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Purpose: To systematically investigate the characterization of tumor microenvironment
(TME) in clear cell renal cell carcinoma (ccRCC), we performed a comprehensive analysis
incorporating genomic alterations, cellular interactions, infiltrating immune cells, and
risk signature.

Patients and Methods: Multi-omics data including RNA-seq, single-nucleotide variant
(SNV) data, copy number variation (CNV) data, miRNA, and corresponding prognostic
data were obtained from The Cancer Genome Atlas (TCGA) and the International Cancer
Genome Consortium (ICGC) database. The CIBERSORT algorithm was utilized to identify
prognostic TME subclusters, and TMEscore was further quantified. Moreover, the
mutational landscape of TCGA-KIRC was explored. Lastly, TIDE resource was applied
to assess the significance of TMEscore in predicting immunotherapeutic benefits.

Results: We analyzed the TME infiltration patterns from 621 ccRCC patients and identified 5
specific TME subclusters associatedwith clinical outcomes. Then, we found that TMEcluster5
was significantly related to favorable prognosis and enriched memory B-cell infiltration.
Accordingly, we depicted the clustering landscape of TMEclusters, TMEscore levels, tumor
mutation burden (TMB), tumor grades, purity, and ploidy in all patients. Lastly, TIDE was used
to assess the efficiency of immune checkpoint blockers (ICBs) and found that the TMEscore
has superior predictive significance to TMB, making it an essential independent prognostic
biomarker and drug indicator for clinical use.

Conclusions: Our study depicted the clustering landscape of TMEclusters, TMEscore
levels, TMB, tumor grades, purity, and ploidy in total ccRCC patients. The TMEscore was
proved to have promising significance for predicting prognosis and ICB responses, in
accordance with the goal of developing rationally individualized therapeutic interventions.
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INTRODUCTION

Kidney cancer is a common urological malignancy worldwide, in
which clear cell renal cell carcinoma (ccRCC) accounts for nearly
85% of all diagnosed cases, along with increasingly annual
cancer-related deaths (1). Currently, surgical intervention,
incorporating laparoscopic partial nephrectomy (LPN) or
radical nephrectomy (RN), remains the treatment of choice (2,
3). Moreover, increasing studies have brought intensive insights
into the immune-related therapeutic targets, especially the
significant role of tumor microenvironment (TME) in cancer
progression and drug responses (4–6). The structure of TME
mainly consisted of parental tumor cells, tumor-associated
macrophages (TAMs), mesenchymal stem cells (MSCs),
dendritic cells (DCs), cytotoxic T cells, helper T cells, and
other inflammatory-related factors, which were robustly
demonstrated to be associated with prognosis across multiple
malignancies, including urothelial cancer, lung cancer, gastric
cancer, melanoma, and breast cancer (7–9). Meanwhile, TME
heterogeneity was a pivotal determinant for therapeutic
efficiency and exhibited different profiles during the process of
tumor progression (10, 11).

ccRCC was significantly correlated with immune infiltration
and precious intensive efforts were devoted to explore more
sensitive biomarkers to improve immunotherapy precision,
including immune-related signature, tumor mutation burden
(TMB), and other specific immune cells (12–14). To date, we
could utilize the advanced computational methods to infer the
abundance of immune cells and other cell types, including
ssGSEA, CIBERSORT, and ESTIMATE (15–17). Several
cohorts investigated the clinical efficiency of TME, and
po t en t i a l mechan i sms uncove r ing the TME and
immunotherapy response have been well experimentally
characterized across several malignancies (18). Job et al.
explored the heterogeneity of tumor stromal composition and
developed a TME-based classification of intrahepatic
cholangiocarcinoma to detect potentially targetable cancer
subtypes (19). Dai et al. identified extracellular KRASG12D that
acted as a hub mediator of cancer cell–macrophage
communication and also provided a novel KRAS-targeted
anticancer strategy based on TME (20). Furthermore, Wu et al.
further demonstrated that gemcitabine treatment resulted in
metabolic changes in residual tumor cells, leading to the
resistance to T-cell-mediated killing (21). However, the
comprehensive landscape of TME in ccRCC and the potential
relationships of TME with genomic mutation burden or other
related risk signatures have been limitedly elucidated. In
addition, Programmed death ligand 1 (PD-L1, CD274),
expressed on tumor and/or immune cells in the TME, interacts
with PD-1 on tumor-infiltrating lymphocytes, attenuating
effector T-cell responses and allowing tumors to escape
immune attack (22, 23). Previous studies have indicated that
aberrant expressions of TME-related genes could trigger TME
remodeling, thereby impacting immune checkpoint blocker
(ICB) efficacy. For instance, Siglec-15 suppresses antigen-
specific T-cell responses in vitro and in vivo. Targeting Siglec-
15 amplifies anti-tumor immunity in the TME, functioning as a
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potential target for normalization of cancer immunotherapy
(24). Based on the in vivo epigenetic CRISPR screen, Li et al.
identified Asf1a as a key modulator of lung adenocarcinoma
sensitivity to anti-PD-1 therapy. Asf1a deficiency synergized
with anti-PD-1 immunotherapy by promoting M1-like
macrophage polarization and T-cell activation (25). Therefore,
whether TME-related signature could predict ICB efficacy of
RCC is a promising and interesting project to deal with.

