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Abstract: In addition to the traditional treatments of cancer and cancer prevention, the use of natural
compounds, especially those found in food, should be considered. To clarify if resveratrol has the
potential for cancer prevention and the possibility of use in therapy, the following must be taken
into account: data from epidemiology, clinical protocol (case and control), preclinical studies (lab
animals), use of established cell lines as models of cancer cells, test tube assays (enzymes activities),
and requirements of nanotechnologies in order to discover new drugs to fight cancer. From this
perspective and future expected advances, more information is needed such as improved efficacy,
methods of application, and the synergistic sensitization of resveratrol as an adjuvant. In addition,
resveratrol nanoformulation is considered to overcome its weak bioavailability.
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1. Introduction

This review focuses on the potential of resveratrol for cancer prevention and begins with the
fate of cancer, i.e., the morbidity and mortality in the world due to cancer and the different types of
cancer. Then, treatments and prevention of cancer are considered, especially, whether resveratrol has
the potential for cancer prevention and could possibly be used for cancer therapy.

Regarding molecular interactions within selected groups of the population, the following are
emphasized: the data obtained from epidemiology, clinical studies, preclinical studies, the use of cell
lines as models, the assays on test tube enzymes, and the use of nanoparticles to hopefully discover
new treatments to fight cancer. From these experimental procedures, the main aspects are developed
as follows: identifying pathways of antitumor mechanisms of resveratrol, innovative formulations
of resveratrol, perspectives, and conclusions. On the basis of tumor cell lines, the mechanisms of
antiproliferative and pro-apoptotic activities of resveratrol have included: pro-oncogenic and tumor
suppressor miRNAs expression modulation; NBkB, PPAR, PGC1α, NRF1,2, p53 transcription factors,
and TGFβ signaling targeting pathways; prodifferentiating properties; and the synergistic effect of
resveratrol on anticancer chemical drugs. In order to increase the poor bioavailability of resveratrol,
which is a weakness for its future use, attention has been given to the development of nanoparticles
that can transport and target resveratrol to cancer cells, as well as research on the antiproliferative
properties of resveratrol metabolites.

2. The Fate of Cancer in the World

Basically, the mitosis cycle (Figure 1) of a cell is usually well controlled either at the G0 state
(resting cell) or at the G1/S or G2/M phase checkpoints (cycling cell).
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Figure 1. Brief recall of the cell cycle phases. 

Nevertheless, in some unregulated conditions cells start to cycle continuously which can be the 
launch of a cancer process (Figure 2) [1] (p. 15). This event can be due to DNA mutations or to the 
overexpression of oncogenes under a favorable metabolic environment (growth factors, oxygen, and 
glucose). A normal cell becomes cancerous after three steps (initiation, promotion, and progression) 
to establish a localized tumor, which can be subsequently disseminated into new tumors (metastasis).  
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Figure 1. Brief recall of the cell cycle phases.

Nevertheless, in some unregulated conditions cells start to cycle continuously which can be the
launch of a cancer process (Figure 2) [1] (p. 15). This event can be due to DNA mutations or to
the overexpression of oncogenes under a favorable metabolic environment (growth factors, oxygen,
and glucose). A normal cell becomes cancerous after three steps (initiation, promotion, and progression)
to establish a localized tumor, which can be subsequently disseminated into new tumors (metastasis).
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3. Different Types of Cancer

The probability of a man or a woman unfortunately getting cancer during their lifetime is estimated
to be around 0.5 and 0.3, respectively. Each year, there are around 14.1 billion new cases of cancer
(7.4 billion men and 6.6 billion women) and more than 8.2 billion deaths (4.6 billion men and 3.5 billion
women), which is the second cause of mortality. In Europe, in men, lung cancer is the first cause
of mortality (410,000) followed by colorectal cancer (447,000) (second) and prostate cancer (417,000)
(third); in women, breast cancer (464,000) is followed by colorectal cancer (second) and lung cancer
(third) [2].

4. Treatments and Prevention of Cancer

In cancer therapy, the traditional treatments are surgery, chemotherapy, radiotherapy and,
if relevant, immunotherapy, either as single treatments or successively. Prior to cancer treatment,
there are ways to avoid the development of a tumor. It has been reported that food and nutrition
contain keys factors for the development or decrease of cancer risk, where 30% to 40% could
be avoided with prevention measures [1]. Interestingly, epidemiological, clinical, preclinical,
and experimental studies demonstrate the beneficial effect of diet (especially Mediterranean diet) on
digestive cancers. Fibers, polyphenols (including resveratrol), and omega-3 fatty acids appear to be the
most protective components.

