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Abstract

Surface-attached microbial communities constitute a vast amount of life on our planet. They contribute to all major
biogeochemical cycles, provide essential services to our society and environment, and have important effects on human
health and disease. They typically consist of different interacting genotypes that arrange themselves non-randomly across
space (referred to hereafter as spatial self-organization). While spatial self-organization is important for the functioning,
ecology, and evolution of these communities, the underlying determinants of spatial self-organization remain unclear. Here,
we performed a combination of experiments, statistical modeling, and mathematical simulations with a synthetic cross-
feeding microbial community consisting of two isogenic strains. We found that two different patterns of spatial self-
organization emerged at the same length and time scales, thus demonstrating pattern diversification. This pattern
diversification was not caused by initial environmental heterogeneity or by genetic heterogeneity within populations. Instead,
it was caused by nongenetic heterogeneity within populations, and we provide evidence that the source of this nongenetic
heterogeneity is local differences in the initial spatial positionings of individuals. We further demonstrate that the different
patterns exhibit different community-level properties; namely, they have different expansion speeds. Together, our results
demonstrate that pattern diversification can emerge in the absence of initial environmental heterogeneity or genetic
heterogeneity within populations and can affect community-level properties, thus providing novel insights into the causes
and consequences of microbial spatial self-organization.

Introduction

Surface-attached microbial communities such as multi-
species biofilms and cell aggregates are omnipresent on our
planet. They contribute to every major biogeochemical
cycle, provide essential services to our society and envir-
onment, and have important effects on human health and
disease [1-4]. They are typically composed of different
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genotypes that interact with each other and arrange them-
selves non-randomly across space (referred to hereafter as
spatial self-organization [5-7]). Spatial self-organization
can result in the emergence of fascinating and intriguing
patterns [8-20] and can also be an important determinant
of community-level properties [7]. For example, spatial
self-organization can affect community-level productivity
[11, 21-23], enable otherwise impermissible metabolic
processes to occur [24-26], bestow resistance or resilience
to environmental perturbations [27-29] and invaders
[30, 31], and modulate evolutionary processes [18, 32-35].
Elucidating the underlying determinants of spatial self-
organization is therefore important for our basic under-
standing of the functioning, ecology, and evolution of
microbial communities and for modulating and controlling
community-level properties [36].

Given a set of genotypes and an initial environment that
is spatially homogeneous, we might expect a single pattern
of spatial self-organization to emerge at particular length
and time scales, where the pattern is determined by the
initial environmental conditions and the interactions that
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Fig. 1 Synthetic two-strain cross-feeding microbial community
used in this study. A The experimental system consists of two iso-
genic mutants of the bacterium Pseudomonas stutzeri. The producer
contains a single loss-of-function deletion in the nirS gene and can
reduce nitrate (NO3 ™) but not nitrite (NO, ). The consumer contains a
single loss-of-function deletion in the narG gene and can reduce nitrite
but not nitrate. The strains cross-feed nitrite when grown together with
an exogenous supply of nitrate as the growth-limiting substrate.
Definitions: Nar nitrate reductase, Nir nitrite reductase, Nor nitric
oxide reductase, Nos nitrous oxide reductase. Thick colored arrows
indicate the metabolic processes performed by each strain. B Four
weeks of expansion of the two-strain cross-feeding microbial

occur between different genotypes. This expectation, how-
ever, is not always realized. We analyzed patterns of spatial
self-organization that emerged as a synthetic two-strain
cross-feeding community expanded across an initial envir-
onment that was spatially homogeneous [18, 20, 37]
(Fig. 1). The two strains are genetically engineered isogenic
mutants that interact via cross-feeding when grown together
in an environment containing nitrate (NO3 ™) as the growth-
limiting resource, where one strain reduces nitrate to nitrite
(NO;") (referred to hereafter as the producer) while the
other strain reduces the released nitrite (referred to hereafter
as the consumer) [18, 38] (Fig. 1A and Supplementary
Table S1). Using this system, we found that two different
patterns of spatial self-organization emerged simultaneously
(white and green arrows; Fig. 1B, C) [18]. One pattern is
“producer first”, where the producer lies at the expansion
frontier and expands before the consumer (Fig. 1A, B, white
arrows) [18]. The consumer then forms fractal-like
branching patterns as it advances through the biomass
formed by the producer (Fig. 1A, B, white arrows) as
explored previously [18, 20]. A defining feature of this
pattern is that the orientation of the branching is primarily
towards the expansion frontier (white arrows; Fig. 1C). The
second pattern is “consumer first”, where the consumer lies
at the expansion frontier and the producer and consumer
expand at approximately the same time (green arrows;
Fig. 1C) [18]. A defining feature of this pattern is that the
orientation of the branching is in the opposite direction and
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community when supplied with nitrate as the growth-limiting sub-
strate. The producer expressed the cyan fluorescent protein-encoding
ecfp gene (blue) while the consumer expressed the green fluorescent
protein-encoding egfp gene (green). The inner circular region con-
taining well-mixed producer and consumer cells is the inoculation area
while the outer ring-like region containing spatially organized patterns
of producer and consumer cells is the expansion area. The initial
producer and consumer proportions were 0.5. White arrows indicate
representative “producer first” patterns and green arrows indicate
representative “‘consumer first” patterns. C Magnification of the
expansion area.

