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Abstract: Nowadays, highly flammable and harmful plastic materials are used in many daily ap-
plications. To prevent burning of materials, other harmful molecules or materials that are not
environmentally friendly are added to plastics. To overcome this environmental issue, new materials
have been investigated. Lignin, an industrial by-product, is an abundant biopolymer that can be used
in fire safety plastics; it is considered a renewable and readily available resource. In this work, PP–
TiO2/lignin composites were obtained with TiO2/lignin mixtures through the melt extrusion process,
with different weight percentages of nanoparticles (10, 20, 25, and 30 wt.%). The PP–TiO2/lignin
composites were characterized by XRD, FTIR, TGA, and SEM. Furthermore, cone calorimetry tests
and the mechanical properties were evaluated. Cone calorimetry tests revealed that the introduction
of 25 wt.% TiO2–lignin to the PP matrix reduced the peak of heat release rate (PHRR) and total heat
release (THR) by 34.37% and 35.45%, respectively. The flame retardancy index (FRI) values of the
composites were greater than 1.0 and were classified as good; the highest value of 1.93 was obtained
in the PP-30 sample. The tensile tests demonstrated that the flexural modulus of the composites
increased gradually with increasing lignin and TiO2 content, and the flexural strength decreased
slightly. The use of lignin in PP composites can be an excellent alternative to synthesize new materials
with improved flame-retardant properties and which is friendly to the environment.

Keywords: composite; polypropylene; titanium dioxide; lignin; green fire retardant

1. Introduction

More than 6000 people died in Mexico over the last 10 years due to the fact of exposure
to uncontrolled housing fire, exposure to ignition of highly flammable materials, as well
as from explosions or from contact with hot liquids [1]. One fire prevention measure is
to promote the use of flame-retardant materials that delay and inhibit combustion. These
materials are absorbed and eliminate the space for the action of oxygen in order to stop
the fire from spreading, allowing the object to be consumed at a slower rate, giving time to
extinguish the fire [2].

Currently, there are different flame retardant additives on the market with various
chemical compositions. Halogenated additives possess the best characteristics to combat
fire. However, they do not comply with new environmental directives, such as REACH
(Registration, Evaluation, Authorization, and Restriction of Chemicals, establishing a Euro-
pean Chemicals Agency), WEEE (Waste Electrical and Electronic Equipment Directive), and
RoHS (Restriction of Hazardous Substances), which regulates the use of such materials [3].

Polymers 2022, 14, 1300. https://doi.org/10.3390/polym14071300 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14071300
https://doi.org/10.3390/polym14071300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-1177-9000
https://orcid.org/0000-0002-9559-0976
https://orcid.org/0000-0002-2820-0958
https://orcid.org/0000-0002-1276-4230
https://orcid.org/0000-0002-2692-4995
https://doi.org/10.3390/polym14071300
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14071300?type=check_update&version=2


Polymers 2022, 14, 1300 2 of 13

Flame retardant additives based on non-halogenated substances have also been used. For
example, aluminum trihydrate together with other metal hydroxides, such as magnesium
and phosphorus-based additives, are used in a large number of products on the market [4].

The regulations mentioned above restrict flame-retardant chemical compounds to
avoid adverse effects on living organisms and on the environment. Some green flame
retardants have been investigated to contribute to environmental care and are sustainable
materials [5]. One of them is lignin, which is a by-product of the process to produce
bioethanol, and it is obtained from the discarded biomass of lettuce agave collos, which
dries and becomes waste. Lignin is a three-dimensional polymer of phenylpropane bound
by carbon–carbon bonds or peroxide bonds; its composition (ash-free) is approximately
62% in C, 32% in O, and 6% in H [6].

Some new materials that can be used as flame retardants are polymeric compounds due
to the characteristics conferred by the materials that compose them and the homogeneity of
their properties throughout their volume. The combination of multiple materials represents
an innovative and effective strategy to create high-performance flame-retardant polymer
compounds [7]. Composite materials of polypropylene with TiO2/carbon nanotubes
have shown good results in decreasing its peak HRR from 1529.53 to 1079.94 kW/m2 [8].
Natural fillers, such as halloysite nanotubes, also improve the flame-retardant properties
of polyurethanes; the use of low-toxicity compounds in polymers is a good alternative
for environmental protection [9], another strategy that improves the fire resistance of
polyurethane is the use of phosphorous–nitrogen flame retardants and titanium carbide [10].
Lignin is used to improve the flame-retardant properties of synthetic and biodegradable
polymers due to the fact of its excellent thermal properties; its decomposition occurs in a
temperature range of 200–500 ◦C, depending on the nature of its production and chemical
modifications of its structure [11–14]. Klapiszewski et al. studied the thermal stability
and mechanical properties of the polypropylene (PP)/silica–lignin composites; the results
showed that with the incorporation of silica, these properties were improved [15]. Materials
based on lignin or TiO2 and polypropylene with good flame retardant properties have
been reported separately in the literature [8,16–19]. The aim of this study was to evaluate
the flame-retardant behavior of a composite based on PP, lignin, and TiO2 produced by
melt-mixing extrusion, since this method can produce homogeneous dispersion and is
considered ecologically and economically viable for the production of large volumes of
production at the industrial level [20,21]. This paper shows the evaluation of composites
based on polypropylene, titanium dioxide, and lignin; the latter was obtained as a by-
product of biomass to obtain bioethanol (natural residue). Polymeric composites were
obtained by melt-mixed extrusion at different concentrations of 10%, 20%, 25%, and 30%
by weight (wt.%) for evaluation as flame-retardant materials and mechanical properties.