5. Why Choose Resveratrol?

Historically, the preventive effect of resveratrol towards cancer, especially skin and mammal
cancers in mice, started with the discovery of Pezzutto’s group in 1997 [3]. Resveratrol (RSV) or
trans-3,4′,5-trihydroxystilbene (Figure 3) is a natural polyphenol found in large quantities in the root
of the Japanese knotweed (Polygonum cuspidatum) (Table 1) [4].
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Table 1. The trans-resveratrol concentrations determined in different sources. Adapted from L. Le
Corre, PhD thesis 2005 [5].

Natural Sources Trans-RSV Concentration (µg/g) References

Hops 0.50 ± 0.05 [6]
Peanuts 5.10 ± 2.85 [7]

Peanut butter 0.30 ± 0.10 [7]
Grape skin 27.50 ± 1.30 [8]

Itadori root (Polygonum
cuspidatum) Ko-jo-kon 523 ± 1 [7]

RSV is also produced in large amounts by vine plants in response to biotic infections (for instance
Botrytis cinerea) but also synthesized by reacting to abiotic stresses [9]. Due to this, RSV is a vine
phytoalexin that stimulates the natural defense of grape plants. RSV is also produced by other edible
plants, such as hops [6], peanuts (Table 1), as well as by numerous berries (blackberries, blackcurrants,
blueberries, mulberries and cranberries) [5,7,8].

Due to its antioxidant properties, RSV provides numerous beneficial effects to humans including
the prevention of not only cancer but also cardiovascular diseases, neurodegenerescence, and low-grade



Molecules 2019, 24, 4506 4 of 12

inflammation. In addition, RSV improves mice longevity and physical activity through the sirtuin
pathway [10–14].

The cell absorption of RSV follows both the diffusion process and facilitated transport [15]. Then,
in the hepatic cell, RSV is largely metabolized [16] as glucurono, sulfo- and tauto-conjugates, and three
hydrophilic forms of RSV to be easily eliminated by MRP-1 [17]. The blood transport of RSV involves
binding to albumin and lipoproteins [18]. The usual threshold of in vitro resveratrol effect is between
20 and 50 micromolars. Interestingly, Aires et al. [19] have shown that 3-O-sulfate-RSV, a metabolite of
resveratrol, was able to inhibit human colon cancer cell lines by induction of DNA damages, apoptotic
process, and accumulation of cells in S-phase. Moreover, the mixture of this metabolite with two others
(i.e., 3-O-glucuronide-RSV and 4′-O-glucuronide-RSV) induced a synergistic effect.

6. Experimental Approaches of the Problem

To address the topic of the potential of resveratrol to prevent cancer, the following questions should
be addressed: What do we learn from epidemiological and from clinical studies? What information
do animals and cultured cell protocols and enzyme assays provide to explain mechanisms? And,
Is the challenge of seting up new preparations relevant for innovative purposes in order to improve
RSV efficiency?

6.1. Epidemiology

In 2005, Levi et al. showed that resveratrol from grape consumption is inversely related to the
risk of breast cancer, as reported in a study carried out on 369 cases vs. 602 controls of Swiss women
followed from 1993 to 2003 [20].

Renaud et al. [21] conducted an analysis on 34,014 middle-aged men obtained from a
comprehensive health appraisal from 1978 to 1983 in the eastern part of France. They concluded
that a moderate intake of wine was associated with a 20% reduction in all-cause mortality by cancer.
From this result, wine polyphenols, especially RSV, were considered to be a major protecting agent.

Adherence to a Mediterranean diet, with the major basis ingredients of polyunsaturated fatty
acid, polyphenols from olive oil, and polyphenols from grape, including resveratrol, decreased the risk
of developing head and neck cancer [22].

In 2014, Semba et al. [23] reported a prospective cohort study that was carried out from 1998 to
2009 in two villages in the Chianti area on a population-based sample of 783 community-dwelling men
and women 65 years or older. They concluded that resveratrol levels did not show a significant effect
on mortality risk, notably by cancer.

6.2. Clinical Studies (Case Control Studies)

A phase I, randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients
with hepatic metastases showed that cleaved caspase-3, a marker of apoptosis, significantly increased
by 39% in malignant hepatic tissue following SRT501 treatment as compared with tissue from the
placebo-treated patients [24].

A study conducted on healthy volunteers suggested that repeated administration of high doses
of resveratrol generates micromolar concentrations of the parent molecule and much higher levels
of glucuronide and sulfate conjugates in the plasma. It was concluded that the observed decrease in
circulating IGF-I and IGFBP-3 might contribute to cancer chemopreventive activity [25].

