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Abstract: Material property variation in non-homogeneous internally pressurized thick-walled
cylinders is investigated within the context of dynamic programming theory. The material is assumed
to be linear, elastic, isotropic, and functionally graded in the radial direction. Based on the plane stress
hypothesis, a state space formulation is given and the optimal control problem is stated and solved
by means of Pontryagin’s Principle for different objective functionals. Optimal Young’s modulus
distribution is found to be piecewise linear along the radial domain. A brief digression on the possible
existence of switching points is addressed. Finally, a numerical example is performed within a special
class of derived optimal solutions, showing promising results in terms of equivalent stress reduction
with respect to the most used variations in literature.
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1. Introduction

Functionally Graded (FG) materials are a kind of composite material whose physical and
mechanical properties vary spatially along specific directions over the entire domain. They are present
in many engineering applications such as, for example, space planes, nuclear fusion reactors, energy
conversion systems, and thermo generators [1]. Various problems of FG materials have attracted
considerable attention in recent years and their increasing use needs comprehensive mechanical
analyses. A significant amount of work has been devoted to understand the thermal and mechanical
behavior of FG axisymmetric bodies. In particular, the study of the stress and strain fields in FG
cylinders [2,3], spheres [4,5], pressure vessels [6,7], circular plates [8,9], and rotating disks [10–12] has
been widely investigated. In all the above-mentioned works, a generic property (e.g., Young’s modulus,
mass density, or a thermal expansion coefficient) is assumed to vary along the radial coordinate
according to some pre-defined functions. Among all possible variations, power-law distributions are
widely used [13]. A few works consider different property distribution laws. For instance, in [14], both
exponential and parabolic variations of the mechanical properties are considered. Moreover, in [15],
material properties are assumed to be exponential functions and exact solutions are obtained by the
use of hypergeometric functions.

The optimum response of material properties to an actual environment is the main requirement
in the design of FG materials; nevertheless, very few articles deal with the problem of optimal material
distribution because, often, the optimization process heavily relies on subsequent Finite Element
(FE) simulations. However, when the governing differential equations admit a closed form solution,
which is the case of the power-law distributions, a different approach can be followed (see [16,17],
for instance). In these cases, in fact, the decision variables in the optimization problem appear as
parameters in the expression of the solution of the elastic problem. Consequently, the optimization
process turns out to be equivalent to the minimization of a function, i.e., a static optimization problem.
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Despite the fact that, when mechanical properties vary according to a power-law distribution, an
analytic solution of the governing differential equations can be obtained, a more realistic (and, in some
sense, intrinsic) optimization problem should consider all possible classes of property variations.
Correspondingly, the solution of the optimization problem will be a function (to be chosen in a wider
set), not just a set of parameters to be used as tuning values for a prefixed class of functions. To the
extent of our knowledge, no previous works deal with the problem of finding optimal property
distributions in FG axisymmetric mechanical components. Herein, a property variation is referred
to as optimal if it maximizes or minimizes a (pre-defined) mechanical performance. For instance,
a designer may be interested in the search for mechanical or physical properties variation for a
vessel of minimum compliance, a cylinder of minimum hoop stress at a specific radius or a disk of
uniform strength or minimum mass, complying with other constraints which can be economic or
related to the manufacturing process. These problems can be formulated either in the context of
optimal control theory (i.e., in a dynamic programming setting) or by means of calculus of variations.
However, the former is more suitable when the optimization problem presents constraints on design
variables. In particular, necessary conditions for optimal solutions are derived applying Pontryagin’s
Principle [18,19] and solved either analytically or numerically, depending on the complexity of the
involved equations.