primarily toward the origin of expansion (green arrows;
Fig. 1C). Importantly, the two different patterns emerged at
the same length and time scales and from the very origin of
expansion (Fig. 1C) [18]. We provide multiple lines of
evidence that the “producer first” and “consumer first”
patterns emerge as a consequence of the genetically engi-
neered cross-feeding interaction in the Supplementary Text
and Supplementary Figs. S1, S2.

Why did two different patterns of spatial self-
organization emerge at the same length and time scales
when the initial environment was spatially homogeneous?
In other words, what caused the observed pattern diversi-
fication? One hypothesis is that there was genetic hetero-
geneity within populations. Genetic variants might have
been present that had different biological traits, and thus
were subject to different deterministic rules, and these
variants caused the observed pattern diversification. A
second hypothesis is that there was nongenetic hetero-
geneity within populations. Nongenetic variants might have
been present that again had different biological traits, and
thus were subject to different deterministic rules, and these
variants caused the observed pattern diversification. Non-
genetic heterogeneity could be caused by at least three
different processes. The first is neighborhood effects, which
can occur when individuals are not distributed uniformly
across a surface. For example, if individuals are distributed
randomly across a surface, there will be local differences in
the distances between neighboring individuals. This, in turn,
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could affect local environmental conditions and the
mechanical and biological interactions occurring between
cells, and consequently modulate local phenotypic proper-
ties [39]. The second is stochastic phenotypic heterogeneity
within populations, which occurs when different individuals
within a genetically homogeneous population express dif-
ferent phenotypic traits due to mechanisms such as sto-
chastic gene expression [40-44]. Stochastic phenotypic
variants might therefore be present that express different
biological traits. The third is demographic effects, such as
differences in cell age or history [45, 46]. Distinguishing
between neighborhood effects, stochastic phenotypic het-
erogeneity, and demographic effects can be exceedingly
difficult, as all three can create phenotypic variants within
populations.

The objective of this study was to investigate whether
genetic or nongenetic heterogeneity within populations
caused the observed diversification in patterns of spatial self-
organization (Fig. 1B, C). To accomplish this, we used the
same synthetic two-strain cross-feeding microbial commu-
nity that we have been investigating [18, 20, 38, 47—-49]
(Fig. 1). We first tested whether genetic heterogeneity
caused the observed pattern diversification. We next tested
whether nongenetic heterogeneity caused the observed pat-
tern diversification. More specifically, we tested whether
neighborhood effects alone could explain our experimental
observations. Finally, we tested whether the different pat-
terns have different community-level properties.

Materials and methods
Bacterial strains

We previously described in detail all of the strains and
growth conditions used in this study [18, 38, 47] (see Sup-
plementary Text). We further summarized the biological
traits of the strains in Fig. 1A and all of their genetic
modifications in Supplementary Table S1. Briefly, we pre-
viously constructed two isogenic strains of the bacterium
Pseudomonas stutzeri A1501. The producer contains a
single loss-of-function deletion in the nitrite (NO,")
reductase-encoding nirS gene and can reduce nitrate (NO3 ™)
but not nitrite [38] (Fig. 1A, Supplementary Table S1).
The consumer contains a single loss-of-function deletion in
the nitrate reductase-encoding narG gene and can reduce
nitrite but not nitrate [38] (Fig. 1A and Supplementary
Table S1). When the two strains are grown together with an
exogenous supply of nitrate as the growth-limiting sub-
strate, they cross-feed nitrite, where the producer produces
nitrite and the consumer reduces nitrite [38, 48]. In addition,
all of the strains contain a single loss-of-function deletion in
the comA gene [38] (Supplementary Table S1), which

prevents natural transformation [50] and minimizes the
probability that the two strains will recombine with each
other when grown together. Finally, each strain contains a
different isopropyl B-D-1-thiogalactopyranoside (IPGT)-
inducible fluorescent protein-encoding gene (ecfp encoding
for cyan fluorescent protein, egfp encoding for green
fluorescent protein, or echerry encoding for red fluorescent
protein [51]) [18, 48] (Supplementary Table S1), which
enables us to distinguish and quantify the different strains
when grown together. We reported all of the methods used
to construct the strains in detail elsewhere [18, 38, 47].