Twenty patients with histologically confirmed colorectal cancer consumed eight daily doses of
resveratrol at 0.5 or 1.0 g before surgical resection. Levels of resveratrol and its metabolites were
consistently higher in tissues originating in the right side of the colon as compared with the left side of
the colon. Consumption of resveratrol reduced tumor cell proliferation by 5% (P = 0.05). The authors
suggested that daily p.o. doses of resveratrol at 0.5 or 1.0 g were sufficient to elicit anticarcinogenic
effects [26].
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6.3. Preclinical Studies

It has been shown that resveratrol induced a 40% drop in lung metastasis in rats and mice [27].
The association between pterostilbene and quercetin inhibited the metastatic activity of B16 melanoma
cells in mice liver [28]. Resveratrol delayed the development and reduced the metastasizing capacity
of spontaneous mammary tumors in the lungs of HER-2/neu protooncogene transgenic mice [29].
Red wine extracts prevented preneoplastic foci density in chemically induced intestinal tumors in
mice [30].

6.4. Cell Lines

Various human tumor-established cell lines have been used to evaluate the effect of resveratrol and
elucidate its action mechanism, including cell lines from the following: colorectal (SW480 cell line) [31],
intestine (Caco2 cell line), liver (HepG2 hepatic derived cell line) [32], lymphoma [33], prostate (PCa
cell line) [34], glioma cells [35] and tumoral cardiac cells [36].

Resveratrol, as well as red wine extracts, inhibit SW480 cells. The effect is dependent on the
concentration in these extracts. In this model the cell uptake in resveratrol is enhanced by quercetin [30].
The metabolism of resveratrol is modulated by red wine extracts. In these cells there is a decrease in
conjugation extent as compared with those in hepatic-derived cells. Resveratrol displays a pro-apoptotic
effect on SW480 cells [37]. Interestingly, resveratrol shows pro-differentiating effects on skeletal muscle
stem cells [38].

6.5. Test Tube Enzymes and Modeling

The direct effect of resveratrol on enzyme activities or its binding to receptors has been studied,
reporting inhibition of cyclo-oxygenases 1 and 2 (COX 1,2), two pro-inflammatory enzymes [39].
The sirtuin-1 deacetylase activity involved in apoptosis is activated by RSV [40]. The αvβ3 integrin
receptor has been shown, by modeling, to bind resveratrol and some derivatives [41]. From this,
RSV inhibits human myeloma cell proliferation via crosstalk between the integrin αvβ3 receptor and
the IGF-1 receptor [42].

7. Identified Pathways of Antitumor Mechanisms of Resveratrol

Antigenotoxic effects of resveratrol have been reported in HL60 colorectal cell line and in mice [43].
Conversely, in 2012, Heger et al. showed that the intake of a resveratrol-containing dietary supplement
had no impact on the DNA stability in healthy subjects [44].

After cell exposure, RSV is accumulated in lipid rafts, which is the first step for endosome formation
and apoptosis triggering [37,45]. The following signaling molecules, which are transcription factors
involved in the cell cancer promotion or prevention, have been reported to be sensitive to resveratrol:
PPAR, PGC1α, NFkB, NRF1,2, and p53 [46]. The nucleus cell cycle components, phosphatases,
and cyclins are targets of RSV [47]. In addition, resveratrol triggers apoptosis signaling pathways [48].

RSV modulates pro-oncogenic or the expression of tumor-suppressor miRNAs. Indeed, previously,
we have shown that miRNAs, non-coding small RNAs, are factors of the resveratrol-mediated
tumor suppressor activity in the SW480 colon cancer cell line. More precisely, resveratrol treatment
decreases the levels of several oncogenic miRNAs targeting genes encoding tumor suppressors and
effectors of the TGFβ signaling pathway, while increasing the levels of miR-663 targeting TGFβ1
transcripts. While upregulating several components of the TGFβ signaling pathway, resveratrol
decreases the transcriptional activity of SMADs, the main effectors of the canonical TGFβ pathway [49].
In addition, miRNAs appear to be new signaling molecules of resveratrol in mediating anti-inflammatory
effects in THP-1 monocyte, where resveratrol upregulates miR-663, a miRNA potentially targeting
multiple genes implicated in the immune response. MiR-663 decreases endogenous AP-1 activity and
impairs its upregulation by LPS, at least in part, by directly targeting Jun B and Jun D transcripts.
The downregulation of AP-1 activity by resveratrol is miR-663 dependent, and the effects of resveratrol
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on both AP-1 activity and Jun B levels are dose-dependent. Moreover, resveratrol impairs the
upregulation of miR-155 by LPS in a miR-663-dependent manner [50]. In addition, miRNAs are
involved in resveratrol mediated C2C12 myoblast differentiation. Indeed, resveratrol initiates the early
steps of skeletal muscle undifferentiated cells C2C12 in a myoblast state into an ongoing differentiated
stage as myotube. Essential tissue specific transcription factors are modulated by resveratrol through
putative miRNAs (myf 5, myod1 by miR-20b and srf by miR-133) [38].