In this paper, for the sake of simplicity, we focus on the mechanical behavior of FG thick-walled
cylinders. However, the considered optimization problems can be applied to FG rotating disks,
shells of revolution, or other axisymmetric bodies. In the next section, the mechanical behavior
of FG axisymmetric cylinders are briefly recalled. In particular, the governing equations referring
to equilibrium, kinematic, and constitutive relations of linear plane elasticity theory are presented.
Section 3 is dedicated to the formulation of the optimization problem, taking into account, in particular,
the control input constraints and some possible cost functionals. In Section 4, a method to find a
solution is described, containing some further discussion on the results. A special class of optimal
solutions is thoroughly discussed in Section 5, highlighting optimal performances with respect to those
obtained by means of classical property variations found in literature within a numerical example.
Finally, conclusions are drawn in Section 6.

2. Governing Equations

Consider a uniformly pressurized cylinder of inner radius Ri and outer radius Ro and let pi be
the internal pressure (Figure 1a). The equilibrium equation of the infinitesimal element (Figure 1b) in
plane stress theory yields

(rσr)
′ − σθ = 0, (1)

where σr and σθ denote radial and hoop stresses, both functions of r, while the derivative with respect
to the radius is denoted with a “prime” symbol. The kinematic equations (or strain–displacement
relations), which put into relation radial and circumferential strains εr and εθ with the radial
displacement u, are

εr = u′, εθ =
u
r

. (2)

Finally, the plane stress state linear constitutive relations (or Hooke’s laws) which link the strains
with stresses are

εr =
σr − νσθ

E
, εθ =

σθ − νσr

E
, εy = − ν

E
(σr + σθ), (3)

where E is the Young’s modulus, which is a function of r, εy is the axial strain and ν is the Poisson
coefficient, assumed constant along the radius for simplicity.
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The radial strain in (2) can be written as

εr = (εθr)′ =
(σθ

E
r− ν

σr

E
r
)′

, (4)

which, together with (3), yields

(σθ − σr)(E + νE)− (σθ − νσr)E′r + Erσ′θ − νErσ′r = 0. (5)

From (1), the hoop stress σθ and its first derivative with respect to r are

σθ = σr + rσ′r (6)

and
σ′θ = 2σ′r + rσ′′r , (7)

respectively. Substituting (6) and (7) in (5) and rearranging the terms, one obtains the following
(dimensionless) second-order differential equation for the radial stress

r̂2σ̂′′r + r̂(3− r̂Ê ′)σ̂′r − r̂Ê ′ν̃σ̂r = 0, (8)

subject to
σ̂r(1) = −1, σ̂r(Ro/Ri) = 0 (9)

where r̂ = r/Ri, Ê = ln(E/Ei), σ̂r = σr/pi and ν̃ = 1− ν > 0. Equation (8) is commonly denoted as
the Beltrami–Michell differential equation. Once solved, the hoop stress is computed using (6) and
consequently the strains and the displacement from (3) and (2), respectively.

Figure 1. Schematic representation of the cylinder (a). Plane infinitesimal element and definition of
plane stresses (b).

3. Formulation of the Optimal Control Problem

In the context of systems theory, a control problem consists in determining the values of the
(input) control variables to move the state of the system from a given initial condition to a final one.
More precisely, denoting by x and u the state and the control variables, respectively, and referring to
the dynamics

dx
dt

(t) = f(x(t), v(t)) (10)
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the control problem characterized by initial conditions x0, final conditions xT , admissible state space
X and admissible control space V , consists in finding a control vector function v : [0, T] → V such
that, if x(0) = x0, then x(t) ∈ X for all t ∈ [0, T] and x(T) = xT . The optimal control problem
associated with a cost functional J(x, v) consists in finding, among all the solutions of the control
problem, the one which minimizes J. Hence, in order to formulate an optimization problem, for the
thick-walled cylinder, in the framework of dynamic programming, a state-space representation and a
cost (or goal) functional are needed [18,19]. Note that, since in the governing differential Equation (8)
derivatives are taken with respect to the (normalized) radial coordinate r̂, the independent variable
of the state-space representation is not time, as in Equation (10), but r̂. Therefore, instead of initial
and final conditions, a set of boundary conditions at the internal and external surfaces of the wall
are needed. Introducing the state variables x1 = σ̂r, x2 = dσ̂r/dr̂ and x3 = E/Ei, the second order
differential Equation (8) may be written as the first-order system

