
Axenfeld-Rieger syndrome (ARS) is a rare disease 
primarily characterized by abnormal development of the ante-
rior segment of the eye, such as iris hypoplasia, corectopia, 
polycoria, posterior embryotoxon, and corneal abnormalities 
[1-3]. Around 50% of patients with ARS develop glaucoma, 
which leads to blindness without appropriate intervention. 
Extraocular symptoms, such as dental anomalies, redundant 
periumbilical skin, craniofacial abnormalities, heart defects, 
hearing loss, and so on, can also be observed in all or some 
of the patients with ARS [1,2].

ARS is inherited in an autosomal dominant manner. 
Mutations in the major pathogenic genes PITX2 (OMIM 
601542) and FOXC1 (OMIM 601090) account for about 
40–70% of the patients with ARS [2,4]. In addition to the 
common intragenic mutations (missense, nonsense, splicing, 
and small deletion/insertion), large deletions affecting the 
entire or part of the coding and upstream regulatory regions 

of PITX2 and FOXC1 have also been reported [5-7]. Another 
two genes (CYP1B1-Gene ID: 1545, OMIM: 601771 [8] and 
PRDM5-Gene ID: 11107, OMIM: 614161 [9]) and one locus 
(13q14 [10]) have also been implicated with ARS. However, 
the underlying genetic causes in at least 30% of patients with 
ARS remain unclear.

Genotype–phenotype studies indicate that mutations 
in PITX2 are more commonly associated with additional 
systemic symptoms such as dental, umbilical, and cranio-
facial abnormalities. Meanwhile, patients with mutations in 
FOXC1 often show ocular symptoms alone or combined with 
heart and hearing defects [4,6,11]. However, recent studies 
also reported that mutations in PITX2 can result in dental 
anomalies [12] and heart diseases [13-16] without the classical 
symptoms of ARS.

We report a four-generation family with ARS from 
Hubei province, China. The clinical features of the affected 
individuals are summarized. With the help of whole-exome 
sequencing (WES), quantitative PCR (qPCR), and long-range 
PCR, a genomic deletion spanning PITX2 and PANCR (Gene 
ID: 110231149, OMIM: 617286) was identified.
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Purpose: To identify the genetic cause in a four-generation Chinese family with Axenfeld-Rieger syndrome (ARS).
Methods: The family members received clinical examinations of the eye, tooth, periumbilical skin, and heart. Sanger 
sequencing and whole-exome sequencing (WES) were performed to screen potential mutations. The genomic deletion 
region around the PITX2 gene was estimated from single nucleotide polymorphism (SNP) data from WES and then 
confirmed with “quantitative PCR (qPCR) using a set of primers. The DNA breakpoint was further identified with 
long-range PCR and Sanger sequencing.
Results: Symptoms including anterior segment dysplasia of the eye (iris dysplasia, multiple pupils, and posterior embryo-
toxon), dental dysplasia, and periumbilical skin redundancy were present in all of the affected individuals. Three of them 
had glaucoma. Corneal abnormalities (inferior sclerocornea, corneal endothelial dystrophy, and central corneal scar) 
were seen in most of the affected individuals. Cataract, limited eye movement, electrocardiographic abnormalities, intel-
lectual disability, and recurrent miscarriages were observed in some of the affected individuals. No mutations in the cod-
ing and exon-intron adjacent regions of the PITX2 and FOXC1 genes were identified with Sanger sequencing. According 
to the SNP data from WES, we suspected that there might be a deletion region (at most 1.6 Mb) around the PITX2 gene. 
With the use of qPCR and long-range PCR, we identified a 53,840 bp deletion (chr4: 111,535,454–111,588,933) spanning 
PITX2 and PANCR. The genomic deletion cosegregated with the major ARS symptoms observed in the family members.
Conclusions: With the help of WES, qPCR, and long-range PCR, we identified a genomic deletion encompassing PITX2 
and the adjacent noncoding gene PANCR in a Chinese family with ARS. The clinical features of the affected individuals 
are reported. This work may broaden understanding of the phenotypic and mutational spectrums related to ARS.
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METHODS

Participant recruitment and clinical examinations: Eleven 
patients from a four-generation non-consanguineous family 
were recruited from Yangxin, Hubei, China, and were inves-
tigated in the study. The gender, age, and health condition 
for each patient were shown in Table 1. Written informed 
consent was signed by all participants or their statutory 
guardians. The study was approved by the Ethics Committee 
of Huazhong University of Science and Technology. The 
authors declared that this study adhered to the ARVO 
statement on human subjects. Clinical examinations of the 
participants were performed at the Union Hospital (affili-
ated with Tongji Medical College, Huazhong University of 
Science and Technology) and the Yangxin People’s Hospital. 
Affected individual IV:1 died of unknown causes at the age 
of 5. He had undergone a clinical examination when he was 
alive. Peripheral blood samples (1-3 ml) were collected from 
the anterior elbow vein by clinicians for each participant and 
stored in EDTA blood collection tubes at 4 °C. Genomic DNA 
was prepared using the TIANamp Blood DNA Kit DP348 
(Tiangen Biotech, Beijing, China) as described previously 
[17].

