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Abstract
In rodents, fibroblast growth factor 21 (FGF21) has emerged as a key metabolic regulator

produced by liver. To gather preliminary data on the potential importance of FGF1, co-regu-
lated genes, and upstream metabolic genes, we examined the hepatic mRNA expression in

response to nutrition and inflammation in dairy cows. In experiment 1, induction of ketosis

through feed restriction on d 5 postpartum upregulated FGF21, its co-receptor KLB, and
PPARA but only elicited a numerical increase in serum FGF21 concentration. In experiment

2, cows in control (CON) or receiving 50 g/d of L-carnitine (C50) from -14 through 21 d had

increased FGF21, PPARA, and NFIL3 on d 10 compared with d 2 postpartum. In contrast,

compared with CON and C50, 100 g/d L-carnitine (C100) resulted in lower FGF21, KLB,
ANGPTL4, and ARNTL expression on d 10. In experiment 3, cows were fed during the dry

period either a higher-energy (OVE; 1.62 Mcal/kg DM) or lower-energy (CON; 1.34 Mcal/kg

DM) diet and received 0 (OVE:N, CON:N) or 200 μg of LPS (OVE:Y, CON:Y) into the mam-

mary gland at d 7 postpartum. For FGF21mRNA expression in CON, the LPS challenge

(CON:Y) prevented a decrease in expression between d 7 and 14 postpartum such that

cows in CON:N had a 4-fold lower expression on d 14 compared with d 7. The inflammatory

stimulus induced by LPS in CON:Y resulted in upregulation of PPARA on d 14 to a similar

level as cows in OVE:N. In OVE:Y, expression of PPARA was lower than CON:N on d 7 and

remained unchanged on d 14. On d 7, LPS led to a 4-fold greater serum FGF21 only in OVE

but not in CON cows. In fact, OVE:Y reached the same serum FGF21 concentration as

CON:N, suggesting a carryover effect of dietary energy level on signaling mechanisms

within liver. Overall, results indicate that nutrition, ketosis, and inflammation during the peri-

partal period can alter hepatic FGF21, co-regulated genes, and upstream metabolic genes

to various extents. The functional outcome of these changes merits further study, and in

particular the mechanisms regulating transcription in response to changes in energy bal-

ance and feed intake.
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Introduction
Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator of the FGF family that is
produced by the liver and in rodents has an important role in the regulation of glucose and
lipid metabolism [1, 2]. In non-ruminants, the induction of mRNA expression of hepatic
FGF21 stimulates glucose uptake in adipocytes and skeletal muscle, thus, improving insulin
sensitivity and reducing serum triacylglycerol (TAG) concentrations [3, 4]. Hepatic FGF21 also
plays a role in regulation of hepatic oxidation of fatty acids and gluconeogenesis in response to
fasting and during consumption of high-fat diets [5]. The physiological importance of FGF21
has been partly demonstrated using FGF21-null mice fed a ketogenic diet, which led to higher
rates of lypolysis during fasting and greater deposition of liver TAG [6, 7]. Schoenberg et al. [8]
working with periparturient cows reported that the onset of negative energy balance (NEB)
after calving was associated with increased plasma FGF21 concentration and greater FGF21
mRNA expression in liver.

Carnitine has an important role in various metabolic functions including mitochondrial
long-chain fatty acid (LCFA) oxidation, and has been shown to dramatically decrease or pre-
vent liver lipid accumulation in laboratory animals [9, 10] and dairy cows [11]. Recently, Schle-
gel et al. [12] working with periparturient cows observed a positive correlation between FGF21
mRNA expression and genes involved in carnitine synthesis. Furthermore, in rodents the onset
of infection, inflammation, trauma, and malignancy induces the acute-phase response (APR),
which leads to a decrease in hepatic oxidation of fatty acids and ketogenesis [13,14]. Feingold
et al. [15] proposed that FGF21 is a positive APR protein that could help protect animals from
the toxic effects of LPS and sepsis.

The above data led us to hypothesize that FGF21 has a central role in the adaptations to
NEB, ketosis, carnitine supplementation, and inflammatory challenge in peripartal dairy cows.
Thus, the aim of the present study was to develop a better understanding of the role of hepatic
FGF21, co-regulated genes, and upstream metabolic genes related to hepatic metabolism. To
achieve this aim we used liver and serum samples from previous experiments dealing with
early postpartal ketosis[16], peripartal dietary L-carnitine supplementation[11], and prepartal
level of dietary energy and postpartal intramammary LPS challenge [17].

Materials and Methods

Experimental Design and Treatments
The present study was performed using samples from three different experiments, i.e. early
postpartal ketosis[16, 18], peripartal dietary L-carnitine supplementation[11], and prepartal
dietary energy level and postpartal inflammatory challenge [17]. All these experiments were
performed at the University of Illinois Dairy Research Center under protocols approved by the
Institutional Animal Care and Use Committee (IACUC) of the University of Illinois.

Early Postpartal Ketosis. The details of the animal management and sample collection
were presented earlier [16, 18]. Briefly, all Holstein cows were housed in individual tie-stalls,
were fed twice daily at ~1000 and 1500 h, and had unlimited access to fresh water. On d 5 post-
partum, cows were randomly assigned to control (n = 7) or ketosis-induction (n = 7) based on
a thorough physical examination on d 4 postpartum. Cows in the ketosis-induction group were
fed at 50% of d 4 intake from d 5 until d 14 postpartum or until they developed signs of clinical
ketosis (anorexia, ataxia, or abnormal behavior) while the control group were fed ad libitum
throughout the treatment period. The cows with ketosis had higher (P< 0.05) concentrations
of serum NEFA, BHBA but lower glucose, as well as greater total lipid and TAG in liver than
did control cows [16]. A single liver biopsy for gene expression analysis was performed prior to
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the morning meal between d 9 and 14 (ketosis induction) or d 14 postpartum (control). The
serum samples for FGF21 analysis were from the same day of the biopsy. Energy balance of the
cows at the time of liver biopsy was greater (P< 0.05) for the control (93% of estimated
requirements) compared with the ketotic cows (53% of estimated requirements) [18].