In the present research, we adopted two well-characterized
algorithms to infer the specific fractions of 22 immune cells
based on the renal cell carcinoma cohort gene expression profiles
(26, 27). The TME infiltration patterns of 683 tumors extracted
from patients were well estimated and we systematically
correlated the TME sub-clusters with genomic characteristics,
somatic mutation profiles, clinical or pathological features of
ccRCC, and drug responses. Accordingly, we further conducted a
methodology to quantify the TME infiltration pattern as the
TMEscore, which was assessed from multiple aspects to be a
robust prognostic marker or predictive factor for response to
immune-checkpoint inhibitors in ccRCC.
MATERIALS AND METHODS

Kidney Cancer Datasets and
Data Preprocessing
We carefully screened the kidney cancer databases and filtered
out the samples with incomplete genomic or clinical
information. In total, we obtained the KIRC RNA-seq (N =
530), single-nucleotide variant (SNV) data (N = 417), copy
number variation (CNV) data (N = 534), miRNA (N = 592),
and corresponding prognostic data (screened only with survival
information, N = 527) from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/projects/TCGA-KIRC).
Moreover, we downloaded the RNA-seq of 91 samples with
clinical data from the International Cancer Genome Consortium
(ICGC) database (https://dcc.icgc.org/projects/RECA-EU). In
addition, the Fragments Per Kilobase Million (FPKM) format
of RNA-seq data from TCGA-KIRC was transformed into TPM
(Transcripts Per Million), and the Reads Per Kilobase Million
(RPKM) format of RNA-seq data from ICGC was normalized
into TPM. Lastly, the patients with incomplete survival
information or expression data were excluded in this study.

Estimation of Infiltrating Immune Cells in
TME and Consensus Clustering
CIBERSORT (https://cibersort.stanford.edu/) is a developed
algorithm utilized for deconvolving the expression matrix of
immune cell subtypes based on the principle of linear support
vector regression. Therefore, we pre-processed the RNA-seq
(TPM normalized) data to infer the proportion of immune
cells in tumor samples using the CIBERSORT algorithm and
the LM22 gene signature. According to the proportion of
immune cells analyzed by the CIBERSORT tool, we only
selected the samples with p < 0.05 (N = 512 from total 618
samples). Based on the elbow (the square error of the WSSE
May 2022 | Volume 12 | Article 749119
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group, which was obtained by looking for the “elbow point”) and
gap statistics (the point where Wk falls the fastest, the value of k
corresponding to the maximum value of Gap), we used the
ConsensusClusterPlus package to find the TMEcluster with the
best optimized K categories. Moreover, we conducted a total of
1,000 times iterations to achieve the robustness and stability of
results and evaluate the potential relativity between survival
outcomes and the classifications.