Range expansion experiments

We performed range expansion experiments using a pro-
tocol that we described previously [18, 20, 49], which is a
modified anaerobic version of a protocol described else-
where [9]. Briefly, we first grew the producer and consumer
separately in aerobic liquid lysogeny broth (LB) medium
overnight. We next diluted the liquid cultures such that the
producer and consumer had equivalent optical densities at
600 nm (ODgq). Both strains are derived from the same
ancestor and have the same optical properties at this
wavelength; equivalent optical densities therefore approx-
imate to equivalent cell numbers. We then mixed the pro-
ducer and consumer together at defined initial proportions,
where each strain contains a different fluorescent protein-
encoding gene (i.e., the producer containing the ecfp gene
mixed with the consumer containing the egfp gene or vice
versa). Finally, we transferred the mixtures into a glove box
(Coy Laboratory Products, Grass Lake, MI) filled with an
anaerobic nitrogen (N,):hydrogen (H,) (97%:3%) atmo-
sphere, deposited a single 2 pl aliquot from each mixture
onto the middle of a separate anaerobic LB agar plate
amended with 100 uM IPTG and 1 mM nitrate (NO3 ) as
the growth-limiting substrate, and incubated the anaerobic
LB agar plates for 4 weeks at room temperature. We
reported a complete description of the methods to prepare
anaerobic LB agar plates elsewhere [18]. In this study, we
set the pH of the LB agar plates to 7.5. At this pH, the cross-
fed intermediate nitrite (NO, ) has no quantifiable growth-
inhibiting effects [38], and the interaction between the
producer and consumer is therefore approximately com-
mensal (i.e., the consumer depends on the producer to
provide its growth supporting substrate nitrite while the
producer does not depend on the consumer). After 4 weeks
of incubation, we removed the LB agar plates from the
glove box and exposed them to ambient air for 1 h to induce
maturation of the fluorescent proteins [52]. We then imaged
the resulting colonies using a Leica TCS SP5 II confocal
microscope (Leica Microsystems, Wetzlar, Germany),
analyzed the images in ImageJ (https://imagej.net), and
delineated and quantified the number of “producer first” and
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“consumer first” patterns as described in detail elsewhere
[18, 20]. We measured colony radii using Fiji plugins
(https://fiji.sc). Briefly, we selected the expansion edge
using the “wand” tool, fit an ellipse to the expansion edge
using the “fit ellipse” tool, and used the x-axis (ellipse
length) and y-axis (ellipse width) measurements of the fitted
ellipse to calculate the radius, where the radius = (x 4 y)/4.

Test for heritability

We tested whether the “consumer first” pattern of spatial
self-organization is heritable. To achieve this, we obtained a
set of isolates purified from prior ‘consumer first’ patterns.
We first used a Wild M5SA stereo microscope (Heerbrugg,
Switzerland) to identify a set of spatially delineated ‘con-
sumer first’ patterns and used a separate sterile toothpick to
remove cells from each of these patterns. We next streaked
the sterile toothpicks onto separate LB agar plates supple-
mented with 100 uM IPTG and incubated the plates for 24 h
at 30 °C. We then placed the LB agar plates under a con-
focal microscope (Leica Microsystems, Wetzlar, Germany)
and used the expression of the different fluorescent proteins
to identify individual colonies that consisted of only the
producer or consumer (i.e., we avoided individual colonies
that expressed both fluorescent proteins, which indicates
that those colonies were not derived from single cells). We
next streaked the identified colonies a second time onto new
LB agar plates to obtain a set of isolates purified from prior
“consumer first” patterns. Finally, we randomly selected a
pair of isolates of the producer and consumer from the same
“consumer first” pattern, mixed them together at an initial
producer proportion of 0.5 (i.e., an initial consumer pro-
portion of 0.5) and performed ten new range expansion
experiments as described above. If the “consumer first”
pattern were heritable, we expected the number of “con-
sumer first” patterns to increase during the second range
expansion experiment when using the pair of isolates pur-
ified from the prior ‘consumer first’ pattern.

Individual-based model simulations

We previously described the individual-based reaction-dif-
fusion model in detail elsewhere [20], and we provide fur-
ther details on its setup for this study in the Supplementary
Text. The original model and its adaptions to microbial
range expansion are described in detail elsewhere [17, 53].
Briefly, individual cells are modeled as spheres on a nutrient
grid. The cells grow in size and divide after reaching a
threshold size. After division, the cells rearrange themselves
in space using a shoving algorithm. Growth of the producer
and consumer are modeled using Monod-type formulations
(Supplementary Text). The consumption of nitrate (NO3™)
and nitrite (NO, ") are related to growth of the producer and
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consumer, respectively, using yield coefficients (Supple-
mentary Text). The production of nitrite is equivalent to the
consumption of nitrate by the producer as per stoichiometry.
To simulate our experimental findings, we modified the
initial producer proportion while maintaining a fixed total
initial number of cells. Note that due to computational
constraints, the total number of simulated cells is much
lower than in the experiments. We report the parameter
values in Supplementary Table S2.

