toxins Cry1Ac and Cry2Ab 

in Australian populations of Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 100, 1844–1853 (2007).
13. Farias, J. R. et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 64, 

150–158 (2014).
14. Gassmann, A. J. et al. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic 

maize. Proc. Natl. Acad. Sci. USA 111, 5141–5146 (2014).
15. Estruch, J. J. et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against 

lepidopteran insects. Proc. Natl. Acad. Sci. USA 93, 5389–5394 (1996).
16. Ruiz de Escudero, I. et al. A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests. J. 

Invertebr. Pathol. 113, 78–81 (2014).
17. Kurtz, R. W., McCaffery, A. & O’Reilly, D. Insect resistance management for Syngenta’s VipCot (TM) transgenic cotton. J. Invertebr. 

Pathol. 95, 227–230 (2007).
18. Pickett, B. R. Studies on resistance to vegetative (Vip3A) and crystal (Cry1A) insecticidal toxins of Bacillus thuringiensis. In Heliothis 

virescens (Fabricius). PhD thesis, Imperial College, London, UK (2009).
19. Mahon, R. J., Downes, S. J. & James, B. Vip3A resistance alleles exist at high levels in Australian targets before release of cotton 

expressing this toxin Plos ONE 7(6), e39192, doi: 10.1371/journal.pone.0039192 (2012).
20. Yu, C. G., Mullins, M. A., Warren, G. W., Koziel, M. G. & Estruch, J. J. The Bacillus thuringiensis vegetative insecticidal protein 

Vip3Aa lyses midgut epithelium cells of susceptible insects. Appl. Environ. Microbiol. 63, 532–536 (1997).
21. Lee, M. K., Walters, F. S., Hart, H., Palekar, N. & Chen, J. S. The mode of action of the Bacillus thuringiensis vegetative insecticidal 

protein Vip3Aa differs from that of Cry1Ab delta-endotoxin. Appl. Environ. Microbiol. 69, 4648–4657 (2003).
22. Chakroun, M., Bel, Y., Caccia, S., Abdelkefi-Mesrati, L., Escriche, B. & Ferré, J. Susceptibility of Spodoptera frugiperda and S. exigua 

to Bacillus thuringiensis Vip3Aa insecticidal protein. J. Invertebr. Pathol. 110, 334–339 (2012).
23. Caccia, S., Chakroun, M., Vinokurov, K. & Ferré, J. Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera 

species. J. Insect. Physiol. 67, 76–84 (2014).
24. Chakroun, M. & Ferré, J. In vivo and in vitro binding of Vip3Aa to Spodoptera frugiperda midgut and characterization of binding 

sites by 125I radiolabeling. Appl. Environ. Microbiol. 80, 6258–6265 (2014).
25. Lee, M. K., Miles, P. & Chen, J. S. Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis 

virescens and Helicoverpa zea midguts. Biochem. Biophys. Res. Commun. 339, 1043–1047 (2006).
26. Gouffon, C., Van Rie, J., Jansens, S. & Jurat-Fuentes, J. L. Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush 

border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Appl. Environ. Microbiol. 77, 3182–3188 (2011).
27. Jackson, R. E., Marcus, M. A., Gould, F., Bradley, J. R. Jr. & Van Duyn, J. W. Cross-resistance responses of Cry1Ac-selected Heliothis 

virescens (Lepidoptera: Noctuidae) to the Bacillus thuringiensis protein Vip3A. J. Econ. Entomol. 100, 180–186 (2007).
28. Fang, J. et al. Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl. Environ. Microbiol. 73, 956–996 (2007).
29. Anilkumar, K. J. et al. Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea 

(Boddie). Appl. Environ. Microbiol. 74, 462–469 (2008).
30. An, J. et al. Vip3Aa tolerance response of Helicoverpa armigera populations from a Cry1Ac cotton planting region. J. Econ. Entomol. 