According to the TMEcluster results, the clustering results
were mapped to RNA-seq data, and the limma package was
utilized to search differentially expressed genes (DEGs) with p <
1e-03 and |log2FC|>2 as the cutoff value. We thus chose the class-
specific differential genes and obtained the cluster signature
genes using the random forest method to remove the
redundant genes. Functional enrichment analysis was
performed to observe the significant pathways that these
signatures might be involved in. We referred to the algorithm
introduced by Sotiriou et al. (28) and Cox regression model to
calculate the TMEscore in ccRCC as the following: TMEscore = Ʃ
log2(X+1) - Ʃ log2(Y+1), where X is the expression value of the
positive gene set of Cox coefficient and Y is the expression value
of the gene set of Cox coefficient. Last, we sought the best
breakpoint of TMEscore using the maxstat package and then
divided the samples into TMEscore-high and TMEscore-low to
further analyze the prognosis between two main types.

The Mutational Landscape of TCGA-KIRC
According to the downloaded TCGA-KIRC single-nucleotide
polymorphism (SNP) data (N = 336 with TCGAbiolinks
package), CNV data (N = 534), methylation data (N = 483),
and survival data (N = 539 with cgdsr package), we intersected
them with the RNA-seq data and finally derived 210 samples.

A variety of mutation types existed in cancers, including C >
A, C > G, C > T, T > A, T > C, and T > G. Based on the six basic
mutational types, we then considered one base upstream and
downstream of the mutation site. Each base had four categories
of A, T, C, and G; thus, a total of 96 mutation types were obtained
with 4 * 6 * 4. In order to investigate different types of mutations,
researchers introduced the concept of “Mutational Signature”
and have already identified a total of 21 various Mutational
Signatures across 30 malignancies. The frequencies of the 96
mutational types in different cancers were different. Combined
analysis of the occurrence of 96 mutation types can be used as a
fixed mutation pattern. Several Mutational Signatures were
currently included in the COSMIC database, some of which
were known, such as signature4 and signature29, and were
related to exposure to the smoking environment. Accordingly,
we used the maftools package (https://bioconductor.org/
packages/re lease/bioc/html/maftools .html) and the
SomaticSignatures package (https://bioconductor.org/packages/
release/bioc/html/SomaticSignatures.html) to map the
mutational landscape and characteristics in ccRCC.

The GISTIC algorithm was used to detect common CNV
regions in all samples, including chromosome arm horizontal
CNV and the smallest common region across samples. The
GISTIC algorithm parameter determined the peak interval
with the 0.95 as the confidence level, and the others remained
Frontiers in Oncology | www.frontiersin.org 3
default parameters. We selected the corresponding GISTIC
module in GenePattern to conduct the analysis. Meanwhile, we
uti l ized the ABSOLUTE package (https : / /sof tware .
broadinstitute.org/cancer/cga/absolute_download) to conduct
the tumor purity and ploidy analysis based on the CNV
results. The ABSOLUTE algorithm was applied to calculate
scores from the pre-designed cancer karyotype and somatic
mutation frequency and then integrated them, from which the
highest score was the optimal model. Then, the tumor purity and
ploidy were accordingly inferred.

Integrative Analysis in TME of ccRCC
Firstly, we identified the differential transcriptome of miRNA or
mRNA across several clusters and conducted functional enrichment
analysis to uncover the specific biological processes in different TME
subgroups. Furthermore, we conducted prognostic analysis of
differential genes in the TME-high- and TME-low groups. We
aimed to depict the molecular and clinical characteristics across
TME subgroups from comprehensive omics data. Finally, the TIDE
tool (http://tide.dfci.harvard.edu/) fromHarvardUniversitywasused
to assess the clinical efficiency of immune checkpoint inhibition
therapy, where higher TIDE predictive scores correlated with poor
therapeutic effect andworse prognosis. Thewhole process of analysis
was illustrated in Figure 1.
RESULTS

Landscape of Infiltrating Immune Cells in
TME and Clustering Analysis
According to the integrated RNA-seq data (N = 618), we utilized
the CIBERSORT package within 1,000 interactions to obtain the
differential fractions of various immune cells across 512 samples,
including CD4 cell, CD8 cell, B cell, and monocytes (Figure 2A).
The clinical characteristics of all 618 ccRCC patients included in
this study were shown in Table 1. We further depicted the
potential associations among immune cells and their respective
prognostic significance. We found that the Tregs cells and T
follicular helper cells correlated negatively with survival
outcomes, while Mast resting cells and T gamma delta cells
were associated positively with prognosis in Cox regression
models (p < 0.0001, Figure 2B; Table S1). Moreover, we
combined with ConsensusClusterPlus package and iterated
1,000 times (K = 1:10) to stabilize the classification categories,
obtaining the optimized classification of the samples (Figure S1).
We observed that the TMEcluster classifications were
significantly associated with survival outcomes when k = 5,
among which the TMEcluster4 (N = 35) had the worst
prognosis and TMEcluster5 (N = 105) had the best prognosis
(Figure 2C). We further compared the immune cell proportions
across different TMEclusters and found the significant survival
differences across these 5 clusters (Figures 2D, 3; Figure S2).