Statistics and data analysis

We used the two-sided ¢ test to test whether the numbers of
“consumer first” patterns that emerged per range expansion
differ from null hypotheses. We used the F-test to test
whether the expansion speeds differ between treatments.
We fit linear and Poisson regression models to the data and
calculated summary statistics in the R environment using
core functions [54].

Results

The “consumer first” pattern of spatial self-
organization is the minority pattern

We first determined which of the two patterns of spatial
self-organization (i.e., the “producer first” or “consumer
first” pattern (Fig. 1B, C)) is the minority pattern. We rea-
soned that the minority pattern is the one likely to be caused
by genetic or nongenetic variants. When we performed
range expansion experiments using equivalent initial cell
densities of the producer and consumer (i.e., initial producer
and consumer proportions of 0.5), the “consumer first”
pattern was clearly the minority pattern (Fig. 1B). Among
nine independent replicates, we observed mean numbers of
64 “producer first” patterns (SD =9, n=9) and 20 “con-
sumer first” patterns per range expansion (SD =4, n=29),
and the mean number of “producer first” patterns was sig-
nificantly greater than the mean number of “consumer first*
patters (two-sample two-sided ¢ test; P =1 x 1076, n=29).
Overall, “consumer first” patterns accounted for 24% (SD
=4%, n=9) of the total number of patterns per range
expansion. We therefore conclude that the “consumer first”
pattern is indeed the minority pattern, and thus the pattern
likely to be caused by genetic or phenotypic variants.

The number of “consumer first” patterns depends
on initial cell densities

If the “consumer first” pattern were caused by genetic
variants, then the number of “consumer first” patterns that
emerge per range expansion should depend on the initial
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Fig. 2 Effect of the initial producer proportion on the number of
“consumer first” patterns that emerge per range expansion after
4 weeks. The producer expressed the cyan fluorescent protein-
encoding ecfp gene (blue) while the consumer expressed the green

cell densities of the producer or consumer. For example, if a
genetic variant of the consumer causes the emergence of the
“consumer first” pattern, then increasing the initial cell
density of the consumer should increase the number of the
causative variants of the consumer, and thus promote the
emergence of more “consumer first” patterns.

To test this, we varied the initial producer proportion
while holding the total initial cell density of the producer
and consumer constant, thus allowing us to avoid potential
confounding effects that may result from modifying the
total initial cell density. We then quantified the mean
number of “consumer first” patterns that emerged per range
expansion as a function of the initial producer proportion.
When we tested an initial producer proportion of 0.5 (i.e.,
an initial consumer proportion of 0.5), we observed the
characteristic emergence of the two different patterns, where
the “consumer first” pattern was the minority pattern
(Fig. 2B). When we tested an initial producer proportion of
0.98 (i.e., an initial consumer proportion of 0.02), the
“consumer first” pattern completely disappeared while the
“producer first” pattern occupied the entire expansion area
(Fig. 2A). In contrast, when we tested an initial producer
proportion of 0.001 (i.e., an initial consumer proportion of
0.999), the “producer first” pattern completely disappeared
while the “consumer first” pattern occupied the entire
expansion area (Fig. 2C). We then repeated the experiment
across a range of initial producer proportions and observed
a decreasing monotonic relationship between the mean
number of “consumer first” patterns that emerged per range
expansion and the initial producer proportion (Fig. 3).

Initial producer proportion, 0.5
Initial consumer proportion, 0.5

C

1000 pm 1000 pm

Initial producer proportion, 0.001
Initial consumer proportion, 0.999

fluorescent protein-encoding egfp gene (green). Initial producer pro-
portions include (A) 0.98, (B) 0.5, and (C) 0.001. The total initial cell
densities of producer and consumer were identical across all of the
tested initial producer proportions.

50 -

Number of ‘consumer first’ expansion
patterns per range expansion

0 0.25 0.5 0.75 1
Initial producer proportion

Fig. 3 Effect of the initial producer proportion on the number of
“consumer first” patterns that emerge per range expansion after
4 weeks. Each data point is the number of “consumer first” patterns
that emerged for an independent range expansion. The black line is the
fit of a Poisson regression model to the data. The gray area is the 95%
confidence interval of Poisson distributions with A = predicted value of
the Poisson regression fit. The green line is the expected relationship
between the number of “consumer first” patterns and the initial pro-
ducer proportion if the “consumer first” pattern were caused by genetic
variants of the consumer. The blue line is the expected relationship
between the number of “consumer first” patterns and the initial pro-
ducer proportion if the “consumer first” pattern were caused by genetic
variants of the producer. The total initial cell densities of producer and
consumer were identical across all of the tested initial proportions.
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We could model the decreasing relationship with a Poisson
regression using the natural logarithm as the link function
(intercept = 3.76, slope = —4.15, P for both parameters =
2% 107'%, n =9) (black line; Fig. 3). Thus, the number of
“consumer first” patterns that emerge per range expansion
does indeed depend on the initial cell densities of the pro-
ducer and consumer.