x′1 = x2

x′2 =
w
x3

(
x2 + ν̃

x1

r̂

)
− 3x2

r̂
,

x′3 = w,

(11)

where w is the control function, i.e., the derivative of Young’s modulus with respect to r̂. This choice is
justified since this latter appears explicitly in (8). Note that not all the boundary states are specified.
In particular, x1(1) and x1(Ro/Ri) can be deduced from (9), yielding

x1(1) = −1, x1(Ro/Ri) = 0 (12)

while x2(1) and x2(Ro/Ri) are unknown and can be used to define the cost function, as shown below.
Similarly, if the Young’s modulus at the inner radius is fixed, then

x3(1) = 1. (13)

3.1. Determination of the Cost Function

In dynamic programming theory and calculus of variations, cost functionals are mainly classified
as Lagrange, Mayer, and Bolza functionals [20]:

• A cost functional is of the Lagrange type if it consists in a distributed term associated with an
integral over whole the considered interval. For system (11), it is associated with an integral over
the interval [1, Ri/Ro]. For instance, the minimization of the objective functional

J1(w) =
∫ Ro/Ri

1
(r̂x2(r̂)− σ̄)2 dr̂ (14)

leads to minimizing the variance of the equivalent Tresca stress

σ̂T
eq = |σ̂θ − σ̂r| = |r̂x2|,

keeping it as close as possible to the constant value σ̄ > 0 and making the stress as uniform as
possible along the radius.

• A cost functional is of the Mayer type if it consists in a function depending only on the final state
conditions. Correspondingly, for system (11), a cost functional of such a kind depends only on the
value of the state variables x1, x2, and x3 at Ro/Ri. For instance, minimizing the functional

J2(w) = x2(1) (15)
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leads to the minimization of the maximum equivalent stress for fixed a value of Ri, under the
hypothesis that the latter is strictly decreasing along the radius.

• Finally, a cost functional of the Bolza type is the sum of a Mayer type and a Lagrange one.
For instance, minimizing the functional

J3(w) =
ν̃x1(1) + x2(1)

Rix3(1)
+
∫ Ro/Ri

1

ν̃x1(r̂)− νr̂x2(r̂)
Rix3(r̂)

dr̂ . (16)

leads to the minimization of the normalized displacement at the outer radius u(Ro) with respect
to the internal pressure value, with respect to the inner radius and with respect to the Young’s
modulus at the inner boundary.

Given the boundary conditions (12) and (13), the solution of system (11) is unique for any choice
of the input w; hence, the cost functionals Ji (i = 1, 2, 3), although defined with respect to the state
variables, are, in turn, functions of w.

3.2. Input Constraints

According to [21], there are a few optimization studies in which the manufacturability cost is taken
into consideration. When considering not merely the theoretical possibility of designing FG materials
but the technological processes employed to obtain them, it is reasonable to make the hypothesis
that variations of a property, such as the Young’s modulus along the thickness of a cylinder, are
supposed to vary between two limit values. As a consequence, in the formulation of the optimal
control problem, it is reasonable to assume the derivative of Young’s modulus (with respect to the
radius) w be constrained in an admissible range of values. More precisely, we assume, for all values
of r, w ∈ [w−, w+], where w− and w+ can be deduced from fixed radial property variations or from
technological process data.

The optimal control problem can now be stated formally. In the formulation of the problem,
as well as in the computation of the solution, reference is made to the cost functional (14). However,
solutions associated with the costs (15) or (16) can be obtained in a similar way.

Problem 1. Given the dynamical system (11) and the boundary conditions (12) and (13), find the control
function w : [Ri, Ro]→ [w−, w+] such that the functional (14) is minimized.