Dietary Carnitine Supplementation. Detailed information of the animal management
and sample collection was reported by[11]. Briefly, all Holstein cows were housed in individual
tie-stalls, were fed twice daily at ~1000 and 1500 h, and had unlimited access to fresh water.
Cows were assigned to treatments at d −25 relative to expected calving date and remained on
experiment until d 56. Treatments were four amounts of supplemental dietary L-carnitine (L-
carnitine; Lonza, Inc., Allendale, NJ): control (CON, 0 g/d of L-carnitine; n = 14); low carnitine
(6 g/d; n = 11); medium carnitine (C50, 50 g/d; n = 12); and high carnitine (C100, 100 g/d;
n = 12). Carnitine supplementation began on d −14 relative to expected calving and continued
until d 21. Liver biopsies harvested at d 2 and 10 postpartum before the morning meal were
used for gene expression analysis. Blood serum samples from this study were not available for
FGF21 determination. Hepatic concentration of free carnitine on d 2 and 10 was greater
(P< 0.05) than controls with C50 and C100 [11]. Furthermore, at d 2 and 10 higher (P< 0.05)
total lipid and TAG concentrations were observed in liver from CON cows compared with C50
and C100 [11]. Therefore, liver tissue from d 2 and 10 from CON (n = 6), C50 (n = 6), and
C100 (n = 6) were used for gene expression analysis. Energy balance of the cows at the time of
liver biopsy was greater (P< 0.05) in CON (87% of estimated requirements) and C50 (85% of
estimated requirements) compared with C100 (63% of estimated requirements) [11].

Prepartal Dietary Energy and Postpartal Intramammary LPS Challenge. Detailed infor-
mation of the animal management and sample collection was presented by[17]. Briefly, all Hol-
stein cows were housed in individual tie-stalls, were fed twice daily at ~1000 and 1500 h, and
had unlimited access to fresh water. Cows were assigned randomly (n = 20 per diet) to a lower-
energy diet (CON, high-fiber; 1.34 Mcal/kg DM), which was fed ad libitum to provide approxi-
mately 100% of calculated NEL requirements, or were fed a diet to provide at least 150% of cal-
culated NEL requirements (OVE, overfed group; 1.62 Mcal/kg DM) during the entire 45 days
of dry period [19]. After parturition, cows were moved to a tie-stall barn, fed a common lacta-
tion diet (NEL = 1.69 Mcal/kg DM), and milked twice daily (0400 and 1600 h).

At d 7 postpartum, each group (i.e. CON and OVE) were further divided into two additional
groups (total of 4 groups) based on whether they received an intramammary E. coli LPS chal-
lenge (200 μg, strain 0111:B4, cat. # L2630, Sigma Aldrich, St. Louis, MO) or not, i.e. 0 (OVE:
N, CON:N) or 200 μg LPS (OVE:Y, CON:Y). Liver tissue harvested on d 7 (2.5 h post-LPS for
OVE:Y, CON:Y) and d 14 postpartum (n = 6/dietary group) before the morning meal was used
for gene expression analysis. Blood sampled from the coccygeal vein or artery on d 7 (prior to
LPS and liver biopsy) and 14 relative to parturition was used for FGF21 determination. Energy
balance of the cows at the time of liver biopsy was greater (P< 0.05) in CON (78% of estimated
requirements) compared with OVE (65% of estimated requirements) [17].

RNA Extraction, Primer Design, and qPCR Analysis
The complete procedures for RNA extraction and qPCR analysis have been published previ-
ously[20,21]. Briefly, approximately 0.2 to 0.3 g of liver tissue was homogenized in 1 to 2 mL
ice-cold TRIzol reagent (Invitrogen, Carlsbad, CA, Cat. No. 15596–026) and RNA extraction
was performed as described previously[22]. Concentration of RNA was measured using a
NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE), while
the RNA quality was assessed using a 2100 Bioanalyzer (Agilent Technologies Inc., Santa
Clara, CA). The average RNA integrity number value of all samples used was 8 ± 0.4. Total
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RNA was purified with the RNeasy Mini Kit and residual DNA removed using the RNase-Free
DNase Set (Qiagen, Valencia, CA). The extracted and cleaned RNA was re-suspended in
RNase free water (Qiagen, Cat No. 74104) and stored at −80°C until qPCR analysis.

The evaluation of direct links among nutrition, ketosis and inflammation were evaluated
through the assessment of genes associated with fatty acid oxidation (carnitine palmitoyltransfer-
ase 1A, CPT1A; peroxisome proliferator-activated receptor alpha, PPARA), FGF21 signaling
(klotho beta, KLB), and the hepatokine angiopoietin-like 4 (ANGPTL4). In addition, recent data
from rodent work provided evidence that the BMAL1 (aryl hydrocarbon receptor nuclear trans-
locator-like, ARNTL)-CLOCK complex activates the rodent FGF21 promoter, whereas another
circadian gene (nuclear factor, interleukin 3 regulated,NFIL3) suppresses it[23, 24]. Furthermore,
the downregulation of FGF21 with insulin in non-ruminants is mediated throughNFIL3[23].
Therefore, the expression of selected genes associated with circadian rhythms (ARNTL; clock cir-
cadian regulator, CLOCK;NFIL3) and insulin signaling (v-akt murine thymoma viral oncogene
homolog 1, AKT1) also were investigated. The final data were normalized using the geometric
mean (stability = 0.20) [25] of ubiquitously-expressed transcript (UXT), glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH), and ribosomal protein S9 (RPS9). Details of the primers and
sequences are presented in supplementary Tables A-D in the S1 File.