Genetic variants as a cause of the observed pattern
diversification

While we found that the number of “consumer first” pat-
terns that emerge per range expansion depends on the initial
cell densities of the producer and consumer (Fig. 3), the log-
linear form of the decreasing relationship is inconsistent
with the “consumer first” pattern being caused by genetic
variants. Consider initial producer proportions of 0.02. 0.05,
or 0.1 (i.e., initial consumer proportions of 0.98, 0.95, or
0.9). At these initial producer proportions, the initial cell
density of the consumer is approximately twofold greater
(1.96-, 1.90-, and 1.8-fold, respectively) than that for an
initial producer proportion of 0.5 (i.e., an initial consumer
proportion of 0.5). If genetic variants of the consumer cause
the emergence of the “consumer first” pattern, we would
therefore expect approximately twofold more ‘“consumer
first” patterns to emerge per range expansion. More gen-
erally, we would expect the number of “consumer first”
patterns that emerge per range expansion to decrease line-
arly as the initial producer proportion increases (i.e., as the
initial consumer proportion decreases) (Fig. 3, green line)
(see the Supplementary Text for the formulation of this
expectation). We did not observe either of these expecta-
tions. First, at initial producer proportions of 0.02, 0.05, or
0.1 (i.e., initial consumer proportions of 0.98, 0.95, or 0.9),
the number of “consumer first” patterns was not approxi-
mately twofold greater than at an initial producer proportion
of 0.5 (i.e., an initial consumer proportion of 0.5). Instead, it
was three to fivefold greater (Fig. 3) (one-sample two-sided
t test; P=6x 1075, n=3). Second, we experimentally
observed a decreasing log-linear relationship (black line;
Fig. 3) rather than the expected decreasing linear relation-
ship (green line; Fig. 3) between the number of “consumer
first” patterns that emerged per range expansion and the
initial producer proportion. Thus, we conclude that genetic
variants of the consumer are unlikely to cause the emer-
gence of the two patterns of spatial self-organization.

Our analysis above assumes that the “consumer first”
pattern is caused by genetic variants of the consumer.
However, it is plausible that the “consumer first” pattern is
instead caused by genetic variants of the producer. The form
of the relationship between the number of “consumer first”
patterns that emerged per range expansion and the initial

SPRINGER NATURE

cell densities of the producer and consumer, however, is
again inconsistent with this hypothesis (Fig. 3). If genetic
variants of the producer cause the emergence of the
“consumer first” pattern, then we would expect the number
of “consumer first” patterns that emerge per range expan-
sion to increase as the initial producer proportion increases
(blue line; Fig. 3). Stated alternatively, increasing the initial
producer proportion will increase the abundance of the
causative variants of the producer, and thus increase the
number of “consumer first” patterns that emerge. However,
we observed the opposite outcome, where the number of
“consumer first” patterns that emerged per range expansion
decreased as the initial producer proportion increased (black
line; Fig. 3). Thus, we conclude that genetic variants of the
producer are also unlikely to cause the emergence of the
two different patterns of spatial self-organization.

While the above analyses provide circumstantial evi-
dence that genetic variants do not cause the simultaneous
emergence of the two different patterns of spatial self-
organization, we sought to provide more conclusive evi-
dence of this by testing whether the “consumer first” pattern
is heritable. To achieve this, we obtained a collection of
isolates purified from prior “consumer first” patterns. We
then mixed the isolates together (one producer with one
consumer; initial producer and consumer proportions of 0.5)
and repeated the range expansion experiment. Finally, we
counted the numbers of “consumer first” patterns that
emerged during the second range expansion and compared
the numbers to those for pairs of the ancestral strains
(producer and consumer). If the emergence of the “con-
sumer first” pattern were heritable, we would expect more
“consumer first” patterns when using pairs of isolates pur-
ified from prior “consumer first” patterns.