Identification of Significant Prognostic
Signature Associated With TME
We set the cutoff value with p < 1e-3 and |logFC| > 2 to screen the
DEGs and obtained a total of 13,571 genes across different
May 2022 | Volume 12 | Article 749119
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clusters (Figure 4A; Table S2). Functional analysis indicated that
these genes were mainly involved in humoral immune response,
immunoglobulin-mediated immune response, andB-cell-mediated
immunity (Figure 4B). Additionally, we utilized theCox regression
model to analyze the genes with survival outcomes and divided the
samples into two groups, namely, TME-high andTME-low groups.
Kaplan–Meier analysis indicated that patients in the TME-low
group suffered from worse prognosis than those in the TME-high
group (Figure 4C). The Sankey diagram also revealed the potential
associations among TMEcluster, groups, and vital status
(Figure 4D; Table S3).

Profiles of Cancer Somatic Genome and
Relationships With TME
We performed the statistical analysis of the mutation data in 210
tumor samples, including mutation annotations, proportions of
base change, and the top 10 drivers (Figure S3). In KIRC, the
missense mutations occurred the most frequently, and the main
types were SNP, followed by DEL and INS (Figure S3). In these
samples, the top 10 mutated drivers included VHL, TTN, and
PBRM1 (Figure S3). We further divided the patients into TME-
Frontiers in Oncology | www.frontiersin.org 4
high and TME-low groups, and the differential mutated profiles are
illustrated in Figure 4E. Accordingly, we observed that VHL
harbored the most mutated sites in KIRC distributed across
nearly half of the cases. Furthermore, the oncogenetic drivers of
UBBP4, SPEN, and BDP1 exhibited significantly differential
mutated frequencies between two groups, and we illustrated the
results in boxplots (Figure 5A). We then classified the mutations
into96 types and calculated the distributed frequencies in210KIRC
samples (Figure 5B;Table S4). The relationships betweenmutated
frequencies and specific signature were estimated based on the
COSMIC dataset. We performed the non-negative matrix
factorization incorporating the 210 samples as the rows and the
96 mutated types as the columns. We extracted the features and
compared themwith included signature in COSMIC. The mutated
features in the TME-high group were mainly associated with
signature5 and signature12, while those in the TME-low group
correlated with signature5, signature6, and signature24. Signature6
was found to be involved in DNA mismatch repair defect, and
signature 24 was associated with aflatoxin exposure (Figure 5C).