To solve Problem 1 analytically, the standard procedure of optimal control theory is
used [18,19,22,23].

4. Computation of the Solution

The following theoretical analysis is based on Berkovitz’s framework [22]. Pontryagin’s maximum
principle applied to Problem 1 states that the optimal control function w, i.e., the one which minimizes
the cost functional J1(w) is, among all admissible functions, the one which minimizes, for any value of
r̂, the Hamiltonian functionH defined by

H(r̂, x, p, w) = (r̂x2 − σ̄)2 + p1x2 + p2

[
w
x3

(
x2 + ν̃

x1

r̂

)
− 3x2

r̂

]
+ p3w, (17)

where x = (x1 x2 x3) and p = (p1 p2 p3) is the vector of the so-called co-state variables, all functions
of r̂. Note that the Hamiltonian function exhibits a linear dependence on the control function w, i.e.,
Equation (17) can be written as

H(r̂, x, p, w) = a(r̂) + b(r̂)w (18)

where

a(r̂) = (r̂x2 − σ̄)2 + p1(r̂)x2(r̂)−
3p2(r̂)x2(r̂)

r̂
(19)
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and

b(r̂) = p3(r̂) +
p2(r̂)
x3(r̂)

(
x2(r̂) + ν̃

x1(r̂)
r̂

)
. (20)

Since the problem is characterized by a closed control set, Pontryagin’s Principle yields boundary
solution for the minimization of (18). More precisely, the optimal control function w∗ is defined by

w∗(r̂) = arg min
w
H(r̂, x, p, w) =

{
w− if b(r̂) > 0
w+ if b(r̂) < 0

(21)

which in the context of dynamic programming is usually called a bang-bang control, since the control
function only assumes the extremal values of the admissible interval.

Since the control function is defined as the derivative of Young’s modulus, optimal variations
of E turn out to be, quite unexpectedly, piecewise linear with respect to r̂. The result is particularly
interesting since the linearity of the Young’s modulus is reasonably the easiest form of variation
amenable for physical realization from the technological viewpoint.

Equation (21) does not yet provide the explicit expression of the optimal solution; in fact, it is clear
that, in order to know the explicit value of w for any value of r̂, one should know the value of b(r̂).
In turn, the computation of b(r̂) through (20) requires the knowledge of the solution of the dynamical
system (11) and of the differential equations

p′k = −
∂H
∂xk

(22)

for the co-state, which can be written explicitly as
p′1 = −ν̃

wp2

r̂x3

p′2 = 2(σ̄− r̂x2) + p2

(
3
r̂
− w

x3

)
− p1

p′3 =
wp2

x2
3

(
x2 + ν̃

x1

r̂

)
.

(23)

Boundary conditions for co-states are determined by the transversality conditions; by writing the
cost functionals in the compact form

J(w) = K(x(1), x(Ro/Ri)) +
∫ Ro/Ri

1
L(r̂, x(r̂), w(r̂))dr̂ (24)

a common expression of the transversality conditions is

p2(1) =
∂K

∂[x2(1)]
p2(Ro/Ri) =

∂K
∂[x2(Ro/Ri)]

p3(Ro/Ri) =
∂K

∂[x3(Ro/Ri)]
, (25)

which, for the cost functional J1, read

p2(1) = 0, p2(Ro/Ri) = 0, p3(Ro/Ri) = 0. (26)

In the framework of control theory, the instants satisfying b = 0 are called switching instants
since the control function switches instantaneously from an extreme value to the other. Borrowing this
terminology, in the following, the values of r̂ satisfying b = 0 are called switching points.