We found that pairs of isolates (producer and consumer)
purified from prior “consumer first” patterns do not behave
differently when compared to pairs of the ancestral strains
(producer and consumer). Among ten independent range
expansions for a pair of isolates (producer and consumer)
purified from a prior “consumer first” pattern, we found that
the “consumer first” pattern completely covered the
expansion area for one of the ten replicates (Supplementary
Fig. S3a). However, among ten independent range expan-
sions for the pair of ancestral strains (producer and con-
sumer), we found that the “consumer first” pattern also
completely covered the expansion area for one of the ten
replicates (Supplementary Fig. S3b). Overall, among the
remaining nine independent range expansions, we did not
detect more “consumer first” patterns per range expansion
for the pair of isolates (producer and consumer) purified
from a prior “consumer first” pattern than for the pair of
ancestral strains (producer and consumer) (two-sample two-
sided ¢ test; P =0.27, n =9). Moreover, we sequenced the
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genomes of four producer isolates and four consumer iso-
lates purified from prior “consumer first” patterns and found
only one putative genetic difference in a single consumer
isolate when compared to their respective ancestors (Sup-
plementary Text and Supplementary Table S3). Thus, the
“consumer first” pattern is not heritable, and its emergence
is therefore not caused by genetic variants.

Neighborhood effects as a cause for the observed
pattern diversification

If the simultaneous emergence of the two different patterns
of spatial self-organization is not caused by genetic variants,
what then could be the cause? We argue that one plausible
cause is neighborhood effects that emerge due to local
differences in the initial spatial positionings of otherwise
identical individuals. Consider random initial distributions
of producer and consumer cells across a surface (initial
producer and consumer proportions of 0.5; Fig. 4B). At
some spatial locations, producer cells may initially lie suf-
ficiently close to the expansion frontier such that the con-
sumer cells do not physically impede their expansion (white
arrow; Fig. 4B). The producer cells would then expand first
while the consumer cells would expand afterwards, giving
rise to the “producer first” pattern (white arrow; Fig. 4B).
However, at other spatial locations, producer cells may
initially lie behind a cluster of consumer cells such that the
consumer cells physically impede the expansion of the
producer cells (green arrow; Fig. 4B). Indeed, we observed
this experimentally at an intermediate timepoint of expan-
sion (Supplementary Fig. S4). These clusters of consumer
cells can occur purely as a consequence of the random
initial spatial positionings of those cells, a process known as
Poisson clumping [55]. The producer cells would then
shove the consumer cells forward as they expand, giving
rise to the “consumer first” pattern (green arrow; Fig. 4B).
This hypothesis assumes that cell shoving is the dominant
form of cell movement in the densely packed expanding
microbial colonies produced by our synthetic microbial
community, which is an assumption supported by numerous
experimental and theoretical investigations [17, 53, 56-60].

Importantly, this hypothesis is qualitatively consistent
with our experimentally observed relationship between the
number of “consumer first” patterns that emerge per range
expansion and the initial proportions of the producer and
consumer (Fig. 3). If producer cells initially far outnumber
consumer cells, then the “consumer first” pattern should
become less numerous (Fig. 4A). This is because there are
fewer consumer cells present to create the necessary cell
clusters that physically impede the expansion of the pro-
ducer cells, and the producer cells can therefore expand
immediately giving rise to the “producer first” pattern

A

t=early t=intermediate

t=early t=intermediate

t=intermediate

t=early

Fig. 4 Conceptual model for how local differences in the initial
spatial positionings of individual cells could promote diversifica-
tion in patterns of spatial self-organization. The producer is blue
while the consumer is green. The initial producer proportion is (A)
approximating to 1, (B) 0.5, or (C) approximating to 0. White arrows
indicate “producer first” patterns and green arrows indicate “‘consumer
first” patterns. The horizontal panels from left to right depict pattern
formation over time.

(Fig. 4A). In contrast, if the consumer cells initially far
outnumber producer cells, then the “consumer first” pattern
should become more numerous (Fig. 4C). This is because
there are more consumer cells present to create the neces-
sary cell clusters that physically impede the expansion of
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the producer cells, and the producer cells must therefore
shove the consumer cells forward giving rise to the “con-
sumer first” pattern (Fig. 4C).

This hypothesis is also consistent with quantitative features
of our experimentally observed relationship between the
number of “consumer first” patterns that emerge per range
expansion and the initial proportions of the producer and
consumer (Fig. 3). The initial spatial distributions of producer
and consumer cells can be thought of as realizations of a
Poisson point process. Such a process by chance produces
clusters of consumer cells whose occurrence is described by a
Poisson distribution with mean and variance A. The mean
number of consumer clusters and variance depend on the
initial proportion of the consumer in a log-linear manner. As
the initial proportion of the consumer increases, the prob-
ability for a consumer cluster to occur also increases. This, in
turn, increases the probability that a “consumer first” pattern
will form and increases the variance in the expected number
of “consumer first” patterns. We found that this Poisson
process accurately captures key features of our experimental
data. First, the relationship between the number of “consumer
first” patterns and the initial consumer proportion is modeled
very well by a Poisson regression (Fig. 3). Second, the var-
iance in the number of “consumer first” patterns increases as
the experimentally observed number of “consumer first”
patterns increases (Fig. 3). Third, the 95% confidence inter-
vals of the Poisson distributions with A equal to the predicted
value of the Poisson regression matches the spread of the
experimentally observed number of “‘consumer first” patterns
(Fig. 3). In summary, the log-linear shape and the increasing
variance of the data are thus consistent with our hypothesis
that Poisson clumping due to the random initial spatial posi-
tionings of individuals causes the ‘consumer first’ pattern and
promotes the observed diversification in patterns of spatial
self-organization.