Serum Concentration of FGF21
Because FGF21 is a secreted protein, ELISA was performed to determine the serum concentra-
tion of FGF21 using a Mouse and Rat FGF-21 ELISA (BioVendor, Laboratorni medicina a.s.,
Brno, Czech Republic, Cat. No. RD291108200R). The antibody provided with the kit report-
edly has cross reactivity with the bovine FGF21 protein, which we previously confirmed[20].
However, it should be kept in mind that the primary antibody also cross-reacts with other
bovine proteins. Thus, the data generated should be regarded as qualitative than quantitative.
All the procedures were performed according to the manufacturer’s protocol. The minimal
detectable concentration of FGF21 with this assay estimated by the manufacturer is 18.4 pg/
mL. The lowest concentration detected in cow serum in the present study was 48.88 pg/mL.
The intra- and inter-assay coefficients of variation were less than 9.0% and less than 8.0%,
respectively.

Statistical Analysis
The MIXED procedure of SAS (version 9.1; SAS Institute Inc., Cary, NC) was used for statisti-
cal analysis. In experiment 1, diet (control and ketosis) was included as fixed effect. In experi-
ment 2, the model considered as fixed effects diet (CON, C50, and C100), d (2 and 10) and the
interaction between diet and day. A repeated measures analysis was performed using the AR(1)
covariate structure. In experiment 3, the model included as fixed effects diet (CON and OVE),
LPS (No and Yes), d (7 and 14) and all possible interactions. Data were normalized by logarith-
mic transformation prior to statistical analysis. All means were compared using the PDIFF
statement of SAS. Gene expression data reported in tables were back-transformed after statisti-
cal analysis. The 95% confidence intervals were calculated with logarithmic transformed data
using a modified version of the Cox method as suggested by Olsson [26].

Results

Hepatic Gene Expression
Early Postpartal Ketosis. A greater FGF21 (P< 0.01) and KLB (P = 0.02) mRNA expres-

sion was detected in ketotic cows compared with control cows (Table 1). No significant change
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(P> 0.05) was observed between control and ketotic cows for the mRNA expression of
ARNTL, CLOCK, NFIL3 and AKT1. The mRNA expression of CPT1A and PPARA was not
measured in this study because they were reported by Loor et al.[16].

Dietary L-Carnitine Supplementation. There was an interaction (diet × day; P< 0.05;
Table 2) for all genes except AKT1 and a tendency for interaction (P = 0.06) for CLOCK. The
mRNA expression of FGF21, CPT1A, and ARNTL was not affected (P> 0.05) by diet or time,
but an interaction occurred (diet × day; P< 0.05). No main effects of carnitine (P> 0.05) were
observed for AKT1. Supplemental carnitine did not affect FGF21 at d 2, while at d 10 feeding
C100 resulted in a marked decrease in FGF21 compared with control. No main effect of carni-
tine or time were observed for CPT1A expression; however, feeding C50 increased CPT1A
expression at d 2 compared with d 10 (diet × day; P< 0.05). At d 2, no change was observed in
the expression of ARNTL between the treatments, whereas at d 10 feeding C100 decreased the
expression of ARNTL compared with control and C50. Furthermore, between d 2 and 10,
ARNTL expression was lower in cows fed C100.

There was an interaction (diet × day; P< 0.05; Table 2) for PPARA, KLB, and NFIL3. The
mRNA expression of PPARA, KLB, and NFIL3 was affected by diet (P< 0.01); however, no
effect of time (P> 0.05) was observed for these genes. The mRNA expression of PPARA and
KLB were not affected by diets at d 2, whereas at d 10 the C100 decreased their expression.
Feeding C50 increased expression of PPARA and C100 increased expression of KLB. Further-
more, at d 10 mRNA expression of PPARA and KLB was lower with C100 in comparison with
control and C50. At d 2, the mRNA expression of NFIL3 was increased with feeding C50
(P< 0.05) in comparison with control; while at d 10 feeding C100 decreased (P< 0.05) NFIL3
expression compared with C50.

The mRNA expression of ANGPTL4 decreased (diet × day, P< 0.05; Table 2) from d 2 to
10 with the highest dose of carnitine (C100) supplementation, whereas an increase was
observed in controls between d 2 and 10 relative to parturition (P< 0.01). However, no signifi-
cant change was observed in cows fed C50 between d 2 and 10 relative to parturition. Overall,
at d 2, the control had lower mRNA expression of ANGPTL4, but at d 10 feeding C100 result in
a marked decrease. A tendency for a main effect of diet (P = 0.06) and an interaction (P = 0.06)

Table 1. Hepatic mRNA expression of FGF21, FGF21 binding, and genes associated with circadian rhythms and insulin signaling in control cows
(n = 7) and cows induced to develop ketosis (n = 7) by undernutrition after calving. Liver biopsy was performed at d 9 to 14 (ketosis induction) or 14 d
postpartum (control) before the morning meal. The 95% confidence interval (CI) is reported.

Gene Treatment Relative expression1 CI P value

FGF21 Control 3.26 1.33 to 7.99 <0.01

Ketotic 133.4 94.61 to 188.20

KLB Control 7.97 5.66 to 11.24 0.02

Ketotic 25.5 18.08 to 35.89

ARNTL Control 1.48 1.17 to 1.87 0.26

Ketotic 2.16 1.71 to 2.72

CLOCK Control 0.37 0.29 to 0.47 0.20

Ketotic 0.57 0.40 to 0.65

NFIL3 Control 0.55 0.43 to 0.70 0.39

Ketotic 0.74 0.58 to 0.93

AKT1 Control 0.42 0.37 to 0.49 0.86

Ketotic 0.44 0.38 to 0.50

1Calculated after normalization with the geometric mean of UXT, GAPDH and RPS9 (see materials and methods).

doi:10.1371/journal.pone.0139963.t001
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were observed for CLOCK. At d 2, C50 decreased CLOCKmRNA expression in comparison
with control and C100; however, C50 did not induce differences (P> 0.05) compared with
other treatments at d 10.