103, 2169–2173 (2010).
31. Vélez, A. M. et al. Inheritance of Cry1F resistance, cross-resistance and frequency of resistant alleles in Spodoptera frugiperda 

(Lepidoptera: Noctuidae). Bull. Entomol. Res. 103, 700–713 (2013).

http://freshfromflorida.s3.amazonaws.com/
http://freshfromflorida.s3.amazonaws.com/


www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:24311 | DOI: 10.1038/srep24311

32. Huang, F. et al. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize. Plos One 9, 
e112958 (2014).

33. Walsh, T. K. et al. Dual Cry2Ab and Vip3A resistant strains of Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: 
Noctuidae); testing linkage between loci and monitoring of allele frequencies. J. Econ. Entomol. 107, 1610–1617 (2014).

34. Carrière, Y., Crickmore, N. & Tabashnik, B. E. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat. 
Biotech. 33, 161–168 (2015).

35. Wu, Y. Detection and mechanisms of resistance evolved in insects to Cry toxins from Bacillus thuringiensis. Adv. Insect Physiol. 47, 
297–342 (2014).

36. Park, Y. et al. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. BMC Biology 
12, 46 (2014).

37. Tay, W. T. et al. Insect pest resistance to the Bacillus thuringiensis toxin Cry2Ab is conferred by multiple independent mutations in 
an ABC transporter subfamily A protein. Plos Genet 11(11), e1005534, doi: 10.1371/journal.pgen.1005534 (2015).

38. Tiewsiri, K. & Wang, P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin 
Cry1Ac in cabbage looper. Proc. Natl. Acad. Sci. USA 108, 14037–14042 (2011).

39. Guo, Z. et al., MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus 
thuringiensis Cry1Ac toxin in diamondback moth. Plos Genetics 11(4), e1005124, doi: 10.1371/journal.pgen.1005124 (2015).

40. Oppert, B., Kramer, K. J., Beeman, R. W., Johnson, D. & McGaughey, W. H. Proteinase-mediated insect resistance to Bacillus 
thuringiensis toxins. J. Biol. Chem. 272, 23473–23476 (1997).

41. Li et al. Comparative analysis of proteinase activities of Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis 
(Lepidoptera: Crambidae). Insect Biochem. Mol. Biol. 34, 753–762 (2004).

42. Ferré, J. & Van Rie, J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47, 501–533 
(2002).

43. Ferré, J., Van Rie, J. & Macintosh, S. C. Insecticidal genetically modified crops and insect resistance management (IRM). (ed. 
Romeis, J., Shelton, A. M. & Kennedy, G. G.). Integration of Insect Resistant Genetically Modified Crops within IPM Programs Ch. 3, 
41–85 (Springer, Netherlands, 2008).

44. Gould, F. et al. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Nat. Acad. Sci., USA 89, 
7986–7990 (1992).

45. Luo, K., Tabashnik, B. E. & Adang, M. J. Binding of Bacillus thuringiensis Cry1Ac toxin to aminopeptidase in susceptible and 
resistant diamondback moths (Plutella xylostella). Appl. Environ. Microbiol. 63, 1024–27 (1997).

46. Herrero, S., Oppert, B. & Ferré, J. Different mechanisms of resistance to Bacillus thuringiensis toxins in the Indianmeal moth. Appl. 
Environ. Microbiol. 67, 1085–89 (2001).

47.  U. S. Environmental Protection Agency. Bacillus thuringiensis modified Cry1Ab (SYN-IR67B-1) and Vip3Aa19 (SYN-IR102-7) 
insecticidal proteins and the genetic material necessary for their production in COT102 X COT67B cotton. (2008) Available at: 
http://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-006529_12-Aug-08.pdf (Accessed: 29th 
February 2016).

48. Downes, S. & Mahon, R. Successes and challenges of managing resistance in Helicoverpa armigera to Bt cotton in Australia. GM 
Crops Food 3, 228–234 (2012).

49. Wu, Y. D., Zhao, J., Jin, L. & Yang, Y. H. Diverse cadherin mutations conferring resistance to Bacillus thuringiensis toxin Cry1Ac in 
Helicoverpa armigera. Insect Biochem. Mol. Biol. 40, 113–118 (2010).

