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Background: Alzheimer’s disease (AD) pathology is present many years before the
onset of clinical symptoms. AD dementia cannot be treated. Timely and early detection
of people at risk of developing AD is key for primary and secondary prevention.
Moreover, understanding the underlying pathology that is present in the earliest stages
of AD, and the genetic predisposition to that might contribute to the development of
targeted disease-modifying treatments.

Objectives: In this study, we aimed to explore whether genetic disposition to AD in
asymptomatic individuals is associated with altered intrinsic functional connectivity as
well as cognitive performance on neuropsychological tests.

Methods: We examined 136 cognitively healthy adults (old group: mean age = 69.32,
SD = 4.23; young group: mean age = 31.34, SD = 13.12). All participants
had undergone resting-state functional magnetic resonance imagining (fMRI), DNA
genotyping to ascertain polygenic risk scores (PRS), and neuropsychological testing
for global cognition, working memory, verbal fluency, and executive functions.

Results: Two-step hierarchical regression analysis revealed that higher PRS was
significantly associated with lower scores in working memory tasks [Letter Number
Span: 1R2 = 0.077 (p < 0.05); Spatial Span: 1R2 = 0.072 (p < 0.05)] in older
adults (>60 years). PRS did not show significant modulations of the intrinsic functional
connectivity of the posterior cingulate cortex (PCC) with other regions of interest in the
brain that are affected in AD.

Conclusion: Allele polymorphisms may modify the effect of other AD risk
factors. This potential modulation warrants further investigations, particularly in
cognitively healthy adults.

Keywords: Alzheimer’s disease (AD), genetic disposition, polygenic risk score (PRS), cognition, intrinsic
functional connectivity, resting-state fMRI
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BACKGROUND

Alzheimer’s disease (AD) is a neurodegenerative disorder that
is characterized by a progressive decline in cognitive function
(McKhann et al., 2011). The neuropathological hallmark of
AD in the brain is the presence of extracellular Aβ amyloid
plaques and intracellular neurofibrillary tangles (NFT; Braak
and Braak, 1991). Previous evidence shows that specific
biomarker abnormalities consistent with these neuropathological
changes are detectable years before the commencement of
clinical symptoms (Jack et al., 2010; Sperling et al., 2011).
The United States National Institute on Aging – Alzheimer’s
Association (NIA-AA) proposed a biological definition of AD,
allowing for the diagnosis of AD in the presence of β-amyloid
and neurofibrillary tau in cognitively healthy elders (Jack et al.,
2010, 2018; Albert et al., 2011; McKhann et al., 2011; Sperling
et al., 2011). Because irreversible cognitive dysfunction is caused
by neuronal cell death, network dysfunction and eventual
neurodegeneration, it is critical to identify people at risk before
this occurs. In order to design disease-modifying drugs for AD,
it is widely accepted that treatments should be administered as
early as possible before clinical symptoms have appeared, and
ideally, earlier than the start of neuronal damage (Jessen et al.,
2014, 2018). The NIA-AA criteria are not meant for clinical uses,
but only for research purposes and in clinical research settings.

Resting state functional magnetic resonance imaging (rs-
fMRI) may be a viable biomarker to detect altered intrinsic
functional connectivity in people at risk of AD (Sorg et al., 2007).
Rs-fMRI shows the intrinsic functional connectivity between
brain regions at rest when no task is being performed. Previous
evidence suggests that AD may be conceived as a disconnection
syndrome, both structural and functional (Delbeuck et al., 2003;
Sorg et al., 2007). The Default Mode Network (DMN), a set of
brain regions that shows functional activity during rest, is one
of the most widely studied functional networks in AD (Raichle
et al., 2001; Krajcovicova et al., 2014). The Posterior Cingulate
Cortex (PCC) is the posterior anatomical/computational hub
in the DMN and brain in general (Hagmann et al., 2008;
Greicius et al., 2009). It is suggested that the neuropathological
changes and the resulting structural lesions in the brain may
be associated with alteration in intrinsic brain activity in AD
in the DMN (Buckner and Vincent, 2007). Previous studies
show that the PCC is especially susceptible to the deposition of
amyloid plaques in AD (Sperling et al., 2009; Mormino et al.,
2011). Evidence from fluorodeoxyglucose positron emission
tomography (FDG-PET) studies demonstrate diminished resting
state glucose metabolism in the PCC of patients with early AD
or MCI as well as in cognitively healthy older adults at risk
of AD (Ishii et al., 2003; Buckner et al., 2005). This might
reflect a possible hypometabolism or synaptic dysfunction in
this region (Fessel, 2021). Previous studies investigating the
functional connectivity using functional MRI observed decreased
connectivity between the PCC and the hippocampus, both in
MCI and AD (Greicius et al., 2004; Krajcovicova et al., 2014).
On the other hand, increased connectivity is observed in the
anterior DMN and in the hippocampal-medial prefrontal and the
frontoparietal connectivity in similar groups (Zhang et al., 2009;