8. Seeking Innovative Formulations of Resveratrol

The poor aqueous solubility and the weak bioavailability of RSV are great drawbacks of this
natural and no toxic polyphenol which prevent its clinical trials. Numerous resveratrol derivatives
have been synthesized with the aim of modifing physico-chemical features and improving biological
activities of the parent polyphenol [51]. However, unfortunately, examination of the therapeutic potency
of the parent resveratrol molecule could not be achieved because of its solubility issues. However,
the resveratrol nanoformulation concept, developed for thirty years, has kept unmodified structurally
RSV and has provided promising results that have been the subject of several reviews [52–54]. RSV has
been loaded into liposomes [55], cyclodextrins [56], solid lipid nanoparticles [57], mesoporous silica
nanoparticles [58], or metallic nanoparticles [59]. The results from several studies are in agreement, i.e.,
satisfactory RSV-loadings by different types of nanoparticles, stabilization of the trans isomer thanks to
the protection of resveratrol against UV, improved bioavailability due to increased aqueous solubility
of resveratrol, and therefore antioxidant and antitumoral activities are enhanced due to the higher RSV
concentration close to the therapeutic targets [53]. However, problems of release and targeting of RSV
are dependent on its metabolism as free RSV [52]. Several in vitro studies have highlighted that the
size and shape of nanoparticles encapsulating RSV play an important role in biochemical mechanisms,
in addition to the RSV biological action. Because the size of solid lipid nanoparticles (SLN) is smaller
than 180 nm, RSV-loaded SLN can pass through keratinocyte membranes without causing fundamental
changes in cell morphology and metabolic activity. In contrast, a high concentration of RSV-loaded
SLN, and therefore free RSV, are released around the nuclei and polyphenol plays its cytostatic role [57].
Ultradeformable vesicles are also good candidates to promote drug permeation through the skin
because their highly deformable membrane allows them to penetrate through skin pores smaller
than vesicles [60]. Thereby, in an ex vivo study, it was shown that RSV and 5-fluorouracil-loaded
ultradeformable liposomes could penetrate and accumulate in the deep porcine skin layer; from the
skin deposit, both drugs were gradually released and acted as an antitumoral drug for 5-fluorouracil
and an antioxidant agent for RSV to promote apoptosis [61].

Targeting the improvement of a drug is one of the challenges in nanoformulation. In the case
of RSV, different strategies have been considered. For example, the presence of dequalinium (DQA),
a mitochondrion-tropic molecule, at the surface of PEG2000-DSPE, a lipid material used in stealth
liposomes, warrants the mitochondria targeting in cancer cells. The intracellular and mitochondria
uptakes of RSV-loaded DQA PEG2000-DSPE liposomes have been highlighted in both non-resistant
A549 lung cells and resistant A549/cDDP lung cells. Therefore, RSV delivered inside the mitochondria
has triggered cell apoptosis through the mitochondria pathway [55].

Transferrin (Tr) is a natural ligand of transferrin receptor overexpressed in glioblastoma,
a highly aggressive cancer with a poor prognosis. Its grafting on RSV-loaded liposomes affords
an effective targeting towards brain cancer cells [62]. Indeed, regarding free RSV or RSV-liposomes,
RSV-loaded-Tr-liposomes showed a higher antiproliferative activity on U-87 MG cells, a human
glioblastoma cell line. While liposome and transferrin play the role of carrier and cell target,
respectively, RSV is really responsible for the cytotoxicity and apoptosis processes. In addition, and in
a promising way, RSV-loaded-Tr-liposomes could inhibit U-87 MG tumor growth in nude mice more
effectively than free RSV or RSV-liposomes [62].