Prepartal Energy and Postpartal Intramammary LPS Challenge. Interactions among
diet, time, and LPS (P< 0.05) were observed for FGF21, PPARA, NFIL3, and CLOCK
(Table 3). A day × LPS interaction (P< 0.05) was observed for ANGPTL, NFIL3, CLOCK,
ARNTL, and AKT1. Except for FGF21 (P = 0.07), no other gene had an interaction between
diet and LPS. A diet × day (P< 0.05) interaction was only observed for AKT1.

LPS challenge tended (diet × LPS, P = 0.07) to increase FGF21mRNA expression at d 7 in
OVE:Y and CON:Y compared with the respective controls (Table 3). However, OVE:Y and
CON:N resulted in a marked decrease (diet × day × LPS, P< 0.01) in mRNA expression from
d 7 to 14 and a nadir in expression was observed in CON:N. The mRNA expression of PPARA
was higher (diet × day × LPS, P< 0.05) at d 14 in CON:N and CON:Y groups, whereas no sig-
nificant change (P> 0.05) was detected for the mRNA expression of CPT1A. The mRNA
expression of ANGPTL4 was greater (day, P< 0.05) at d 7, and in OVE:N compared with
CON:N (diet, P = 0.06). Furthermore, LPS increased the mRNA expression of ANGPTL4 in
both OVE:Y and CON:Y and, similar to controls (OVE:N and CON:N), mRNA expression
decreased (LPS × diet, P< 0.05) on d 14. Regardless of prepartal dietary energy, LPS markedly
decreased (LPS, P< 0.05) KLBmRNA expression.

Table 2. Hepatic mRNA expression of FGF21, FGF21 binding, and genes associated with circadian rhythms and insulin signaling in cows fed con-
trol (0 L-carnitine; n = 6) and dietary L-carnitine at a rate of 50 g/d (C50; n = 6) or 100 g/d (C100; n = 6) from d −14 through 21 around parturition.
Liver biopsies harvested at d 2 and 10 postpartum before the morning meal. The 95% confidence interval is reported in parentheses.

Gene Day Treatment P value

CON C50 C100 Diet (T) Day (D) T × D

FGF21 2 0.89 (0.52 to 1.22) 0.32 (0.19 to 0.53) 0.62* (0.40 to 0.74) 0.21 0.85 0.03

10 1.34A (0.80 to 1.51) 0.51AB (0.30 to 0.84) 0.23B* (0.15 to 0.34)

PPARA 2 1.16 (1.04 to 1.29) 1.06* (0.97 to 1.18) 1.11 (0.99 to 1.24) 0.08 0.68 0.02

10 1.23A (1.14 to 1.37) 1.33A* (1.23 to 1.50) 1.04B (0.93 to 1.10)

KLB 2 1.08 (0.95 to 1.23) 0.93 (0.82 to 1.05) 1.06* (0.92 to 1.21) <0.01 0.46 <0.01

10 1.06A (0.94 to 1.20) 1.02A (0.90 to 1.16) 0.69B* (0.60 to 0.80)

CPT1A 2 1.01 (0.90 to 1.12) 0.91* (0.82 to 1.02) 1.06 (0.94 to 1.19) 0.81 0.39 0.05

10 1.13 (1.07 to 1.25) 1.11* (1.04 to 1.24) 0.90 (0.80 to 1.02)

ANGPTL4 2 0.73A* (0.63 to 0.85) 1.23B (1.06 to 1.42) 1.26B* (1.07 to 1.48) 0.23 <0.01 <0.01

10 1.05A* (0.91 to 1.21) 1.01A (0.87 to 1.16) 0.53B* (0.45 to 0.62)

ARNTL 2 0.37 (0.28 to 0.48) 0.24 (0.19 to 0.32) 0.30* (0.23 to 0.39) 0.37 0.41 <0.05

10 0.33A (0.25 to 0.42) 0.33A (0.26 to 0.42) 0.17B* (0.13 to 0.22)

CLOCK 2 0.73A (0.45 to 1.19) 0.08B* (0.05 to 0.14) 0.93A (0.53 to 1.60) 0.06 0.02 0.06

10 0.76 (0.47 to 1.23) 0.36* (0.24 to 0.62) 1.05 (0.59 to 1.82)

NFIL3 2 0.98A* (0.88 to 1.10) 1.34B* (1.20 to 1.50) 1.21AB (1.06 to 1.36) <0.01 0.14 0.03

10 1.35AB* (1.22 to 1.56) 1.72B* (1.54 to 1.92) 1.21A (1.07 to 1.36)

AKT1 2 0.12 (0.10 to 0.14) 0.13 (0.11 to 0.15) 0.16 (0.14 to 0.18) 0.33 0.49 0.26

10 0.13 (0.12 to 0.15) 0.14 (0.13 to 0.16) 0.15 (0.13 to 0.17)

1Calculated after normalization with the geometric mean of UXT, GAPDH and RPS9 (see materials and methods).

*Means within the treatment group differ (P < 0.05) between d 2 and 10.
ABCWithin time point (d 2 and 10), treatment means (CON, C50 and C100) without a common superscript differ (P < 0.05).

doi:10.1371/journal.pone.0139963.t002
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The mRNA expression of genes associated with the circadian rhythm was significantly
affected by the interaction of diet, day, and LPS challenge (P< 0.05; Table 3); NFIL3 increased
while a decrease was observed for ARNTL and CLOCKmRNA expression in cows receiving the
LPS challenge (OVE:Y, CON:Y) at d 7. Furthermore, results revealed an increase (diet × LPS,
P< 0.05) in NFIL3mRNA expression due to LPS challenge (OVE:Y, CON:Y) at d 7; however,
that was followed by a decrease at d 14. The mRNA expression of ARNTL was greater (day,

Table 3. Hepatic mRNA expression of FGF21, FGF21 binding, and genes associated with circadian rhythms and insulin signaling in cows overfed
energy (OVE:N; n = 6) or fed to meet energy requirements (CON:N; n = 6) during the entire dry period, and receiving an intramammary LPS chal-
lenge at d 7 postpartum (CON:Y, OVE:Y). Liver tissue harvested at 2.5 h post-LPS on d 7 and 14 postpartum before the morning meal. The 95% confi-
dence interval is reported in parenthesis.