Mutation screening with Sanger sequencing and whole-
exome sequencing: The coding exons and the exon–
intron boundaries of PITX2a (NM_001204399), PITX2b 
(NM_001204397), PITX2c (NM_000325), and FOXC1 
(NM_001453) were amplified with PCR using primers listed 
in Appendix 1. The following PCR conditions were used: 
predegeneration at 95 °C for 5 min; 35 cycles of denaturation 
at 95 °C for 30 s, annealing at 60 °C for 30 s and extension 
at 72 °C for 30–60 s; a final extension at 72 °C for 10 min. A 
total of 50 ng of genomic DNA was added as the template in 
a 30 μl reaction volume. The PCR products were examined 
with agarose gel electrophoresis and subjected to Sanger 
sequencing as described previously [18,19].

WES was performed using the xGen Exome Research 
Panel v1 (Integrated DNA Technologies, Coralville, IA) 
and the HiSeq 2500 platform (Illumina, San Diego, CA) at 
Nextomics Biosciences Corporation (Wuhan, China). Bioin-
formatic analysis was performed as described previously [20]. 
Briefly, the raw sequences were mapped to the human refer-
ence genome (hg19) with Burrows-Wheeler Aligner (BWA) 
[21]. Variants were detected with genome analysis toolkit 
(GATK), using standard hard filtering parameters according 
to GATK Best Practices recommendations [22], and then 
annotated with wANNOVAR [23]. After intergenic, intronic, 
untranslated region (UTR), and synonymous variants were 
removed, variants with a minor allele frequency (MAF) of 

>0.005 were further filtered out using the 1000 Genomes 
Project and the gnomAD exome database.

qPCR and long-range PCR: A set of primers (Appendix 2) 
spanning the PITX2 gene were designed to detect whether 
the region is haploid or diploid with qPCR using the AceQ™ 
qPCR SYBR Green Master Mix (Vazyme Biotech, Nanjing, 
China) and the StepOnePlus™ real-time PCR System 
(Applied Biosystems, Foster City, CA). The following qPCR 
conditions were used: predegeneration at 95 °C for 5 min, 
followed by 40 cycles of denaturation at 95 °C for 10 s, 
annealing and extension at 60 °C for 30 s in a 20 μl reac-
tion volume with 50 ng of genomic DNA as the template. 
To amplify the region containing the DNA breakpoint, long-
range PCR was performed using −26.4k-F/+4.5k-R primers 
and PrimeSTAR GXL DNA Polymerase (Takara Biomedical 
Technology, Beijing, China) under the default condition 
suggested by the product manual. The exact sequence was 
further determined with Sanger sequencing.

RESULTS

Pedigree analysis and clinical manifestations: Affected 
individuals were observed in every generation, indicating 
a dominant inheritance pattern in the family (Figure 1A). 
The DNA samples from II:2 and IV:1 were unavailable. The 
clinical findings of the affected individuals are summa-
rized in Table 1. Common symptoms of ARS, such as iris 
dysplasia, multiple pupils, posterior embryotoxon, dental 
dysplasia, and periumbilical skin redundancy, were observed 
in all of the affected individuals. Glaucoma was observed 
in affected individuals II:3, III:2, III:9 (suspected), and IV:3. 
Corneal abnormalities (inferior sclerocornea, central corneal 
scar, reduced endothelial density, and corneal endothelial 
dystrophy) were seen in most of the affected individuals with 
the exception of two children (IV:4 and IV:5). Interestingly, 
affected individual II:10 showed significant decreases in 
endothelial densities in both eyes (1,675/777 cells/mm2, refer-
ence value: 2,935±285.0 cells/mm2 [24]; Figure 1C). Affected 
individuals III:7 and III:9 also exhibited reduced endothelial 
density and limited eye movement. Affected individuals 
II:3, III:2, and IV:2 had cataracts. Affected individuals IV:1 
and IV:2 showed developmental retardation and intellectual 
disability. Finally, affected individual II:10 had also suffered 
three miscarriages.