Zarei et al., 2013). However, alterations in the DMN alone
could only differentiate between healthy controls and people
with AD but not between the different prodromal stages of
AD where cognitive performance may be still preserved (Teipel
et al., 2018). Because of its important role in the DMN and
its vulnerability toward AD pathology, the PCC is an ideal
candidate region for investigating associations between intrinsic
functional connectivity and its relation to other biomarkers and
risk factors of AD.

Besides alterations in intrinsic functional connectivity, there
are several candidate genes that constitute another frontier for
early detection of people at risk of AD. The Apolipoprotein E
gene on chromosome 19 is the most commonly associated genetic
risk factor for late-onset AD (LOAD), and its ε4 allele is most
commonly associated with LOAD (Belloy et al., 2019; Chaudhury
et al., 2019). Previous research suggests that people with MCI due
to AD who were carriers of ApoE ε4 allele indeed showed altered
functional connectivity as well as lower cognitive performance
compared to healthy controls (Wang et al., 2015; Harrison et al.,
2016). In an earlier study that investigated the relationship
between resting state connectivity and genetic risk, carriers of
the ApoE ε4 allele were found to have a higher activation across
several cortical regions (Bookheimer et al., 2000). However, the
study only looked at carriers of AD-related, ApoE variants, and
investigated connectivity alterations on task-based fMRI where
participants were asked to perform a memory-activation task that
is sensitive to the identification of neuropathological changes in
the medical temporal lobe (MTL) structures (Bookheimer et al.,
2000). Nonetheless, despite its strong genetic association with
AD, clinical trials for disease-modifying treatments targeting the
amyloid cascade pathway and focusing on carriers of ApoE ε4
did not yield successful results yet (Yiannopoulou et al., 2019;
Serrano-Pozo et al., 2021). Moreover, the relationship between
specific alterations of functional connectivity on rs-fMRI should
not be attributed to a single gene and further investigation
of the impact of other genetic variants should be considered
(Harrison and Bookheimer, 2016).

This has directed the focus on investigating other pathways
and other possible genetic variants associated with AD. Genome
Wide Association Studies (GWAS) have identified several single
nucleotide polymorphisms (SNPs) that are associated with an
increased risk of developing AD in late life (Baker and Escott-
Price, 2020). These include CLU, PICALM, and CR1 as well as
BIN1, ABCA7, and EPHA1 (Harrison and Bookheimer, 2016).
Homozygous carriers of CLU, for example, show a stronger
magnitude of intrinsic functional connectivity compared to
non-carriers (Zhang et al., 2015). A suggested approach would
be to investigate the effect of these SNPs, combined in a
polygenic risk score (PRS), as a biomarker to reliably detect
an elevated risk of developing AD already in its earliest
stages. A PRS is a method to predict the genetic susceptibility
of an individual to a specific disease by its summarized
genetic risk for the disease based on previous evidence, and
that can be used for clinical prediction rules in conjunction
with the clinical history and physical examination. However,
consistent evidence on the effect of other genetic variants,
calculated in a PRS, on intrinsic functional connectivity in
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cognitively healthy older adults at risk of AD is still lacking.
Therefore, the association between alterations in functional
connectivity and a PRS that combines the summed and
weighted risk of several genetic variants in one metric would
increase the prediction power for people at higher risk of
developing AD dementia.

The aim of this study was to explore whether a higher PRS
in cognitively healthy adults is associated with modulation of
intrinsic functional connectivity between the PCC and other
regions of interest (ROIs) in the brain. We examined this
association using PRS and rs-fMRI data in a cohort of healthy
adults. We also aimed to examine the association of PRS with
cognitive performance in validated neuropsychological tests. We
hypothesized that individuals with a higher PRS show altered
intrinsic functional connectivity between the PCC and other
brain regions that are implicated in AD (i.e., medio-temporal
lobe, MTL) as well as lower cognitive performance.