Gene Day Treatment P value

OVE:N OVE:Y CON:N CON:Y Diet
(T)

Day
(D)

LPS
(L)

T × D T × L D × L T × D ×
L

FGF21 7 0.81AB (0.49 to
1.33)

1.27A* (1.08 to
1.47)

0.25B* (0.16 to
0.52)

0.82AB (0.51 to
1.33)

<0.01 0.04 0.07 0.11 0.07 0.56 <0.01

14 0.87A (0.53 to
1.42)

0.55A* (0.34 to
0.84)

0.06B* (0.03 to
0.10)

0.66A (0.41 to
1.07)

PPARA 7 0.77A* (0.68 to
0.88)

0.81A (0.72 to
0.92)

1.13B (0.97 to
1.32)

0.86AB* (0.76 to
0.98)

0.06 <0.01 0.42 0.43 0.68 0.82 <0.01

14 1.01AB* (0.90 to
1.15)

0.87A (0.77 to
0.98)

1.26B (1.08 to
1.47)

1.20B* (1.06 to
1.37)

CPT1A 7 1.10 (1.01 to
1.19)

1.05 (0.97 to
1.14)

0.89 (0.83 to
1.06)

1.01 (0.94 to
1.10)

0.16 0.53 0.85 0.74 0.16 0.27 0.27

14 1.14 (1.04 to
1.24)

0.97 (0.89 to
1.09)

0.88 (0.80 to
1.05)

1.01 (0.93 to
1.09)

ANGPTL4 7 1.27 (0.99 to
1.80)

2.19 (1.72 to
2.80)

0.51 (0.38 to
0.70)

2.27 (1.77 to
2.90)

0.06 <0.01 0.21 0.66 0.16 <0.01 0.17

14 0.96 (0.65 to
1.22)

0.52 (0.41 to
0.67)

0.46 (0.33 to
0.72)

0.39 (0.31 to
0.50)

KLB 7 1.13 (0.65 to
1.47)

0.24 (0.14 to
0.41)

1.06 (0.54 to
1.54)

0.15 (0.09 to
0.24)

0.82 0.32 <0.01 0.32 0.77 0.30 0.83

14 1.03 (0.59 to
1.35)

0.35 (0.10 to
0.26)

1.17 (0.60 to
1.75)

0.13 (0.08 to
0.23)

ARNTL 7 1.37 (1.04 to
1.51)

0.03 (0.02 to
0.05)

0.95 (0.70 to
1.26)

0.02 (0.01 to
0.04)

0.71 0.67 <0.01 0.19 0.73 <0.01 0.26

14 0.83 (0.51 to
1.10)

0.03 (0.02 to
0.05)

0.60 (0.44 to
0.87)

0.05 (0.03 to
0.08)

CLOCK 7 0.95A (0.72 to
1.24)

0.14B* (0.08 to
0.22)

1.04A (0.82 to
1.37)

0.11B (0.07 to
0.18)

0.63 0.10 <0.01 0.20 0.75 0.02 0.01

14 0.95A (0.70 to
1.29)

0.04B* (0.02 to
0.06)

1.02A (0.78 to
1.32)

0.11B (0.06 to
0.19)

NFIL3 7 1.09A (0.93 to
1.29)

4.03B* (3.42 to
4.71)

1.24A* (1.15 to
1.38)

4.69B* (3.99 to
5.14)

0.25 <0.01 0.38 0.10 0.26 <0.01 0.02

14 1.08A (0.92 to
1.28)

0.47B* (0.40 to
0.55)

1.69C* (1.43 to
2.00)

0.58B* (0.49 to
0.68)

AKT1 7 1.34 (1.17 to
1.53)

0.43 (0.37 to
0.49)

1.23 (1.05 to
1.44)

0.39 (0.33 to
0.44)

0.77 0.07 <0.01 0.02 0.69 <0.01 0.44

14 1.27 (1.11 to
1.45)

0.28 (0.25 to
0.32)

1.65 (1.40 to
1.93)

0.30 (0.27 to
0.35)

1Calculated after normalization with the geometric mean of UXT, GAPDH and RPS9 (see materials and methods).

*Means within the treatment group (OVE:N, OVE:Y, CON:N and CON:Y) differ (P < 0.05) between d 7 and 14.
ABCWithin time point (d 7 and 14), treatment means (OVE:N, OVE:Y, CON:N and CON:Y) without a common superscript differ (P < 0.05).

doi:10.1371/journal.pone.0139963.t003
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P< 0.05) in OVE:N at d 7 while it decreased at d 14. The LPS challenge decreased (diet × LPS,
P< 0.05) its expression in both groups, but CON:Y increased ARNTL between d 7 and d 14.
Furthermore, the LPS treatment decreased (P< 0.05) the mRNA expression of CLOCK irre-
spective of diet (day × LPS, P> 0.05), and a further decrease (diet × LPS, P< 0.05) was
detected in OVE:Y at d 14. The mRNA expression of AKT1 increased (diet × LPS, P> 0.05) at
d 14 in CON:N compared with other groups; however, a decrease was observed in the LPS-
challenged groups.

Serum Concentration of FGF21
In the absence of serum samples from the dietary carnitine experiment [11], we only measured
the blood serum concentration of FGF21 from the ketosis [16]and prepartal higher-energy diet
and LPS challenge studies [17]. Although we observed greater mRNA expression of FGF21 in
the liver of ketotic cows, the serum concentration of FGF21 was only numerically different
(P = 0.25) between diets (Fig 1; 1370 ± 279 vs. 905 ± 275 pg/mL).