The application of Pontryagin’s Principle, therefore, leads to a system of six nonlinear and coupled
first-order differential equations described by (11) and (23) that have to be solved by intervals for a
constant value of w (in each interval either w ≡ w+ or w ≡ w−) and taking into account the six
boundary conditions (12), (13) and (26).
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To solve this boundary value problem (BVP), a numerical integration approach is needed. One way
is to implement the so-called shooting method [24], i.e., to start from the inner radius and guess x2(1),
p1(1), and p3(1), and then forward integrate (11) and (23) as an initial value problem (IVP) until the
outer radius, where a check is made whether (12) and (26) are satisfied. If so, a solution is found, if not
the initial guesses are adjusted. Other techniques are based on the so-called pseudospectral methods,
where the optimal control problem is transcribed into a nonlinear constrained programming problem,
whose solution can be computed by means of gradient methods. The numerical solution is out of the
scope of the present study. However, the reader is addressed to [25,26], where a general background
on numerical methods for optimal control problems is given.

5. The Case of a Single Switching Point

As mentioned above, information on switching points can be deduced from the number of roots of
b. In fact, there are as many switches as the number of distinct (real) roots. In the following, we describe
in detail the solution associated with the case of a single switching point. Moreover, we suppose that,
in the formulation of Problem 1, the values of Young’s moduli are fixed at both radii, i.e., that not only
x3(1) is fixed but also x3(Ro/Ri). This assumption allows one to define the linear variation, between the
two boundary values, whose importance is twofold: (i) it will be used in a geometrical interpretation of
admissible solutions and (ii) it will serve a comparison for the effectiveness of the bang-bang optimal
solution. More precisely, let w̄ denote the linear variation of E with R compatible with E(Ro) = Eo and
E(Ri) = Ei, namely

w̄ =
Eo − Ei
Ro − Ri

. (27)

Two situations may occur. If w̄ /∈ [w−, w+], there is no admissible solution. In fact, as shown in
Figure 2a, the line connecting Ei with Eo does not lie in either of the two angular sectors determined
by w− (red dashed line) and w+ (blue dashed line) and having the vertex in Ei and Eo, respectively.
On the other hand, if w̄ ∈ [w−, w+], the linear variation between Ei and Eo belongs to both the angular
sectors (see Figure 2b) and is, therefore, an admissible solution; however, it is not optimal. Indeed,
the optimal solution is one of the two solutions associated with the extremal values of w. Each of
them is characterized by a different switching point and a different value of w in the two resulting
subintervals; more precisely, they can be described as follows:

• One solution (black solid line in Figure 2b) is characterized by a sub-interval (Ri, r̂1) in which
w∗ ≡ w+ and a sub-interval (r̂1, Ro) in which w∗ ≡ w−. The switching point r̂1 is determined
imposing

Ei + w+(r1 − Ri) = Eo − w−(Ro − r1) . (28)

In the following, we refer to this solution as the “P-M” solution.
• The other solution (violet solid line in Figure 2b), which will be referred to as the “M-P” solution,

is characterized by a sub-interval (Ri, r̂2) in which w∗ ≡ w− and a sub-interval (r̂2, Ro) in which
w∗ ≡ w+. The switching point r̂2 is determined imposing

Eo + w+(r2 − Ro) = Ei − w−(Ri − r2) . (29)

A Numerical Example

To have an immediate insight of the importance of the result, we have simulated the application
of the two bang-bang solutions to a particular instance of the equivalent stress minimization problem
(functional J2), and we have compared their performance with the ones exhibited by the simplest
one, i.e., the linear variation, and one of the most used in the literature, i.e., the power law variation.
We have considered a cylinder of internal radius Ri = 20 mm and external radius from 30 mm to
50 mm (so that the relative external radius varies from 1.5 to 2.5). Internal and external pressures
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have been set to pi = 10 MPa and po = 0 MPa, respectively. Different choices of FG materials are
possible, depending on the manufacturing process to be used; nevertheless, in this case, internal
and external values of the Young’s modulus have been chosen to be Ei = 2.1× 105 MPa (steel) and
Eo = 3.9× 105 MPa (alumina). This choice was justified by the fact that steel/alumina FG materials
were adopted in several works dealing with FG material optimization, particularly in the case of
axisymmetric structures (see: [6,27,28]). According to these values, the upper limit for w− is (see
Equation (27))

Eo − Ei
Ri(max(Ro)/Ri − 1)

= 4.5× 103 MPa/mm

while the lower limit for w+ is

Eo − Ei
Ri(min(Ro)/Ri − 1)

= 18× 103 MPa/mm .