MATERIALS AND METHODS

Participants
We examined a subset of 136 cognitively healthy participants
that met the inclusion criteria for the purpose of this analysis
(having rs-FMRI data, PRS, and cognitive scores available).
The sample was divided into two groups with the young group
including participants aged 60 years and younger (n = 80). 55%
of the young group were females (n = 44). The mean age of the
young group was 31.34 (SD = 13.12). The old group included
those who were above 60 years of age (n = 56). The mean age for
the old group was 69.32 (SD = 4.23). 60.71% of the old group
were females (n = 34). Participants were drawn from a cohort of
participants from the project B4 of the Neuronal Coordination –
Research Focus Frankfurt (NeFF) titled “Funktionelle und
strukturelle neuronale Diskonnektion als Grundlage früher
episodischer Gedächtnisstörungen der Alzheimer-Krankheit”
(“Functional and structural neuronal disconnection as a
basis/prerequisite for early neuronal memory dysfunction in
Alzheimer’s Disease”) (Matura et al., 2014a,b, 2016, 2020, 2021).
The project was performed at the Laboratory for Neuroimaging
of the Department of Psychiatry, Psychosomatic Medicine and
Psychotherapy at the Goethe University Frankfurt, Frankfurt
am Main, Germany. The methodology of this project has been
extensively described in previous publications (Matura et al.,
2014a,b, 2016, 2020, 2021). None of the participants had a history
of neurological or psychiatric disorders. Eligible participants
were selected based on the presence of a PRS and fMRI data.
Sociodemographic variables of the included participants were
ApoE status, age, gender, education, family history of Alzheimer’s
disease dementia, handedness, weight, height, Body Mass Index
(BMI), and smoking status. For the purpose of the current
study, we only analyzed the association of PRS, in younger and
older participants, with cognitive performance and intrinsic
functional connectivity with the PCC as a seed region. The Ethics
Committee of the Medical Faculty of the Goethe University
Frankfurt approved the study, and all subjects signed a written
informed consent. The study was undertaken in accordance

with the Code of Ethics of the World Medical Association
(Declaration of Helsinki) (Rickham, 1964).

Neuropsychological Measures
We used the Mini-Mental State Examination (MMSE) to assess
general cognition (Folstein et al., 1975), and the German version
of the California Verbal Learning Test (CVLT) for verbal learning
and short-term memory (Delis et al., 1987; Niemann et al.,
2008). Furthermore, measures of working memory and attention
were obtained using the Trail Making Test – Part A (Spreen
and Strauss, 1998), Letter Number Span (Gold, 1997), and the
spatial Span test of the Wechsler Memory Scale (Wechsler, 1997).
Verbal fluency was tested using two subsets of the CERAD-NP
(Consortium to Establish a Registry for Alzheimer’s Disease) – the
semantic fluency and phonemic fluency tests (Morris et al., 1988).
Finally, we used the Memory Complaint Questionnaire (MAC-
Q) to assess subjective memory decline, (Crook et al., 1992).

Magnetic Resonance Imagining
Hardware and Procedure
All details about the study design and methods have been
previously reported (Matura et al., 2014a,b, 2016, 2020, 2021).
All MR images were acquired using a Trio 3-T scanner (Siemens,
Erlangen, Germany) with a standard head coil for radiofrequency
transmission and signal reception. Participants were outfitted
with protective earplugs to reduce scanner noise. For T1-
weighted structural brain imaging, an optimized 3D modified
driven equilibrium Fourier transform sequence (Deichmann
et al., 2004) with the following parameters was conducted:
acquisition matrix = 256 × 256, repetition time (TR) = 7.92 ms,
echo time (TE) = 2.48 ms, field of view (FOV) = 256 mm,
176 slices and 1.0-mm slice thickness. Functional resting state
images were acquired using a blood oxygen level-dependent-
sensitive echo-planar imaging sequence comprising the following
parameters: 300 volumes, voxel size: 3 mm × 3 mm × 3 mm,
TR = 2000 ms, TE = 30 ms, 30 slices, slice thickness = 3 mm,
distance factor = 20%, flip angle = 90◦, and FOV = 192 mm.
Resting state measurements were part of a larger fMRI study
on episodic memory. For the resting state measurements, all
participants were instructed to keep their eyes open, to lie still,
not to engage in any speech, to think of nothing special and to
look at a white fixation cross-presented in the center of the visual
field during the whole scan procedure.