The serum contraction of FGF21 tended (P = 0.08) to have an interaction among diet, time,
and LPS. No main effected of diet (P = 0.48) or LPS (P = 0.37) was observed, but the interaction
diet × LPS was significant (P< 0.01). Intramammary LPS challenge increased (P< 0.05) the
blood concentration of FGF21 in OVE:Y but decreased it (diet × LPS, P< 0.05) in CON:Y
(Fig 1). Furthermore, OVE:Y and CON:N decreased serum FGF21 concentration between d 7
and 14 (diet × LPS, P< 0.05), whereas OVE:N and CON:Y only had a numerical decrease.

Discussion

Ketosis Induces the mRNA Expression of FGF21
Early lactation in dairy cows is a nutritionally precarious period owing to a combination of
increases in energy requeriments for milk production and decreases in voluntary feed intake
[27]. During periods of NEB, high-producing cows become more susceptible to developing
ketosis, leading to further increases in NEFA, BHBA, hepatic TAG concentration, hepatic
mRNA expression of PPARA and angiopoietin-like 4 (ANGPTL4, a hepatokine), and other
genes associated with ketogenesis and gluconeogenesis[16]. The 41-fold increase in FGF21
mRNA expression in ketotic cows agrees with previous observations in cows with NEB [8].
Work in rodents revealed that plasma FGF21 increases during fasting and it plays a critical role
in metabolic fuel homeostasis during ketosis [28]. It was suggested that increased FGF21 in
obese humans may protect against chronic exposure to high concentrations of NEFA, which
are toxic in muscle, pancreas, and liver [29]. Schoenberg et al. [8] observed a substantial indi-
vidual variation in FGF21 serum concentration among cows, particularly at the time of calving
and very early in lactation. Therefore, the lack of significant difference in FGF21 serum concen-
tration in the present study can be partly attributed to small sampling size and the high varia-
tion among cows. Overall, a period of energy deficit in dairy cows is positively correlated with
FGF21mRNA expression in liver, similar to what is observed in food-deprived rodents and
humans [5, 30]. However, it cannot be discerned from our data if the actual reduction of feed
intake or the onset of ketosis per se caused the change in FGF21 expression.

The somatotropic axis controls many aspects of growth and lactation; calving and NEB are
associated with uncoupling of the somatotropic axis [31]. Calving increases blood concentra-
tion of growth hormone (GH), which further augments blood NEFA during NEB [32–34]. In
non-ruminants, the NEFA can trigger hepatic FGF21 and ANGPTL4 upregulation and produ-
tion through the activation of PPARA [35,36]. In turn, activation of PPARA and FGF21 are cor-
related with an increase in the hepatic protein concentration of CPT1A and HMGCS2 via a
posttranscriptional mechanism without changes in mRNA[1, 28]. The lack of change in CPT1
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activity in hepatic mitochondria [37] and in the mRNA expression of CPT1A with ketosis [16]
suggests that CPT1A might not have been affected by ketosis even though FGF21 mRNA
expression increased and serum contration was numerically higher.

Yu et al. [38] also observed in beef cattle that GH enhances hepatic FGF21 gene transcrip-
tion and that this stimulation is mediated, at least in part, by the transcription factor STAT5.
They suggested that FGF21 inhibits the JAK-2/STAT5 signaling through a negative loop
involving the binding of GH to the hepatic GH receptor (GHR) upon which JAK2-STAT5 sig-
nalling starts and can regulate target genes such as FGF21, IGF1, and SOCS2. However, the
downregulation of GHR, STAT5, IGF1, and SOCS2 in cows with ketosis in our study [16] does
not appear to support the model proposed by Yu et al. [38]. The discrepancy is explained in
part by the fact that hepatic GHR decreases around parturition in dairy cattle but not in beef

Fig 1. Serum concentration of FGF21 in cows overfed energy (OVE:N, n = 6) or fed to meet energy requirements (CON:N, n = 6) during the entire
dry period, and receiving an intramammary LPS challenge at d 7 postpartum (OVE:Y, CON:Y). The error bars represent SEM. The serum contraction of
FGF21 tended to have an interaction among diet, time, and LPS (P = 0.08). No main effected of diet (P = 0.48) or LPS (P = 0.37) was observed, but the
interaction diet × LPS was significant (P < 0.01). The statistical effects of diet, LPS, days are indicated: *Significant difference at 7 and 14 d postpartum within
the same treatment groups; A,BSignificant difference among treatments (diet with or without LPS) at d 7 or 14 postpartum.

doi:10.1371/journal.pone.0139963.g001
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cattle [39]. The decrease in hepatic mRNA expression of STAT5B and SOCS2 coincides with
the uncoupling of GH/IGF-1 axis [31].

The specificity of secreted FGF21 action is mediated through FGF receptors (FGFR 1–4) in
peripheral tissues, but requires the presence of a co-receptor (KLB) in order to elicit a response
[40, 41]. The fact that ketosis increased the hepatic mRNA expression of KLB in a similar fash-
ion to FGF21 at the onset of lactation [8] suggests that FGF21may exert a paracrine/autocrine
action on liver during ketosis. As such, FGF21may lead to a decrease in the hepatic mRNA
expression of IGF1 by increasing the mRNA expression of IGFBP1 [42, 43], which was reported
previously [16].

Dietery Carnitine downregulates the mRNA Expression of FGF21
Carlson et al. [11] using the same cows from the present study reported that C50 and C100
resulted in lower liver TAG than control on d 2 and 10, but only feeding C100 led to greater
concentration of BHBA compared with control or C50. The lower DMI caused by feeding
C100 partly explains the greater BHBA[11]. Although both feeding C50 and C100 increased
liver synthesis of acid soluble products (i.e. ketones), the fact that cows fed C100 had lower
milk production [11] could partly explain the greater BHBA compared with C50.