50. Chakroun, M., Banyuls, N., Bel, Y., Escriche, B. & Ferré, J. Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic 
bacteria. Microbiol. Mol. Biol. Rev. 80, 329–350 (2016).

51. Abdelkefi-Mesrati, L. et al. Investigation of the steps involved in the difference of susceptibility of Ephestia kuehniella and Spodoptera 
littoralis to the Bacillus thuringiensis Vip3Aa16 toxin. J. Invertebr. Pathol. 107, 198–201 (2011).

52. Caccia, S. et al. Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins 
in two Helicoverpa species. Plos ONE 5(4), e9975, doi: 10.1371/journal.pone.0009975 (2010).

53. Liu, J., Yang, A., Shen, X., Hua, B. & Shi, G. Specific binding of activated Vip3Aa10 to Helicoverpa armigera brush border membrane 
vesicles results in pore formation. J. Invertebr. Pathol. 108, 92–97 (2011).

54. Sena, J. A., Hernández-Rodríguez, C. S. & Ferré, J. Interaction of Bacillus thuringiensis Cry1 and Vip3Aa proteins with Spodoptera 
frugiperda midgut binding sites. Appl. Environ. Microbiol. 75, 2236–2237 (2009).

55. Ben Hamadou-Charfi, D., Boukedi, H., Abdelkefi-Mesrati, L., Tounsi, S. & Jaoua, S. Agrotis segetum midgut putative receptor of 
Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin. J. Invertebr. Pathol. 114, 139–143 
(2013).

56. Liu, Y. B., Tabashnik, B. E., Masson, L., Escriche, B. & Ferré, J. Binding and toxicity of Bacillus thuringiensis protein Cry1C to 
susceptible and resistant diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 93, 1–6 (2000).

57. Zhao, J. Z. et al. Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of 
Cry1C. Appl. Environ. Microbiol. 66, 3784–3789 (2000).

58. Abdelkefi-Mesrati, L., Tounsi, S. & Jaoua, S. Characterization of a novel vip3-type gene from Bacillus thuringiensis and evidence of 
its presence on a large plasmid. FEMS Microbiol. Lett. 244, 353–358 (2005).

59. Andow, D. A. & Alstad, D. N. F2 screen for rare resistance alleles. J. Econ. Entomol. 91, 572–578 (1998).
60. Gould, F. et al. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. 

Proc. Natl. Acad. Sci. USA 94, 3519–3523 (1997).
61. Hernández-Rodríguez, C. S., Van Vliet, A., Bautsoens, N., Van Rie, J. & Ferré, J. Specific binding of Bacillus thuringiensis Cry2A 

insecticidal proteins to a common site in the midgut of Helicoverpa species. Appl. Environ. Microbiol. 74, 7654–7659 (2008).
62. Van Rie, J., Jansens, S., Höfte, H., Degheele, D. & Van Mellaert, H. Specificity of Bacillus thuringiensis delta-endotoxins. Importance 

of specific receptors on the brush border membrane of the mid-gut of target insects. Eur. J. Biochem. 186, 239–47 (1989).
63. Hernández, C. S., Rodrigo, A. & Ferré, J. Lyophilization of lepidopteran midguts: a preserving method for Bacillus thuringiensis toxin 

binding studies. J. Invertebr. Pathol. 85, 182–187 (2004).
64. Wolfersberger, M. G. et al. Preparation and partial characterization of amino acid transporting brush border membrane vesicles 

from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp. Biochem. Physiol. 86, 301–308 (1987).
65. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of 

protein-dye binding. Anal. Biochem. J. 72, 248–254 (1976).
66. Munson, P. & Rodbard, D. LIGAND: A versatile computerized approach for characterization of ligand-binding systems. Anal. 

Biochem. 107, 220–239 (1980).