Resting-State Functional Magnetic
Resonance Imagining Data Analysis
To analyze the resting state functional data, we used the
Connectivity (CONN) Toolbox (CONN functional connectivity
toolbox, 2012). CONN is an open-source Matlab/SPM-based
cross-platform software for the computation, display, and
analysis of functional connectivity Magnetic Resonance Imaging
(fcMRI). CONN is used to analyze resting state data (rs-
fMRI) as well as task-related designs. We first imported the
raw/partially processed Digital Imaging and Communications
in Medicine (DICOM) functional and anatomical files into the
CONN graphical user interface (GUI). We then ran the default
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pre-processing pipeline (direct normalization to MNI-space) in
CONN’s GUI. The pipeline performs the following steps:

– Functional realignment using SPM12 realign and unwrap
procedure (Andersson et al., 2001).

– Correction of temporal misalignment of slices of functional
data using SPM12 slice-timing correction (STC) procedure
(Henson et al., 1999).

– Outlier identification from the observed global BOLD
signal and the amount of subject-motion in the scanner.

– Direct segmentation and normalization into standard MNI
space and segmented into gray matter, white matter, and
CSF tissue classes using SPM12 unified segmentation and
normalization procedure (Ashburner and Friston, 2005).

– Functional smoothing using spatial convolution with a
Gaussian kernel of 8 mm full width half maximum
(FWHM).

After pre-processing was completed, we ran the default
denoising pipeline in CONN. The pipeline performs two general
steps: linear regression of potential confounding effects in the
BOLD signal, and temporal band-pass filtering. Once completed,
we evaluated the effect of denoising by assessing the CONN
Quality Control Plots. These plots provide a visualization of
the distribution of functional connectivity values (FC) between
randomly selected pairs of points within the brain before
and after denoising. After denoising, FC distributions showed
approximately centered distributions, with small but noticeable
larger tails in the positive side, and considerably reduced inter-
session and inter-subject variability.

Selection of Seed Region
To analyze DMN connectivity, we used a seed region-based
approach. Because we were specifically interested in DMN resting
state activity and whether any alteration is associated with the
PRS we investigated the intrinsic functional connectivity of a
region anatomically co-localized with the major posterior hub of
the DMN, the posterior cingulate cortex (PCC). We also explored
the connectivity of the PCC as the region-of-Interest (ROI) with
other ROIs in the brain that are commonly affected by AD
pathology such as the bilateral hippocampus, bilateral anterior
and posterior parahippocampus, and bilateral amygdala.

DNA Extraction, Genome-Wide
Genotyping and Polygenic Risk Scores
Calculation
DNA was extracted from whole-blood samples. The DNA
extraction and genotyping process were conducted at
bio.logis laboratories (Frankfurt am Main, Germany). DNA
was genotyped on the Infinium Global Screen Array (GSA) with
multi-disease drop in (MD) covering in total ca. 700K SNPs per
person at Broad Institute, Cambridge, MA, United States. For
PRS calculation, 177 persons were originally considered, after
quality control measures using PLINK v1.9 (Chang et al., 2015)
regarding relatedness and missingness per individual (<0.1),
142 participants remained for further analysis and 136 met the
inclusion criteria mentioned above and were included in this
study. Regarding SNP quality, SNPs were filtered excluding

minor allele frequencies (MAF < 0.01) and genotyping missing
rate per marker (<0.05), deviations from Hardy Weinberg
Equilibrium (1 × e−6) and deviations from heterozygosity.
A principal component and ancestry analysis revealed that the
sample is of predominantly CEU ancestry.

Polygenic risk scores were calculated using the PRSice
software version 2.3.1.e with default options (clump-kb 250,
clump-p 1.0, clump r2 0.1 stat BETA) (Choi and O’Reilly, 2019).
The summary statistics stage 1 from the International Genomics
of Alzheimer’s Project (IGAP) were used (Kunkle et al., 2019)
and subjected to INFO score filtering (INFO > 0.8). Neither the
present study sample nor the IGAP sample show any overlap. The
ApoE region (Chr19:45,116,911–46,318,605) was excluded from
the analysis due to its reported large effect size. PRS values with
p-threshold (pT) of 0.1 were used for further statistical analysis
since this pT explains the highest variance and provides the best
prediction accuracy according to a study conducted by Leonenko
et al. (2021). We performed the analysis using PRS that excluded
ApoE region as the main explanatory variable. To enhance
readability, we refer to this variable as PRS in this manuscript.