During early lactation, adipose tissue lipolysis results in elevated plasma NEFA that can be
taken up by liver (~25% of the NEFA flux) to meet its oxidative needs and to produce ketone
bodies for extra-hepatic tissues [44]. In non-ruminant liver, hypoinsulinemia due to undernu-
trition increases NEFA flux into liver where they activate PPARα and forkhead box A2
(FOXA2) resulting in an overall increase in fatty acid oxidation and ketogenesis [45]. Concom-
itantly, PPARα activation increases FGF21 and its concentration in the circulation, and appears
responsible for matching adipose tissue mobilization to oxidative capacity in liver [8] by stimu-
lating hepatic NEFA use while concurrently decreasing lipolysis [6].

The marked decrease between d 2 and 10 in mRNA expression of FGF21 and its co-receptor
KLB in the C100 cows agrees with the decrease in metabolism of palmitate to acid-soluble
products[11], i.e. despite the lower DMI due to feeding C100 the rates of LCFA oxidation to
CO2 did not differ among groups. Furthermore, the greater insulin concentration detected in
cows fed C100 compared with controls also could have had a negative effect on LCFA oxida-
tion as in non-ruminants. It is noteworthy that cows fed C50 did not decrease DMI [11] and
had an increase in mRNA expression of CPT1A and PPARA between d 2 and 10, suggesting
the existence of a threshold of L-carnitine above which there is feedback inhibition of fatty acid
oxidation. Furthermore, those data support a role for PPARα activation in the process of LCFA
oxidation.

In mice, evidence indicates that the circadian protein NFIL3 alters FGF21mRNA expression
during a circadian cycle and upon food intake [23]. Expression of FGF21 peaks during the
post-absorptive phase, but NFIL3 is highest during the fed state; insulin increases NFIL3
mRNA expression and binding to the FGF21 promoter through AKT activation, indicating
that NFIL3 is an insulin-responsive repressor of FGF21mRNA expression [23]. This protein
also suppressed the BMAL1 (ARNTL)-CLOCK-activated FGF21mRNA expression and abol-
ished the PPARα-activated FGF21mRNA expression [23]. Despite the lack of change in
expression of AKT1, the greater blood insulin in C50 compared with controls [11] agrees with
the increase in NFIL3mRNA expression between d 2 and 10 and the concomitant decrease in
mRNA expression of FGF21. Together, these data are suggestive that NFIL3 could regulate
FGF21 synthesis in ruminants.

A growing amount of evidence indicates that FGF21 and ANGPTL4 are liver-derived bio-
markers of energy balance during the peripartal period [20, 22]. Thus, the better energy balance
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[11] and greater mRNA expression of ANGPTL4 and FGF21 observed in the control group
indicate that there are “energy-independent”mechanisms that might control mRNA expres-
sion of these genes. For example, the higher ketone body concentration with both carnitine
treatments could have promoted pancreatic insulin secretion as reported in rats [46]. As such,
ketone bodies could have played a role in mediating the downregulation of FGF21 through
NFIL3 [23]. The fact that control cows had lower blood insulin concentrations offers support
for this mechanism.

Prepartal Energy and LPS Challenge Alter FGF21mRNA Expression
Overfeeding dairy cows during the dry period leads to greater BCS before calving, a pro-
nounced decrease in appetite around calving, and as a result more severe NEB [47]. The over-
fed cows used in this study were in positive energy balance and had greater BCS prepartum
than controls, but were in more NEB early postpartum and before the LPS challenge [17].
After the LPS challenge, blood BHBA decreased, NEFA increased, and liver TAG increased
only in the OVE:Y group [17]. The observed increase in FGF21mRNA expression due to feed-
ing OVE without the LPS challenge was associated with higher NEFA concentration, as
reported previously [8]. However, the lack of significant effect on the mRNA expression of
PPARA due to OVE or LPS suggests the existence of a PPARα-independent mechanism that
controls mRNA expression of FGF21 during inflammation or feeding OVE. The lack of a
PPARA response to high NEFA in some studies with transition cows [48, 49] supports this
idea. Palin and Petit [50] observed no change in hepatic mRNA expression of PPARA in
response to feeding above 100% of prepartal energy requirements and different sources of fat.
Furthermore, Carriquiry et al. [48] speculated that the lack of increase in PPARA postpartum
in response to diets providing 8% more fat than typically fed to dairy cows and enriched with
PUFA could be related with a hepatic inflammatory response induced by prepartal high-fat
intake. All these observations suggest the existence of a PPARα-independent mode of action
on the regulation of FGF21 in dairy cows consuming high-prepartal energy and fat levels and
afflicted by inflammatory conditions after calving.

In non-ruminants, recent evidence indicates that the circadian protein NFIL3 regulates the
hepatic mRNA expression of FGF21 during a circadian cycle and upon food intake [23]. In
ruminants, a recent study provided some evidence for circadian control of FGF21 [51]. The
NFIL3 protein suppressed the activation of FGF21mRNA expression by BMAL1 (ARNTL)-
CLOCK and also abolished PPARα activation of FGF21 expression [23]. In the present study,
only the marked upregulation of NFIL3 coupled with the downregulation of CLOCK after LPS
in both OVE and CON offer the clearest support for an antagonistic role similar to that in non-
ruminants. Whether, the CLOCK response had an effect at the protein expression level for
PPARA and ARNTL remains to be determined. The observed increase in FGF21mRNA
expression (Table 3) and serum concentration in OVE:Y (Fig 1) support the existence of
another regulatory mechanism for FGF21mRNA expression under inflammatory conditions.