Identification of the genetic cause within the family: Based 
on the clinical features and family history, the candidate 
genes PITX2 and FOXC1 were screened directly with Sanger 
sequencing. No mutations were identified in the coding 
regions and exon–intron boundaries of either gene. Due to the 
lack of male to male transmission in the family, we suspected 
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a possibility of X-linked dominant inheritance. Therefore, 
whole-exome sequencing was performed on affected indi-
vidual II:3 to ascertain whether there were any variants on the 
X chromosome responsible for the ARS symptoms within the 
family. After the intergenic, intronic, UTR, and synonymous 
variants were removed, 904 variants with a MAF of <0.005 
were noted. Thirteen of these variants were located on the X 
chromosome (Appendix 3). As the affected individual II:3 
chosen for WES is male, four homozygous variants including 
p.S489fs in ARSF (Gene ID: 416, OMIM: 300003), p.A224T 
in MAGED1 (Gene ID: 9500, OMIM: 300224), p.L57insQQ in 
AR (Gene ID: 367, OMIM: 313700), and p.L933F in COL4A5 

(Gene ID: 1287, OMIM: 303630) were selected to perform 
co-segregation analysis. However, none of them cosegregated 
with the disease in the family.

The possibility of large fragment deletions in PITX2 was 
not excluded in the study above, and the ocular and extra-
ocular symptoms strongly suggested PITX2 as the disease-
causing gene. Next, we investigated the genotypes of single 
nucleotide polymorphisms (SNPs) around the PITX2 gene 
based on the WES data. We found that in an approximate 
1.6 Mb region spanning ENPEP (Gene ID: 2028, OMIM: 
138297), PANCR, PITX2, and C4orf32 (Gene ID: 132720), 
all of the detected SNPs were homozygous, which increased 

Figure 1. The pedigree and ocular symptoms of the family with ARS. A: Family members and their relationships are shown. The affected 
individuals are labeled with filled symbols. Circle, female; square, male; small filled circle, miscarriage. “+” represents the normal allele, 
and “-” represents the deletion allele. B: Iris dysplasia and multiple pupils are shown for affected individuals II:1 and IV:3. C: Specular 
microscopy examination of affected individual II:10 (upper panel) and an age-matched control (lower panel). Significantly reduced corneal 
endothelial cell density is shown in both eyes of II:10.
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the possibility of the haploid status of the whole or part of 
the PITX2 gene.

To confirm the deletion and identify the exact DNA 
breakpoint, we performed qPCR analysis on DNA from indi-
viduals III:5 (unaffected) and III:9 (affected) using primers 
covering the exons and the 5′- and 3′- regions of PITX2 
(Appendix 2). All of the examined exons were haploid in 
the affected individual (Figure 2A), confirming the deletion 
of the whole PITX2 gene. The deletion range was identified 
by extending the qPCR primers upstream and downstream 
of PITX2. The DNA breakpoint was located between −26.4 
kb to −23.3 kb upstream of PITX2 and +2.5 kb to +4.5 kb 
downstream of PITX2. Using the −26.4k-F/+4.5k-R primer 
pair, an approximate 2 kb DNA fragment was amplified only 
in affected individual III:9 (Figure 2B). Sanger sequencing 
of this fragment uncovered a 53,840 bp deletion (chr4: 

111,535,454–111,588,933; Figure 2C), which contained the 
whole PITX2 gene and the first exon of the noncoding gene 
PANCR. The deletion exactly cosegregated with the disease 
in the family, as detected with PCR amplification using the 
−26.4k-F/+4.5k-R primer pair (Appendix 4).

Electrocardiographic abnormalities in affected individuals: 
Several studies have shown that PITX2 plays an important 
role in the development and maintenance of the heart [25-28]. 
The adjacent lncRNA PANCR regulates the expression of 
PITX2c, the cardiac-specific transcript of PITX2 [29]. In 
addition, mutations in PITX2 have been associated with a 
wide range of heart defects, such as atrial fibrillation [14,16], 
tetralogy of Fallot [13,30], and congenital atrial septal defects 
[31]. However, no signs of heart disease were reported by any 
of the affected family members. To investigate any poten-
tial asymptomatic cardiac anomalies, affected (II:3, III:9, 