To provide further evidence that neighborhood effects due
to local differences in the initial spatial positionings of indi-
viduals can promote diversification in patterns of spatial self-
organization, we performed mathematical simulations with an
individual-based model that accounts for cell shoving during
range expansion. The original model and its adaptions to
range expansion are described in detail elsewhere [17, 53].
We further adapted the model to simulate the emergence of
spatial self-organization during expansion of our own syn-
thetic microbial community [20]. In this study, we applied the
model for two purposes. First, we asked whether the model
could simulate the simultaneous emergence of the two dif-
ferent patterns of spatial self-organization in the absence
of spatial heterogeneity in the initial abiotic environment.
Second, we varied the initial producer proportion and eval-
uated the consequences on the number of “consumer first”
patterns that emerge during range expansion. Note that our
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implementation of the model does not incorporate genetic or
stochastic phenotypic heterogeneity or demographic effects.
However, our implementation does account for heterogeneity
in the initial spatial positionings of individuals, as we ran-
domly distributed individuals of the producer and consumer
across the inoculation area prior to the onset of community
expansion.

Our simulations revealed three important outcomes.
First, when we tested an initial producer proportion of 0.98
(i.e., an initial consumer proportion of 0.02), we found rare
localized spatial areas where consumer cells were pushed
forward by producer cells (Fig. SA and Supplementary
Movie S1). These cells maintained a spatial position at the
expansion frontier for a prolonged period of time and
formed a characteristic “consumer first” pattern (Fig. 5A
and Supplementary Movie S1). Second, at this initial pro-
ducer proportion, both “producer first” and “consumer first”
patterns emerged simultaneously, from the very origin of
expansion, and at the same length scale, even though the
initial abiotic environment was spatially homogeneous and
all individuals were subject the same deterministic rules
(Fig. 5A and Supplementary Movie S1). Finally, when we
decreased the initial producer proportion to 0.02 (i.e., an
initial consumer proportion of 0.98), the number of con-
sumer cells that maintained a position at the expansion
frontier increased, thus indicating the formation of more
“consumer first” patterns (Fig. 5B and Supplementary
Movie S2). All three of these observations are consistent
with our experimental observations and, importantly, did
not require the consideration of heterogeneity in the initial
abiotic environment, genetic or stochastic phenotypic
heterogeneity within populations, or demographic effects.
Thus, neighborhood effects due to local differences in
the initial spatial positionings of individuals are sufficient
alone to promote pattern diversification and result in
the emergence of two different patterns of spatial self-
organization.

The different patterns of spatial self-organization
have different community properties

We finally asked whether the different patterns of spatial
self-organization have different community-level properties.
More specifically, we tested whether the different patterns
have different expansion speeds. Two features of our pre-
vious experimental observations already point towards this
being the case. First, the “consumer first” patterns (green
arrows; Fig. 1C) extend further in the radial direction of
expansion than do the “producer first” patterns (white
arrows; Fig. 1C). This is readily observed at the expansion
frontier, where the “consumer first” patterns tend to pro-
trude outwards in the radial direction (Fig. 1C). Second, the
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A

Initial producer proportion, 0.98
Initial consumer proportion, 0.02

Fig. 5 Individual-based modeling simulations of the effect of the
initial producer proportion on the number of “consumer first”
patterns that emerge per range expansion. The producer is blue
while the consumer is green. Initial producer proportions are (A) 0.98
(see Supplementary Movie S1) and (B) 0.02 (see Supplementary
Movie S2). The initial abiotic environment was spatially homogeneous
and genetic heterogeneity, stochastic phenotypic heterogeneity, and
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Fig. 6 Effect of the initial producer proportion on expansion
properties. A Effect on the initial expansion speed. B Effect on the
final expansion radius. Each data point is the expansion radius for an
independent range expansion. The lines are linear models and the gray

“consumer first” patterns increase in width in the direction
of expansion (green arrows; Fig. 1C). Both of these features
are consistent with faster expansion speeds [61, 62].