We also used the GISTIC software to analyze the CNV in two
groups and found that the amplification of 15p, 5q, and 5p and the
FIGURE 1 | Flowchart of analytical process of TME phenotypes and TMEscore in our study based on two independent ccRCC cohorts.
May 2022 | Volume 12 | Article 749119
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FIGURE 2 | Illustration of landscape of TME in ccRCC patients and characterization of TME subclusters. (A) The specific 22 immune fractions represented by
different colors in each sample were shown in barplot via CIBERSORT algorithm. (B) Cellular interaction of cell types in tumor micro environment. Favorable factors
for overall survival were indicated in pink, and hazard factors for overall survival were shown in dark green. The lines connecting TME cells represented their cellular
interactions, where the thickness of the lines indicated the strength of correlation calculated by Spearman correlation analysis. Positive correlation was indicated in
black and negative correlation in silver. (C) Clustering analysis based on ConsensusClusterPlus package was conducted and indicates the optimized categories were
5 for classifications of TME phenotypes. (D) Kaplan-Meier curves with log-rank test for overall survival (OS) of all cancer patients from seven two cohorts (TCGA,
ICGC) with the TME infiltration classes. The number of patients in TMEcluster 1, 2, 3, 4 and 5 phenotypes were n=148, n=123, n=101, n=35, and n=105,
respectively. Log-rank test showed an overall statistical result of P=0.011, where patients with TMEcluster 5 were with the most favorable outcomes.
Frontiers in Oncology | www.frontiersin.org May 2022 | Volume 12 | Article 7491195
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deletions of 9q, 15p, and 14qwere themost prominent in the TME-
high group. However, the amplification of 7q and 5q and the
deletions of 9q, 3p, and 14q were the most significant in the
TME-low group (Figure 6A). Moreover, we totally detected 102
amplifications and 79 copynumber deletions inTME-high samples
(MCRs, q-value < 1e-4) in Figure 6B. Among them, 5q11.2, 17q12,
and 4q34.1 were the most significantly amplified regions and
4p16.1, 3q29, and 1q21.3 were the most significantly deleted
regions. In TME-low samples, we totally detected 87
amplifications and 58 copy number deletions, among which
17q12, 20p13, and 5q11.2 were the most significantly amplified
regions and 4p16.1, 1q21.3, and 12p13.31 were the most
significantly deleted regions (Figure 6C). The tumor purity and
ploidy of the samples were estimated based on the ABSOLUTE
software.The rangeof tumorpuritywas0.28–1and theploidyof the
tumor cell genome was 1.78–9.06, indicating that the genome
disorders occurred commonly during tumorigenesis (Table S5).
Frontiers in Oncology | www.frontiersin.org 6
Furthermore,Wilcoxon test suggested that no significant difference
was observed betweenhigh and lowTMEscore groups inFigure S4.

Comprehensive Results and Significance
of TMEscore in Predicting
Immunotherapeutic Benefits
Differential analysis revealed a total of 45 differentially expressed
miRNAs and 163 mRNAs between TME-high and TME-low
groups (Tables S6, S7). Functional enrichment analysis
suggested that these differential genes were mainly involved in
B-cell-mediated immunity, humoral immune response, and
other cancer-related pathways (Figures S5, S6; Table S8). The
log-rank test revealed 19 survival-related miRNAs and 23
mRNAs, including hsa-mir-21, hsa-mir-223, hsa-mir-146b,
hsa-mir-139, SAA1, SLC27A2, PPP1R1A, and SAA2 (Figure 7;
Table S9). We further illustrated the comprehensive genomic
landscape integrating TMEcluster, TMEscores, mutation
features (purity, ploidy, and TMB), and clinical characteristics
(age, gender, and overall status) in Figure 8A and Table S10. The
TIDE dataset was utilized to estimate the clinical efficiency of
immune checkpoint blockade (ICBs) therapy between two
groups (Table S11). We accordingly found that the TIDE
scores in the low TMEscore group were calculated significantly
lower than that in the high TMEscore group (Wilcoxon test, p =
6.9e−06). The higher TIDE predictive scores in tumor correlated
with worse effect of ICBs and poor survival outcomes. In the
current analysis, we thus speculated that KIRC patients with
higher TMEscores might benefit from better ICB efficiency and
optimistic prognosis (Figure 8B). Additionally, we also
conducted the receiver operating characteristic (ROC) curves
to compare the differential power in predicting efficiency of ICBs
between traditional TMB and established TMEscores, in which
the TIDE scores were defined as the observation value. Overall,
the TMEscore was proved to be an effective indicator for tumor
prognosis and ICB efficiency based on Bootstrap test with p-
value = 0.0436 (Figure 8C).

DISCUSSION

In this study, we integrated the multi-omics data of ccRCC
cohorts (TCGA-KIRC, ICGC-ccRCC) to depict the genomic
features of TME and evaluate the prognostic significance of
TMEscore in clinical utility, especially guiding more valuable
immunotherapy strategies. Firstly, we used the CIBERSORT to
infer the fractions of immune-infiltrating cells in TME and
exhibit the relatively specific profiles of immune cells.
Subsequent consensus clustering analysis indicated that
patients in TMEcluster5 showed better prognosis, in which the
memory B cell accounted for the most abundant infiltrating
proportions. Accordingly, the differential genes among the 5
clusters indicated that the functional enrichment pathways were
humoral immune response and immunoglobulin-mediated
immune response, especially the B-cell-mediated immunity.
Meanwhile, we calculated the TMEscore as a robust prognostic
factor, in which patients with a lower TMEscore suffer from
worse survival outcomes. Mutational analysis revealed the
TABLE 1 | Clinical characteristics of all 618 ccRCC patients included in this
study.