Statistical Analysis
All statistical analyses for the association between PRS and
neuropsychological test scores were conducted using RStudio
(RStudio Team, 2020). Cognitive scores and age followed a
bimodal distribution. Therefore, after conducting the analysis
of cognitive performance in the whole sample, we repeated the
analysis for young and old groups separately. To investigate the
relationship between PRS and cognitive performance, two step
hierarchical regression analyses were performed with different
cognitive test scores as dependent variables in the whole sample
and for the old and young age group separately. ApoE status, age,
gender, and education were entered at stage one of the regression
to control for these influencing variables. The PRS was entered
at stage two to determine the true correlation between PRS
and cognitive performance controlling for the effect of potential
influencing factors. For linear regression analysis, a positive beta
value reflected a positive relationship while a negative beta value
reflected an inverse relationship between the variables of interest.

To examine the association of PRS and connectivity values of
the included participants, we performed an analysis of the whole
group using multiple linear regression in the CONN Toolbox and
controlled for ApoE status, age, gender and education. Functional
connectivity values at rest between the PCC as the seed region
and other ROIs were encoded as the dependant variable. To verify
the results, the same analysis was conducted in R studio, using
the beta values of connectivity between the PCC and the ROIs
as the dependant variables, PRS as the explanatory variable, and
controlled for ApoE status, age, gender and education.

RESULTS

Participants’ Demographic
Characteristics
Table 1 describes the demographic characteristics and
neuropsychological tests scores of the included participants. The
final sample size was 136 participants. 57% of all participants
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TABLE 1 | Demographic characteristics and neuropsychological tests scores of
the study sample.

Variable Young group (n = 80) Old group (n = 56)

Age 31.34 (13.12) 69.32 (4.23)

Gender (% female) 44 (55%) 34 (60.71%)

Years of education 16.71 (3.16) 15.33 (3.14)

MMSE 29.33 (1.54) 29.05 (1.10)

CVLT immediate recall trial 1 list A 65.62 (7.21) 55.72 (10.24)

CVLT immediate recall trial 1 list B 8.19 (2.17) 5.66 (2.04)

CVLT total immediate recall list A 9.46 (2.39) 7.21 (2.23)

CVLT short delayed free recall 14.06 (2.14) 11.30 (3.10)

CVLT short delayed cued recall 14.35 (1.91) 12.42 (2.48)

CVLT long delayed free recall 14.46 (2.01) 12.19 (3.25)

CVLT long delayed cued recall 14.65 (1.73) 12.47 (2.84)

CVLT Intrusion 1.79 (2.41) 3.29 (4.52)

CVLT recognition discriminability 15.69 (0.65) 14.96 (1.39)

TMT – A 23.86 (7.76) 39.21 (10.02)

CERAD semantic fluency (Animals) 26.53 (3.48) 22.52 (4.97)

CERAD phonemic fluency (s-words) 15.60 (3.64) 15.50 (4.62)

Letter number span 17.41 (2.77) 14.91 (2.71)

Spatial span 18.54 (2.79) 15.48 (2.79)

MAC-Q 26.07 (2.97) 26.47 (4.19)

Values are presented by mean of raw values ± standard deviation (SD) unless
stated otherwise. MMSE, Mini-Mental State Examination; CVLT, California Verbal
learning Test; TMT_A, Trail Making Test – Part A; CERAD, Consortium to
Establish a Registry for Alzheimer’s Disease; MAC-Q, Assessment of Memory
Complaint Questionnaire.

were female (n = 78). The mean age of the young group was
31.34 years (SD = 13.12) while for the old group the mean age
was 69.32 years (SD = 4.23).