Acknowledgements
Research at University of Valencia was supported by the Spanish Ministry of Science and Innovation (grants 
ref. AGL2009-13340-C02-01 and AGL2012-39946-C02-01), by grants from the Generalitat Valenciana 
(ACOMP/2011/094, PROMETEO 2011/044 and GVPROMETEOII-2015-001), and by European FEDER funds. 
MC was supported by a Santiago Grisolía fellowship from the Generalitat Valenciana. NB was recipient of a PhD 

http://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-006529_12-Aug-08.pdf


www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:24311 | DOI: 10.1038/srep24311

grant from the Spanish Ministry of Science and Innovation (grant ref. BES-2010-039487). Research at CSIRO was 
supported by the Cotton Research and Development Corporation (grants no. CSE0002, CSE1103, CSE1201) and 
by CSIRO Land and Water and CSIRO Agriculture.

Author Contributions
J.F., S.D. and T.W. designed the study. M.C., N.B. and B.J. performed the experiments. M.C., S.D., T.W. and J.F. 
analyzed the data. M.C., N.B., J.F., S.D. and T.W. wrote the manuscript. All authors reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Chakroun, M. et al. Characterization of the resistance to Vip3Aa in Helicoverpa 
armigera from Australia and the role of midgut processing and receptor binding. Sci. Rep. 6, 24311; doi: 
10.1038/srep24311 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Characterization of the resistance to Vip3Aa in Helicoverpa armigera from Australia and the role of midgut processing and r ...
	Results
	Characteristics of Vip3Aa resistance. 
	Vip3Aa processing with midgut juice of susceptible and resistant H. armigera. 
	125I-Vip3Aa binding to the BBMV of susceptible and resistant H. armigera. 

	Discussion
	Methods
	Insect colonies. 
	Source of toxins. 
	Bioassays to characterize Vip3Aa resistance. 
	Biochemical tests. 

	Bioassays to characterize Vip3Aa resistance. 
	Allelism of different isolations of Vip3Aa resistance. 
	Current frequencies of Vip3Aa resistance. 
	Cross-resistance to Cry1Ac and Cry2Ab in Vip3A resistant colonies. 

	Vip3Aa purification for biochemical analyses. 
	Midgut juice preparation. 
	Proteolytic processing of Vip3Aa. 
	Vip3Aa radiolabeling. 
	BBMV preparation. 
	Binding assays with 125I-labeled Vip3Aa. 

	Acknowledgements
	Author Contributions
	Figure 1.  Kinetics of the proteolytic processing of Vip3Aa incubated with midgut juice from H.
	Figure 2.  Binding of 125I-Vip3Aa to BBMV from GR (susceptible) (⦁, ⚬, solid lines) and SP85 (resistant) (▪, ▫, broken lines) colonies at increasing concentrations of BBMV.
	Figure 3.  Binding of 125I-Vip3Aa to BBMV from resistant and susceptible H.
	Table 1.   Complementation testing of four field isolated Vip3Aa resistant H armigera colonies with the SP85 type colony.
	Table 2.   A sample of isofemale lines generated from F2 screens that were confirmed to be homozygous resistant for Vip3Aa resistance, and their responses to Cry1Ac and Cry2Ab toxin in the F3 generation.
	Table 3.   Equilibrium dissociation constant (Kd) and concentration of binding sites (Rt) of Vip3Aa with BBMV from susceptible and resistant H.



 
    
       
          application/pdf
          
             
                Characterization of the resistance to Vip3Aa in Helicoverpa armigera from Australia and the role of midgut processing and receptor binding
            
         
          
             
                srep ,  (2016). doi:10.1038/srep24311
            
         
          
             
                Maissa Chakroun
                Núria Banyuls
                Tom Walsh
                Sharon Downes
                Bill James
                Juan Ferré
            
         
          doi:10.1038/srep24311
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep24311
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep24311
            
         
      
       
          
          
          
             
                doi:10.1038/srep24311
            
         
          
             
                srep ,  (2016). doi:10.1038/srep24311
            
         
          
          
      
       
       
          True
      
   