Variables TCGA ICGC
(N = 537) (N = 91)

Age (mean ± SD) 60.59 ± 12.14 60.47 ± 9.97
Follow-up (years) 3.12 ± 2.23 4.14 ± 1.73
Status
Alive 367 (68.34) 61 (67.03)
Dead 170 (31.66) 30 (32.97)

Gender
Male 346 (64.43) 52 (57.14)
Female 191 (35.57) 39 (42.86)

AJCC-T
T1 275 (51.21) 54 (59.34)
T2 69 (12.85) 13 (14.28)
T3 182 (33.89) 22 (24.18)
T4 11 (2.05) 2 (2.20)

AJCC-N
N0 240 (44.69) 79 (86.81)
N1 17 (3.17) 2 (2.20)

Unknow 280 (52.14) 10 (10.99)
AJCC-M
M0 426 (79.33) 81 (89.01)
M1 79 (14.71) 9 (9.89)
Unknow 32 (5.96) 1 (1.10)

Pathological stage
I 269 (50.09) –

II 57 (10.61) –

III 125 (23.28) –

IV 83 (15.46) –

Unknow 3 (0.56) –

Grade
G1 14 (2.61) –

G2 230 (42.83) –

G3 207 (38.54) –

G4 78 (14.53) –

Unknow 8 (1.49) –

TMB levels
Low 109 (20.30) –

High 101 (18.81) –

Unknown 327 (60.89)
Data are shown as n (%).
TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consortium;
AJCC, American Joint Committee on Cancer.
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differential mutation burden between two TME groups,
especially the gene clusters of UBBP4, SPEN, BDP1, and
DNAH2, and we further uncovered the associations of the low
TMEscore group with signature6, signature5, and signature24
included in the COSMIC dataset (29).