If w− and w+ do not fulfill these bounds, then we fall in the case represented in
Figure 2a. In particular, we have considered three cases where w− = 4 × 103 MPa/mm,
while w+ = 20× 103 MPa/mm, 24× 103 MPa/mm and 28× 103 MPa/mm, respectively.

R
i

R
o

R
i

R
o

(a) (b)

___
___

P - M

M - P
__ _ __

_ _ _

_ _ _

Figure 2. Optimal control function w∗ and possible switching points. Cases (a) w̄ /∈ (w−, w+) and
(b) w̄ ∈ (w−, w+).

Radial and hoop stresses have been forecast by means of an axisymmetric FE analysis, whose
details are omitted for brevity. However, the reader is addressed to [17], where similar computational
aspects are reported. The variation of the maximum normalized Tresca stress σT

max/pi, as a function
of the relative outer radius, is reported, for all the three cases and for both the bang-bang admissible
variations, in Figure 3.

The P-M solution (dashed lines), which performs better than the M-P one (solid lines), is the
optimal bang-bang solution. To evaluate its efficiency in reducing the stress, it is interesting to compare
the stress values with the ones obtained for the linear (dash-dotted lines) and for the power law (dotted
lines) variations of the Young’s modulus. As one may note from Figure 3, the optimal bang-bang
solution P-M still performs better than both the latter solutions.
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1.5 1.75 2 2.25 2.5
1.8

2

2.2

2.4

2.6

2.8

3

3.2

 _____

 __  __

Figure 3. Variation of the maximum normalized Tresca stress for different values of the ratio
w+/w−. Solid and dashed lines refer to Pontryagin’s extremal results, i.e., the M-P and P-M solutions,
respectively. Normalized stresses are compared with those exhibited by power law (dotted line) and
linear (dash-dotted line) variations.

To better characterize the optimal bang-bang solution, a numerical computation of the variation
of the position of the switching points has been performed as a function of the relative thickness Ro/Ri,
whose implicit expressions are (28) and (29). Results are reported, for the three cases, in Figure 4.

1.5 1.75 2 2.25 2.5
1

1.25

1.5

1.75

2

2.25

2.5

 __  __

 _____

Figure 4. Variation of the switching points for the three cases considered in the numerical example.
Dashed and solid lines correspond to P-M and M-P solutions, respectively.
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We can conclude that, at the cost of a little increase in complexity, the bang-bang solution—which
is piecewise linear and, hence, rather simple and reasonably realizable—performs much better than
the linear variation.

6. Conclusions

Material property variation in functionally graded materials has been reported in the context of
dynamic programming framework. In particular, cylinders with variable Young’s modulus along the
radius subject to internal pressure have been considered. Several problem formulations have been
stated and solutions are addressed by means of Pontryagin’s Principle. Optimal Young’s modulus
turns out to be piecewise linear along the radius, the consequence of a bang-bang control scenario and
is amenable for an easy physical realization.

The optimal solution requires one to resort to numerical methods. Comments on the switching
points and possible extension including additional constraints are addressed. A numerical example
has been performed to minimize the maximum equivalent stress within the assumption that a single
switching point exists. The optimal solution performs much better than classic solutions present
in literature.

Notwithstanding the idea is in its early formative stages, the authors strongly believe it brings
novelty in the way of modeling property variation in functionally graded bodies as well as it can
represent a touchstone for future developments and collaborations between mechanical designers and
control theorists.
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