Relationship Between Polygenic Risk
Scores and Intrinsic Connectivity
After controlling for ApoE status, age, gender and education,
seed-based correlation and ROI-to-ROI analysis of a pooled
group of both young and old adults (n = 136) revealed no
significant association between the PRS and intrinsic functional
connectivity of the PCC with other ROIs (q-FDR > 0.05). More
specifically, we looked at the connectivity of the PCC with
largely implicated regions in AD pathology that are critical for
episodic and spatial memory [i.e., the medial temporal lobe
(MTL)] and whose functional connectivity is also altered in
early AD (Cutsuridis and Yoshida, 2017; Berron et al., 2020).
Our results did not show a significant association between
the connectivity of the PCC and bilateral hippocampus in
participants with PRS (right: beta = 53.80, q-FDR = 0.930829;
left: beta = −54.82, q-FDR = 0.927068). Moreover, there
was no significant association of the connectivity between
both the right posterior parahippocampus (beta = −109.68,
q-FDR = 0.920784) and the left posterior parahippocampus
(beta = 79.07, q-FDR = 0.920784) and the PCC with individual
PRS. We furthermore explored alterations of connectivity of
the PCC with the amygdala and its association with PRS and
could neither find significant results for the right amygdala

(beta = 36.25, q-FDR = 0.985057), nor for the left amygdala
(beta = 65.50, q-FDR = 0.985057).

To verify the results, we extracted the beta connectivity values
of the PCC and the above-mentioned regions and examined
their association with the respective PRS of each individual in
RStudio using multiple linear regression. This additional analysis
did not yield any significant association between the PRS and
PCC connectivity with other ROIs, neither in the young nor in
the old group (p > 0.05).

Relationship Between Polygenic Risk
Scores and Cognitive Performance of
Young and Old Groups
The two-step hierarchical regression revealed PRS to be a
significant predictor for cognitive performance in Letter Number
Span and Spatial Span in elderly individuals (>60 years). The
regression model with Letter Number Span as dependent variable
revealed that at stage one, gender, age, education, and ApoE
status did not contribute significantly to the regression model
[F(4,50) = 2.06, p = 0.10] and accounted for 14.2% of the
variation in Letter Number Span scores. Introducing the PRS
ratio explained an additional 7.7% of variation in Letter Number
Span Scores and this change in R2 was significant [F(5,49) = 2.74,
p = 0.029]. Together the five independent variables accounted
for 21.9% of the variance in Letter Number Span scores (see
Table 2). The regression model with Spatial Span as dependent
variable revealed that at stage one, gender, age, education, and
ApoE status did not contribute significantly to the regression
model [F(4,50) = 2.42, p = 0.06] and accounted for 16.2%
of the variation in Spatial Span scores. Introducing the PRS
explained an additional 7.2% of variation in Spatial Span Scores
and this change in R2 was significant [F(5,49) = 3.00, p = 0.019].
Together the five independent variables accounted for 23.4%
of the variance in Spatial Span scores (see Table 3). The
association between PRS and performance in working memory
tests (Letter Number Span and Spatial Span) in the old group
is demonstrated in Figure 1. Statistical analyses with the whole
group did not reveal any significant associations between PRS and
cognitive performance. Furthermore, there were no significant
associations between PRS and cognitive performance in the
group of young individuals.

DISCUSSION

In a cohort of cognitively healthy adults, we conducted an
exploratory analysis to investigate the association between the
genetic risk for AD reflected in a PRS and intrinsic functional
connectivity. Our findings demonstrate that PRS did not
have a significant predictive effect on the intrinsic functional
connectivity of the PCC with other regions in the brain that
are implicated in AD. In addition, we investigated the effect
of PRS on cognitive performance. Our results show that a
higher PRS seems to have a significant association with working
memory performance in participants older than 60 years. In
this group, a higher PRS was significantly associated with worse
performance in tests of working memory capacity. In the next
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TABLE 2 | Summary of hierarchical regression analysis for variables predicting Letter Number Span performance.

Variable B SE B β T p

Step 1

ApoE 0.12 0.28 0.057 0.43 0.67

Age −0.13 0.08 −0.20 −1.52 0.14

Gender 0.82 0.76 0.15 1.08 0.28

Education 0.19 0.12 0.22 1.60 0.11

Step 2

ApoE 0.15 0.27 0.07 0.55 0.58

Age −0.11 0.08 −0.17 −1.33 0.19

Gender 0.96 0.73 0.17 1.30 0.20

Education 0.16 0.12 0.18 1.38 0.17

PRS −6073.0 2763.1 −0.28 −2.19 0.03

R2 = 0.142 for Step 1, 1R2 = 0.077 (p < 0.05).

TABLE 3 | Summary of hierarchical regression analysis for variables predicting Spatial Span performance.