Blockade drugs targeting the PD1/PDL1 signaling pathway
have brought novel insights into the treatment strategies and
exhibit relatively satisfactory efficiency across multiple tumors,
including breast cancer, colon cancer, bladder cancer, advanced
gastric cancer, and kidney cancer (30–32). However, the
powerful biomarkers are warranted for predicting the drug
response of immune checkpoint inhibitors. Previous
researchers found that PD-1 or PD-L1 expression levels, MSI
status, and mutational load were not ideal factors for predicting
the benefits of drugs with lower sensitivity (33–35). So far,
whether TMB correlates with improved survival outcomes or
promotion of immunotherapies remains controversial in ccRCC
and large cohorts are needed to validate its significance (36). As a
result, it is urgent to develop a predictive biomarker of
checkpoint immunotherapy for maximizing the therapeutic
benefit. Intensive research has revealed the crucial role of TME
in checkpoint inhibitor immunotherapy (37, 38). In our study,
we further integrated the comprehensive landscape of
interactions across tumor-infiltrating immune cells and
relationships with clinical characteristics of renal cancer.
Frontiers in Oncology | www.frontiersin.org 7
Our study suggested that the quantified TMEscore was a
prognostic factor for ccRCC and significantly correlated with
molecular sub-clusters. Dongqiang Zeng et al. have already
uncovered the strong positive associations of TMEscore with
mutation burden and predicted neo-antigen burden in more
than 1,000 gastric tumor patients (32, 39). So far, the predictive
biomarkers in clinical utility and strategies to assess clinical
response have mainly shown interest in T-cell compartment,
partially ignoring the contributions to anti-tumor immunity of
other immune subsets (40, 41). However, Petitprez et al.
confirmed the significance of immune subtypes in patients
with soft-tissue sarcoma and disclosed the potential ability of B
cells in forming tertiary lymphoid structures to guide new
insights into clinical treatments (42). Of note, Helmink et al.
further demonstrated and supported that the memory B cells
were enriched in the tumors of responders for ICB treatment,
implicating the foreground of novel biomarkers (43).
Furthermore, our results suggested that a higher TMEscore
was positively related to the subgroup of TMEcluster5, in
which memory B cells revealed higher infiltrating levels
compared with other immune cells. Meanwhile, patients with a
higher TMEscore were associated with better ICB therapeutic
efficiency, emphasizing that memory B-cell activation was the
core mechanism of sensitivity to checkpoint blockade. These
findings might facilitate the precise immunotherapy strategy and
FIGURE 3 | Unsupervised clustering of TME cells for patients in the two cohorts. We assessed the differential infiltrating levels of immune cells in various clusters,
where the memory B cells exhibited significantly enrichment in TME cluster5.
May 2022 | Volume 12 | Article 749119
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FIGURE 4 | Construction of TMEscore and integrative analysis in TME. (A, B) Venn diagram showed the totally 13571 intersected genes, in which functional
enrichment analysis indicates the genes might be involved in B cell mediated immunity, humoral immune response, lymphocyte medicated immunity and other
cancer-related immune crosstalk. (C, D) Kaplan-Meier analysis and mulberry map indicate the patients in low TMEscore group correlate with poor survival outcomes
(log-rank test, P < 0.001). (E) Mutated profiles of top variant genes correlated with TMEscore. Single nucleotide variants: dark green, InDel (insertion or deletion): red,
frameshift: blue, Multi_hit: brown. TMEscores, TCGA molecular subtypes, TMEscore, gender, and overall survival status are shown as specific annotations.
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the combined management of both activation of memory B cell
and traditional ICB. In addition, Netti et al. also found that PTX3
could modulate the immunoflogosis in TME and function as a
prognostic factor for patients with ccRCC (44). Analysis of
complement system activation on tumor tissues showed the
co-expression of PTX3 with C1q, C3aR, C5R1, and CD59. The
expression of PTX3 can affect the immunoflogosis in the ccRCC
microenvironment, by activating the classical pathway of CS
(C1q) and releasing pro-angiogenic factors (C3a and C5a). The
upregulation of CD59 also inhibits the complement-mediated
cellular lysis. Although this study uncovered the tight
associations between PTX3 and TME remodeling, the
predictive efficiency of PTX3 in ccRCC was not well elucidated
Frontiers in Oncology | www.frontiersin.org 9
and validated. Our established signature is a model constructed
by multiple genes and has strong robustness. Calculation and
application of our TMEscore would be useful for clinical
prediction and ICB treatment of ccRCC.

Apart from the associations with immune filtration analysis,
we further discussed the TMEscore with mutation profiles in
ccRCC. We completely illustrated the mutational landscape in
both groups and found the differential mutated frequencies of
drivers between two TMEscore levels, including UBBP4, SPEN,
and BDP1. In particular, Sharma et al. (45) also reported that the
deleterious mutation of SPEN p.S1078* emerges as a putative
potential therapeutic target in advanced-stage urothelial
carcinoma. Additionally, we first analyzed the relationships
A

C

B

FIGURE 5 | Characterization of mutated profiles and related signature between two TMEscore groups. (A) The oncogenetic drivers of UBBP4, SPEN and BDP1
exhibited significantly differential mutated frequencies between two groups and we illustrated the results in boxplot. (B) We accordingly classified the mutations into
96 types and calculated the distributed frequencies in 210 KIRC samples. (C) We extracted the features and compared them with included signature in COSMIC
dataset. The mutated features in TME-high group were mainly associated with signature5, signature12, while those in TME-low group correlated with signature5,
signature6, signature24. The signature6 was found to be involved in DNA mismatch repair defect, and signature 24 was associated with Aflatoxin exposure.
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between mutated distributions with a specific signature in the
COSMIC dataset in two TMEscore groups. The included
signature6 and signature24 were significantly associated with
defective DNA mismatch repair, chromosomal instability, and
exposure of aflatoxin, which might be one of the underlying
explanations for the patients with poor survival outcomes in the
low TMEscore group. Furthermore, we still detected the
associations of mutation features in high TMEscore with
Frontiers in Oncology | www.frontiersin.org 10
signature5 and signature12 matched with unknown etiology
annotations, and large cohorts with in-depth somatic mutated
sequencing are warranted. Of note, CNV data were utilized to
infer the tumor purity and ploidy and there was no significant
difference between two TMEscore groups. We thus speculated
that tumor purity might not function as a vital determinant for
prognosis in two TMEscore levels. Moreover, differential analysis
revealed the significant immune-related miRNAs (hsa-miR-29b-
A