The marked decrease in hepatic mRNA expression of STAT5B and SOCS2 in OVE:Y
between d 7 and 14 relative to parturition [17] confirms the uncoupling of GH/IGF-1 axis [31]
and argues against the possibility of GH-mediated activation of FGF21 via JAK2/STAT5 signal-
ing [38]. It has been recognized recently in non-ruminants that glucagon increases the hepatic
mRNA expression of FGF21 either via PPARαmediated activation or directly via protein
kinase A (PKA) [35, 36]. Calving increases the concentration of glucagon [52] as part of the
homeorhetic mechanisms to coordinate lactation. The increase in glucagon around calving
[52] and the NEB at d 7 [17] might have led to the activation of PKA. This idea is supported by
a recent study in rodents and humans that detected increases in both mRNA expression and
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secretion of FGF21 in response to both native glucagon and glucagon receptor (GcgR) agonists
[53]. Those data demonstrated that glucagon achieves its long-term effects on energy and lipid
and glucose metabolism at least in part via FGF21-dependent pathways.

We speculate the existence of a glucagon-mediated activation of FGF21 via PKA. For exam-
ple, both intravenous and intramuscular injection of glucagon reduced NEFA and alleviated
fatty liver in dairy cows [54, 55]. If FGF21 increased with glucagon injections, then the protein
could exert some inhibition of adipose lipolysis as demonstrated in rodents [56]. Therefore, we
suggest that glucagon and consequently NEFA can induce hepatic mRNA expression of FGF21
in order to achieve its lipolysis inhibitory effect. Further studies are required to demonstrate
these mechanistic relationships.

The increase in serum concentration of FGF21 with LPS challenge agrees with the greater
mRNA expression in the liver, which is the main contributor of blood FGF21 in dairy cows [8].
Glucagon is a potent anti-inflammatory hormone [57], thus, the upregulation of FGF21 with
LPS also might be attributed to an increase in glucagon coupled with a decrease in DMI [17].
As reported in non-ruminants [58], in bovine, PPARδ was suggested to regulate the mRNA
expression of ANGPTL4 and other hepatokines during acute inflammation[59]. Furthermore,
in the cows under study the LPS challenge induced the hepatic mRNA expression of PPARD
and genes associated with inflammation and stress [17]. The parallel increase of ANGPTL4
mRNA expression with LPS, which has recently been reported as a positive acute-phase protein
in mice challenged with LPS [60], supports the speculation that LPS induced the hepatic
mRNA expression of both hepatokines ANGPTL4 and FGF21 via PPARδ.

Our observations of increased serum FGF21 in response to LPS administration agrees with
the increase in serum FGF21 with LPS injection in mouse [15]; however, in contrast with our
results, Feingold et al. [15] demonstrated that adipose tissue is a major contributor of serum
concentration of FGF21 in LPS-challenged mice. Previous work from our group [61] failed to
detect FGF21mRNA expression in subcutaneous adipose tissue around parturition, casting
doubt on the contribution of this tissue to peripheral FGF21 concentration. Furthermore,
Schoenberg et al. [8] observed little or no mRNA expression of FGF21 in white adipose tissue,
skeletal muscle, and mammary gland, suggesting those tissues do not contribute to circulating
FGF21. However, as discussed in the previous sections, β-Klotho (KLB; FGF21 co-receptor)
determines the target specificity of FGF21 action; down regulation of hepatic KLB with LPS
suggests an extra-hepatic role of FGF21 during acute inflammation. We speculate that LPS
might have induced FGF21 in adipose tissue to suppress lipolysis in order to reduce the NEFA
flow to liver as a way to decrease lipidosis.

Overall, the lack of FGF21mRNA expression in subcutaneous adipose tissue around partu-
rition [61] and the observations from Schoenberg et al. [8] support the view that under normal
conditions the adipose tissue is not a contributor to blood FGF21. However, in dairy cows it
appears that adipose tissue is the second major target tissue after liver. In a survey of 15 tissues
that included the mammary gland, the mRNA expression of KLB and a subset of interacting
FGF receptors was restricted to liver and white adipose tissue and was modestly affected by the
transition from late-pregnancy to early lactation in liver but not in adipose [8].

Overall, the data obtained for FGF21 confirm that this gene is a biomarker of negative
energy balance as reported previously [8, 20]. Beyond evidencing the important role of FGF21
in peripartal cow biology, the responses across the three experiments suggest different adapta-
tions in hepatic signaling due to onset of ketosis, nutritional management, and inflammation.
For instance, the role of KLB in hepatic adaptations to parturition does not seem to be impor-
tant unless there are marked changes in NEFA and BHBA production as would occur in clini-
cal ketosis. Acute inflammation proved to be a strong chronic inhibitor of signaling via KLB,
the clock network, and potentially the insulin pathway. Furthermore, there seems to be a
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threshold up to which enhancing LCFA influx into the mitochondria via L-carnitine is effective
for allowing liver to achieve higher rates of beta-oxidation at least in part through upregulation
of PPARA and CPT1A. Under those “ideal” conditions the level of intra-hepatic “stress” is
diminished, hence, the lower and stable FGF21. A novel mechanism of insulin action via
NFIL3 upregulation at “optimal” rates of LCFA oxidation (cows in C50) was surmised, and
suggests a degree of insulin sensitivity in liver despite NEB.

Perspectives
Although the data generated from the studies reported herein provide a preliminary evaluation
of the likely roles of liver-derived FGF21 in helping to coordinate the cow’s adaptations to
changes in energy balance, onset of ketosis or inflammation, and stimulation of fatty acid oxi-
dation there is a need to conduct more mechanistic studies aimed specifically at deciphering
the transcriptional control of FGF21 in bovine liver. Specifically during the immediate period
after parturition when most if not all cows are most susceptible to developing ketosis or an
inflammatory disorder. To achieve greater mechanistic understanding, techniques such as
ChIP assays could be used. Because there was no bovine antibody specific for FGF21 available
at the time these experiments were conducted, there would be a need to replicate them. Fur-
thermore, the differences in feed intake induced by the treatments we studied also confound a
precise interpretation of the mechanisms driving the changes in hepatic FGF21. Lastly, future
work on the regulation of bovine hepatic FGF21 needs to encompass in vitro studies where the
roles of specific molecules such as glucagon could be studied in a more controlled manner.
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