To further test this, we varied the initial producer proportion,
and thus varied the ratio of “consumer first” to “producer first”
patterns (Fig. 3), and quantified the expansion radii over time.
We found that the initial expansion speeds were significantly
faster for an initial producer proportion of 0.001 (i.e., an initial
consumer proportion of 0.999) than for 0.98 (ie., an initial
consumer proportion of 0.02) (F-test; P =1 x 10*5) (Fig. 6A).
Thus, smaller initial producer proportions that promote the
emergence of more ‘consumer first’ patterns result in faster

Initial producer proportion, 0.02
Initial consumer proportion, 0.98

demographic effects were not incorporated into the model. Producer
and consumer cells were distributed randomly around the center prior
to the onset of expansion and the total initial cell densities of producer
and consumer were identical across all of the simulations. The white
arrows indicate “producer first” patterns and the green arrow indicates
a “consumer first” pattern.
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areas are the 95% confidence intervals. The total initial cell densities of
producer and consumer were identical across all of the tested initial
producer proportions. The final expansion radii were measured after
4 weeks of incubation.

expansion speeds. Moreover, when we varied the initial pro-
ducer proportion between 0.02 and 0.98 (i.e., initial consumer
proportions between 0.98 and 0.02), we found a decreasing
relationship between the final expansion radius and the initial
producer proportion (linear model: final expansion radius ~
initial producer proportion; slope = —263, R =042, P=2x
1074, n=9) (Fig. 6B). Thus, smaller initial producer propor-
tions that promote the emergence of more “consumer first”
patterns result in a greater extent of community expansion over
the time-course of the experiment. Together, our data demon-
strate that the different patterns of spatial self-organization do
indeed have different expansion speeds.
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Discussion

Using a combination of experiments, statistical modeling,
and mathematical simulations, we demonstrated that mul-
tiple patterns of spatial self-organization can emerge at the
same time and length scales in the absence of genetic het-
erogeneity within populations. Instead, we found that the
simultaneous emergence of the different patterns can be
explained by local differences in the initial spatial posi-
tionings of individuals that are otherwise subject to the
same deterministic rules, and these local differences in
initial spatial positionings can promote diversification in
patterns of spatial self-organization. While we did not
consider stochastic phenotypic heterogeneity or demo-
graphic effects as sources of nongenetic heterogeneity, the
main point here is that local differences in the initial spatial
positionings of otherwise identical individuals is sufficient
alone to promote pattern diversification (Fig. 5). Thus, in
order to predict patterns of spatial self-organization infor-
mation, one may need information beyond the initial abiotic
environment and the biological traits of individuals. Infor-
mation about the initial spatial positionings of individuals
and the physical/mechanical forces acting on those indivi-
duals may also be required.

Our results expand on a general concern regarding spatial
pattern analysis in general. It is generally agreed upon that
one cannot use spatial pattern analysis alone to conclusively
infer interactions between different species or strains [63].
This is because different types of interactions and processes
can, in principle, result in the emergence of qualitatively
and even quantitatively similar patterns [63]. Our results
here add even more caution to this concern. We show that
even when a single interaction occurs between two species
or strains in an abiotic environment that is initially spatially
homogeneous, pattern diversification can occur and multi-
ple patterns of spatial self-organization can emerge simul-
taneously (Figs. 2B, 5A). Thus, in order to conclusively
infer interactions between species or strains, spatial pattern
analysis likely must be combined with experimental
manipulation and/or mathematical simulations that expli-
citly account for possible biological or abiotic hetero-
geneity, the physical/mechanical interactions acting on
individuals, and the initial spatial positionings of those
individuals.

Perhaps the most profound aspect of our study is that we
identified a potentially general mechanism that creates a
poorly understood type of biodiversity—spatial pattern
diversity. Differences in the local spatial positionings of
individuals can give rise to multiple patterns of spatial self-
organization, and these different patterns can have different
structural features and behavioral traits (Fig. 6). While
biodiversity has long been known to be a critical factor
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determining community properties, such as community
productivity [64—67], resilience and resistance to environ-
mental change [68-71], and susceptibility to invasions
[72-74], and has been formulated into the well-established
theory of biodiversity—ecosystem functioning (BEF theory)
[75-77], this body of research has largely focused on the
taxonomic, phylogenetic, and/or functional aspects of bio-
diversity. We propose here that spatial pattern diversity is
an important yet neglected aspect of biodiversity with
regards to BEF theory, and its explicit consideration into
BEF theory may generate novel insights and improve its
general predictions.

How generalizable are our results? We believe that our
main conclusions are potentially relevant to any surface-
attached microbial community where individuals physi-
cally interact with each other during their growth and
division. Such surface-attached microbial communities
include many that are critically important to human health
and our society, such as the communities that reside within
in the human gut or are applied in industrial biofilm
reactors. Importantly, at the initial inoculation stage of
these surfaces, individuals will not be distributed evenly
across space, and there will therefore be local differences
in the initial spatial positionings of those individuals.
Thus, the simultaneous emergence of multiple patterns
of spatial self-organization and the creation of pattern
diversity may be a pervasive, inevitable, and general
feature of surface-attached microbial communities, with
tangible consequences on predicting, managing, and con-
trolling their properties and behaviors.
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