B

C

FIGURE 6 | Assessment of copy number variation (CNV) burden in two TMEscore groups. (A) We also conducted the GISTIC software to analyse the copy number
variations in two groups and found that the amplification of 15p, 5q, 5p and deletions of 9q, 15p, 14q were the most prominent in TME-high group. However, the
amplification of 7q, 5q and the deletions of 9q, 3p, 14q were the most significant in the TME-low group. (B) Besides, we totally detected 102 amplifications TME-
high samples (MCRs, q-value<1e-4), among which 5q11.2, 17q12, and 4q34.1 were the most significantly amplified regions. In TME-low samples, we totally
detected 87 amplifications and found 17q12, 20p13, 5q11.2 were the most significantly amplified regions. (C) The 79 copy number deletions in TME-high samples
were detected, among which 4p16.1, 3q29, and 1q21.3 were the most significantly deleted regions. However, 1q21.3, 12p13.31 were the most significantly deleted
regions in TMEscore low group.
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FIGURE 7 | Kaplan-Meier analysis was conducted to assess the significantly risk signature expressed differentially (top miRNAs and mRNAs) in two TMEscore
groups. (A) hsa-mir-146b. (B) hsa-mir-21. (C) hsa-mir-139. (D) hsa-mir-223. (E) SAA2. (F) SAA1. (G) SLC27A2. (H) PPP1R1A.
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3p, hsa-miR-139-5p, and hsa-miR-142-5p), among which
Montero-Conde et al. supported the idea that the hsa-miR-139-
5p/HNRNPF axis served as a novel regulatory mechanism
associated with the modulation of major thyroid cancer signaling
pathways and tumor virulence (46, 47). Subsequent Kaplan–Meier
analysis further identified 19 TMEscore-related prognostic
miRNAs and 23 hub mRNAs (SAA1, SLC27A2, PPP1R1A,
SAA2, etc.). We last drew the heatmap to exhibit the top 23
TMEscore-related hazard signatures combined with integrative
analysis of TMB, purity, and subclusters between two groups,
providing significantly therapeutic targets for ccRCC.

However, there were still several limitations in our work.
Firstly, the fractions or prognostic value of TMEscore-related
immune cells or risk signature are not validated by flow
cytometry or other experimental studies. Apart from only two
Frontiers in Oncology | www.frontiersin.org 12
centers of TCGA or ICGC patients, other independent cohorts in
our hospitals with more ccRCC patients were warranted to
further support the clinical significance of TMEscore in
predicting prognosis. Furthermore, we just utilized the TIDE
dataset to estimate the ICB efficiency and we should enroll
eligible patients treated with ICB drugs to compare the
indicative value of TMEscore with TMB. As we observed that
not all patients with high TMEscore gained better benefit of
immunotherapy, more clinical factors should be incorporated to
integrative models for the improvement of predictive accuracy.

Overall, our study systematically revealed unique biological
insights into TMEscore in ccRCC, the major subtype of kidney
cancer, combining complementary genomic, transcriptome,
and mutation profiles with clinical characteristics, providing
an invaluable bioinformatic resource for subsequent research
A

B C

FIGURE 8 | Systematic exhibition of TMEscore with other variables and associations with ICB efficiency compared with TMB. (A) Illustration of comprehensive
genomic landscape integrating TMEcluster, TMEscores, mutation features (purity, ploidy, TMB) and clinical characteristics (age, gender, overall status). (B) In the
current analysis, we found that KIRC patients with higher TME-scores might benefit from better ICBs efficiency and optimistic prognosis. (C) Compared with
traditional indicator of TMB, TMEscore possess the more predictive sensitivity based on the ROC curve with 0.684.
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on TME in ccRCC tumorigenesis. For the first time, we
characterize in detail the TME subcluster, the establishment
of TMEscore, the potential associations of TMEscore with
mutation profiles, CNV burden, risk signature, and ICB
efficiency. The TMEscore, as we have quantified, was proved
to have promising significance for predicting prognosis and
ICB responses, in accordance with the goal of developing
rationally individualized therapeutic interventions.
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