The incorporation of a cancer-targeting ligand directly into nanoparticle structures is another way
to promote drug release more selectively to cancer cells. Thereby, nanoparticles have been obtained
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by coupling human serum albumin (HSA), a non-toxic carrier of weakly soluble drugs and folic acid
(FA) a cancer-targeting ligand [63]. Antitumoral activities of RSV-loaded HSA-FA nanoparticles were
evaluated in in vitro assays of human liver cancer HepG2 cells and in in vivo experiments on H22
tumor-bearing mice. These studies have shown that the combination of HSA and RSV, on the one hand,
slowed down the release of the drug at the injection site, and on the other hand, significantly increased
the RSV accumulation in the tumor regarding RSV-loaded HSA nanoparticles without folic acid as a
targeting agent. In addition, bioavailability of RSV-loaded HSA-FA nanoparticles turned out to be six
times higher than the free polyphenol and no toxic effects of RSV-loaded HSA-FA nanoparticles were
detected on healthy rat organs. In contrast, the decrease in size of the tumor was not mentioned [63].

The therapeutic potential of RSV-nanoparticles has been highlighted by numerous studies
conducted on various cancer cell lines and tumors. At the core of nanoparticles, RSV keeps all of its
health benefits, which are released closer to the tumor thanks to the carrier. In addition, the presence
of targeting agents on the nanoparticle wall or inside the nanoparticle structure undeniably increases
antitumoral activities of RSV-loaded nanoparticles.

RSV is well-known for its non-toxic character. In contrast, toxicity studies addressing the
combination of RSV-nanoparticle are lacking and subsequently slow down preclinical and clinical
trials. In addition, it remains difficult to consider switching the syntheses of RSV-nanoparticles from a
laboratory-scale to a large-scale production because of the high cost of its implementation [64]. However,
the high number of possible combinations among the nature, size, and shape of the nanoparticles,
as well as the nature and incorporation methods of targeting agents leads to therapeutic considerations
of RSV-encapsulated nanoparticles.

9. Perspectives

Synergistic sensitization properties of RSV with various drugs have been highlighted. Resveratrol
plays the role of an adjuvant with pro-apoptotic drugs (CH11 and Trail) and with 5-fluorouracil (5-FU)
caspases 3. A cell death marker is activated in chemoresistant HT29 colon tumor cell line by CH11
and Trail after resveratrol sensitization [48]. Resveratrol sensitizes SW480 colorectal tumor cell line
to 5-FU [65]. Interestingly, metabolites of resveratrol also synergize with chemotherapeutic drugs to
induce cell death [19].

Interestingly, there are synergies between resveratrol and some other polyphenols found in wine,
such as quercetin and catechin [66–68]. These synergies between grape polyphenols could overcome
the poor bioavailability of resveratrol as confirmed by the high urinary level of resveratrol in humans.
The synergistic effect of resveratrol, with other wine polyphenols in the prevention of pathologies,
supports the efficacy despite the limited plasmatic level of single wine polyphenol.

In addition to grapes which are the major source of food from vine plant, the by-products of
grape vines (wood, leaves, roots) also contain high content of polyphenols, in particular, resveratrol
which can be used as a supplement in food [69]. For better retention of RSV, it is recommended that it
should be taken in an amphiphilic environment, for example, oil cooked sauces, and even some alcohol
(resveratrol from red wine, in moderation).

The main role played by resveratrol in the stimulation of natural defenses has been confirmed by
the appearance of resistance of different transgenic plant species resulting from the overexpression of
the stilbene synthase gene [70]. Currently, laboratory-made edible plants producing resveratrol already
exist. They are obtained by introducing the stilbene synthase gene, such as found in tomatoes [71],
apples [72], papayas [73], and other species (lettuce, cauliflower, yeasts, and bacteria). Combined
with the natural antifungal properties of resveratrol, one could envision a better preservation of
fruits and vegetables by spraying with a resveratrol-based preparation, subsequently delaying aging.
Unfortunately, due to the high cost of resveratrol from vines, Chinese resveratrol extracted from
Polygonum cuspidatum as well as its synthetic counterpart could become economically profitable.
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10. Conclusions

Resveratrol shows all of the antiproliferative and pro-apoptotic properties to be an antitumor
agent. However, these effects are mostly obtained in vitro or with small animals at concentrations
that are too high to be compatible with its low availability in vivo. Fortunately, this molecule is
not toxic and can be used as a food supplement at high concentrations that are compatible with a
significant plasmatic level. Moreover, the synergistic effect of other food polyphenols and the fact that
resveratrol plasmatic metabolites also exhibit antiproliferative activities is relevant for diet-dependent
cancer prevention [19]. These findings have been recently confirmed by Sankaranarayanan et al.,
who reported that 2,4,6-trihydroxybenzoic acid, a flavonoid metabolite, is itself an antiproliferative
agent [74]. Although the improvement of therapies remains an essential challenge, it is also very
important to concentrate on prevention, especially nutritional prevention.
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