Figure 2. Identification of the large genomic deletion spanning PITX2 in the family. A: Confirming and mapping the deleted region around 
PITX2 with quantitative PCR (qPCR). The deletion was positioned between 26.4 kb upstream and 4.5 kb downstream of the PITX2 gene. B: 
The DNA fragment containing the breakpoint was amplified with long-range PCR using the −26.4k-F/+4.5k-R primers. C: The sequencing 
result of the DNA fragment above shows an approximate 50 kb deletion spanning the first exon of PANCR and the entire PITX2 gene.
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and IV:3) and unaffected (III:5) individuals received color 
Doppler echocardiography and electrocardiography tests. 
No obvious changes in the heart structure were observed in 
affected individuals II:3 and III:9. Affected individual IV:3 
showed left ventricular false tendon and arrhythmia. The 
electrocardiograph of IV:3 also demonstrated the presence 
of arrhythmia and ST-T abnormalities (Figure 3, Table 1). 
Furthermore, affected individuals II:3 and III:9 also presented 
ST-T abnormalities with normal sinus rhythm (Figure 3, Table 
1). These changes were not detected in unaffected individual 
III:5.

DISCUSSION

PITX2 encodes a homeobox transcription factor that plays 
an essential role in the development of many organs [32-34]. 
Complete deletion of Pitx2 in mice causes embryonic lethality 
and multiorgan malformations, including ARS-related 

anomalies and heart defects [35,36]. Heterozygous Pitx2-null 
mice show the ocular features of ARS and glaucoma [37], and 
are susceptible to atrial arrhythmias [28]. Doubtlessly, PITX2 
is important for normal heart function. In this study, indi-
viduals with ARS showed no obvious heart structural symp-
toms or defects. However, the ECG revealed irregularities in 
cardiac electrophysiology in some of the affected individuals. 
A patient with ARS with a mutation in PITX2 was previously 
diagnosed with Wolf-Parkinson-White (WPW) syndrome [3]. 
WPW syndrome is a form of heart disease characterized by 
tachycardia and other changes in ECG. More than half of 
individuals with WPW syndrome are asymptomatic, but they 
have a low risk of undergoing cardiac arrest or sudden cardiac 
death [38]. To a certain extent, the cardiac features of patients 
examined in this family may belong to the category of WPW 
syndrome. Nevertheless, compared with the eye, tooth, and 
periumbilical skin abnormalities, heart defects are rarely 
reported in patients with mutations in PITX2.

Figure 3. The electrocardiographic abnormalities of the affected individuals in the family. IV:3 shows arrhythmia (indicated by the horizontal 
arrows). II:3, III:9, and IV:3 show ST-T abnormalities (indicated by arrows).
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Other unusual features, such as limited eye movement, 
corneal abnormalities, cataract, recurrent spontaneous 
miscarriages, and intellectual disability, were observed in 
certain patients in the family. Pitx2 is required for the devel-
opment and maintenance of extraocular muscles [39], which 
may explain the presence of limited eye movement in the 
two patients in this study. Most of the patients (except the 
two young children) in this family showed corneal abnormali-
ties, which are thought to be infrequent in patients with ARS 
according to previous reports [1,2]. Developmental retarda-
tion and intellectual disability have also been reported in 
patients with mutations in PITX2 by other researchers [6,40]. 
Recurrent spontaneous miscarriages have not previously been 
reported in individuals with mutations in PITX2. It is as yet 
not possible to determine whether these unusual symptoms 
are associated with ARS, or perhaps caused by other under-
lying factors.

In summary, the clinical features of the affected indi-
viduals in a four-generation Chinese family with ARS were 
reported. A 53,840 bp genomic deletion spanning PITX2 and 
PANCR was identified to be responsible for the disease in 
this particular family. This study widens our understanding 
of the phenotypic and mutational spectrum of PITX2-asso-
ciated Axenfeld-Rieger syndrome. This work suggests that 
patients with mutations in PITX2, even with no signs of heart 
problems, should undergo an ECG to assess the risk of heart 
dysfunction and arrythmias.

APPENDIX 1. PRIMERS USED FOR MUTATION 
SCREENING IN PITX2 AND FOXC1.

To access the data, click or select the words “Appendix 1.”

APPENDIX 2. PRIMERS USED FOR QPCR IN THE 
DETECTION OF PITX2 DELETION.

To access the data, click or select the words “Appendix 2.”

APPENDIX 3. DATA SETS.

To access the data, click or select the words “Appendix 3.” 
Candidate variants on the X chromosome with a MAF under 
0.005.

APPENDIX 4. CO-SEGREGATION ANALYSIS 
OF THE PITX2 LARGE DELETION FOR ALL 
PARTICIPANTS IN THE FAMILY BY PCR USING 
THE −26.4K-F/+4.5K-R PRIMER PAIR.

To access the data, click or select the words “Appendix 4.”
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