Variable B SE B β T p

Step 1

ApoE 0.56 0.28 0.057 0.19 0.84

Age −0.14 0.09 −0.20 −1.64 0.11

Gender 1.47 0.76 0.15 1.90 0.06

Education 0.18 0.12 0.22 0.96 0.34

Step 2

ApoE 0.09 0.28 0.04 0.31 0.76

Age −0.12 0.08 −0.18 −1.45 0.15

Gender 1.61 0.75 0.28 2.14 0.04

Education 0.08 0.12 0.09 0.72 0.47

PRS −6093.3 2815.3 −0.27 −2.15 0.04

R2 = 0.162 for Step 1, 1R2 = 0.072 (p < 0.05).

FIGURE 1 | Association between the Polygenic Risk Score (PRS) for AD and performance in working memory tests (Letter Number Span and Spatial Span). The red
line demonstrates that a higher genetic risk for AD, reflected in a higher PRS, is associated with decreased working memory capacity, reflected in lower scores, in
both tests.
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paragraphs, we aim to contextualize our findings, and to interpret
their implication in practical terms as well as account for the
limitations of the present study.

Previous evidence suggests that the DMN and the PCC
connectivity are greatly disrupted in AD by amyloid deposition in
DMN regions (Greicius et al., 2004; Sperling et al., 2009; Beason-
Held, 2011; Binnewijzend et al., 2012; Damoiseaux et al., 2012;
Palmqvist et al., 2017). Altered functional connectivity of the
DMN has also been observed in cognitively healthy ApoE ε4
carriers as well as in patients with MCI or AD (Lambert et al.,
2013). Nonetheless, clinical trials targeting the amyloid cascade
hypothesis have shown inconsistent results so far (Yiannopoulou
et al., 2019; Walsh et al., 2021). Anti-amyloid monoclonal
antibody treatments such as the recently approved Aducanumab
showed reduction in amyloid load in people with MCI or
early AD (Sevigny et al., 2016; Office of the Commissioner,
2021; Walsh et al., 2021). However, the clinical benefits (i.e.,
reversal or slowing of cognitive decline) of this drug are yet
to be confirmed in further post-approval clinical trials (Office
of the Commissioner, 2021). The previous inconsistent results
of clinical trials have directed research into looking for other
potential genetic risk factors that are linked to AD. We first
investigated whether an elevated genetic risk for AD in healthy
persons, reflected in a polygenic risk score that excludes the
ApoE region, may have similar alterations in intrinsic functional
connectivity to that observed in patients with MCI and AD.
This was done by calculating a PRS based on Single Nucleotide
Polymorphisms (SNPs) that are significantly associated with AD.
Results from our sample could not demonstrate a significant
association between individual PRS and intrinsic functional
connectivity of the PCC and other regions in the brain,
namely bilateral hippocampus, bilateral anterior and posterior
parahippocampus, and bilateral amygdala.

Secondly, we looked at the effect of PRS on cognitive
performance. We found that a higher PRS was negatively
associated with performance in tests of working memory.
However, this was true only in participants who were older
than 60 years. Working memory is mostly described as a
system that maintains and stores information in the short
term. Contents within working memory are actively held and
manipulated over a limited period of time (Baddeley, 2000).
Information is stored between 15 and 30 s in working memory,
although this time can be substantially prolonged when the
information is constantly rehearsed (Baddeley, 2000). Following
Baddeley’s (2000) model, working memory can be subdivided
by two main components: the phonological loop and the visuo-
spatial sketchpad. The phonological loop stores phonological
information and prevents its decay by continuously articulating
its contents. The visuo-spatial sketchpad handles visual and
spatial information. Working memory facilitates planning,
comprehension, reasoning, and problem-solving (Baddeley,
2005). Previous studies showed that working memory is sensitive
to AD pathology (Saunders and Summers, 2011) and that
tests of working memory such as Letter Number Span can
reliably differentiate healthy controls from patients with MCI
or AD (Kessels et al., 2011). Some findings suggest a possible
effect of age on working memory capacity with significant

decline starting at the age of 60 years (Dobbs and Rule, 1989).
A higher genetic risk for AD might amplify the age-related
decline. Overall, there is increasing evidence that a higher
genetic risk of AD reflected in a higher PRS is associated
with a faster decline in memory (Ge et al., 2018; Gustavson
et al., 2022). Ge et al. (2018) investigated the influence of a
genetic risk for AD on Amyloid β (Aβ) accumulation in the
brain, cognitive performance, and hippocampal volume over
the course of 2 years. The study found that higher polygenic
risk was strongly associated with higher rates of decline in
memory and executive function. This was shown primarily in
individuals with a cerebral accumulation of Aβ. Our finding
of a negative association of PRS and memory performance
in elderly participants, but not in younger individuals, could
be due to the fact that there was some degree of Aβ

accumulation in the brains of the elderly individuals that was
not present in the younger group. Cerebral Aβ accumulation
associated with Alzheimer’s Disease usually starts later in life,
around the age of 60–70 years (Bilgel et al., 2016). Since
we only found an association between PRS and working
memory performance in the older group (<60 years), a possible
explanation could be the prevalence of cerebral Aβ in this
group, which may be contributing to the association between
working memory performance and PRS (Dobbs and Rule, 1989).
However, since we do not have information on cerebral Aβ

accumulation for the participants of our study, this hypothesis
remains speculative.

We conducted our analysis with a PRS that excluded the ApoE
region. Previous evidence suggests that PRS excluding ApoE
region is able to differentiate between cognitively healthy adults
and those with amnestic MCI (who had higher PRS) (Logue
et al., 2019). Findings regarding the association of PRS (including
ApoE) with cognition have been inconsistent with some studies
showing a lack of significant association with overall cognitive
performance (Gui et al., 2014; Bressler et al., 2017), while others
found PRS to be associated with a decline in working memory
in cognitively healthy adults (Andrews et al., 2016) and in global
cognition (Mormino et al., 2016). Our findings suggest that a
higher genetic risk of AD beyond ApoE status may drive similar
mechanisms that lead to cognitive impairment and deficits in
working memory (Becker, 1988; Kessels et al., 2011; Saunders and
Summers, 2011).

A major limitation of this present study is the small sample
size, specifically after stratification of the sample by age. Since
both age and cognitive scores followed a bimodal distribution,
we decided to conduct the analysis of cognitive performance
in two different age groups. We consider our study to be an
exploratory study to examine the association of genetic risk with
intrinsic connectivity and cognitive performance. Since genetic
variables usually have a small effect size, the small sample size
could have resulted in negative findings due to a lack of statistical
power. With a larger sample size and thus more statistical power
we might have been able to also detect an effect of genetic
risk for AD on intrinsic functional connectivity. Studies with
small sample sizes have the advantage of allowing to investigate
such association while using feasible resources (e.g., less of the
participants’ time and lower financial costs). Nonetheless, larger

Frontiers in Aging Neuroscience | www.frontiersin.org 7 May 2022 | Volume 14 | Article 837284

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-837284 May 5, 2022 Time: 14:21 # 8

Ibnidris et al. PRS and Functional Connectivity in AD

studies are required to further examine and confirm results
generated from studies with smaller sample size.

Another limitation is that we only investigate the association
of the PRS and intrinsic functional connectivity in cognitively
healthy adults. We did not compare this cohort of participants
to a group of patients with MCI or AD. Therefore, we could
not compare the results and identify potential similarities or
differences between the two groups. However, our results still
provide a considerable insight into the potential role of genetic
variants of AD beyond ApoE ε4 on the modulation of cognitive
functions. As this was conducted as an exploratory analysis,
further investigation, and comparison between cognitively
healthy and people with MCI/AD is imperative to compliment
the presented findings. Another potential limitation is the
unavailability of longitudinal data of the analyzed sub-sample
of this cohort. We analyzed the functional connectivity data
that was taken at a cross-sectional point in time. Insightful
information could be gathered if we follow up this sample and
investigate whether there is further significant modulation in the
intrinsic functional connectivity or cognitive decline in relation
to their PRS. Secondly, carriers of genetic variants associated
with AD may not necessarily express the phenotype (i.e., typical
clinical symptoms of AD) in their lifetime. Therefore, it is
important to track those who have shown a worse performance
in working memory tasks and examine whether they started to
express clinical symptoms, show alteration in intrinsic functional
connectivity, and develop further cognitive decline.

CONCLUSION

Our results contribute to the growing body of research exploring
the complex polygenicity of AD and its association with
alterations in functional connectivity at rest and in cognitive
functions. Further investigation of the interaction between
genetic risk factors and other sociodemographic variables
is warranted to understand the epigenetic nature of AD
in older adults.
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