2. Materials and Methods
2.1. Materials

Lignin was provided by the Department of Biotechnology of Universidad Autónoma
de Coahuila (Saltillo, Coahuila, México), and it was obtained as a by-product of the process
to obtain bioethanol, which was collected and dried at 60 ◦C for 48 h and ground to a size
of 2 mm. TiO2 nanoparticles were provided by Chemours Co., (Altamira, México) with
a particle size of approximately 200 nm. The polymeric matrix (PP) with a fluid index of
0.76 g/10 min was supplied by Polímeros Nacionales (Ciudad de México, México).

2.2. Synthesis of PP/TiO2/Lignin Composites

Melt-mixing extrusion was used to prepare PP composites with a mixture of TiO2/lignin
(Table 1), using a lab-size twin-screw extruder from Thermo Scientific Model Prism TSE-24MC
with a screw diameter of 24 mm, an L/D ratio of 40:1, a temperature profile of 200 ◦C, and
a rotational speed of 100 rpm. Low shear strengths were used to improve the particles’
dispersion in the polymeric matrix in the screw configuration, which is shown in Figure 1.
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The ratio of the TiO2:lignin fillers was 2:1, which in high weight percentages of both fillers
was expected to have a significant impact on the flame-retardant properties.

Table 1. Identification of the PP/TiO2/lignin composites with different percentages of additives (10,
20, 25, and 30 wt.%).

Sample
Identification

PP Content
(g)

Weight of
Additive (g) TiO2

Weight of Additive
(g) Lignin

Weight Percent of
Additive (%) Total Weight (g)

PP-0 300 0 0 0 300
PP-10 270 20 10 10 300
PP-20 240 40 20 20 300
PP-25 225 50 25 25 300
PP-30 210 60 30 30 300

Figure 1. Screw mixing settings used during extrusion.

2.3. Characterization

Fourier transform infrared (FTIR) analysis was performed with a Magna Nicolet
550 spectrometer (GMI, Minneapolis, Minnesota, USA) using 100 scans and a resolution of
16 cm−1 in the range of 4000–400 cm−1. The X-ray diffraction (XRD) patterns were obtained
using a diffractometer Siemens D5000, (KS Analytical Systems, Aubrey, TX, USA) operated
at 35 kV and a current intensity of 20 mA. Samples were scanned in an angular range of
10–80◦ degrees (2θ). Thermogravimetric analyses (TGAs) were carried out on a TGA Q500
(TA Instruments, New Castle, PA, USA). Samples were heated from room temperature to
600 ◦C at 10 ◦C/min rate under nitrogen at 50 mL min−1. Pieces of compression cast plaques
were cryo-fractured and coated with gold for scanning electron microscopy (Topocon South
Asia Pte Ltd, Singapore, China) analysis. The SEM observations were realized directly on
the external and cryo-fractured surfaces of the composites fabricated without ultrasound
(W-U). SEM micrographs were obtained using a field emission scanning electron microscope
(TopCon SM510) operated at 15 kV.

For evaluation of the combustion properties of composites, a dual cone calorimeter
with a heat flux of 35 kW/m2 (Fire Testing Instrumentation, East Grinstead, UK) was used
by following the method described by the ASTM E1354 standard. Sample dimensions
(100 mm × 100 mm × 3 mm) were prepared by compression molding. The cone calorime-
ter was calibrated at 5 kW with methane flow, the flow in the extraction duct was 24 L/s,
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and the analyzer was calibrated with 20.95% oxygen. The heat flow used for assessing
samples was 35 kW/m2. The sample was placed on an aluminum paper tray with the
same sample dimensions and a 1 cm height, leaving the surface to evaluate a free area of
100 mm2. Then, the sample was placed in the sample holder, adjusting the distance between
the cone and the surface of the sample to 25 mm, each sample was tested in duplicate.
The flame retardancy index (FRI) is represented in Equation (1), and it is defined as the
ratio of THR ×

(
pHRR
TTI

)
between the neat polymer and the corresponding thermoplastic

composite with flame-retardant additive [22].

Flame Retardacy Index (FRI) =

⌊
THR ×

(
pHRR
TTI

)⌋
Neat Polymer⌊

THR ×
(

pHRR
TTI

)⌋
Composite

(1)

To determine the mechanical properties of the composites obtained in the extrusion
process, the composites were injection molded in a Hi-Tech industrial injection machine
(model HT-150) to obtain V-type samples. Tension tests were performed according to the
ASTM D-638 and ASTM D-790 standards using a universal tensile machine (INSTRON
model 4301) with a stretch rate of 5 mm/min−1.

3. Results and Discussion
3.1. X-ray Diffraction

Figure 2 shows the X-ray diffraction (XRD) patterns of the TiO2 and polypropylene
(PP) nanoparticles with the aim of comparing the diffraction patterns of the base materials,
with each of the composites obtained from PP–TiO2/lignin by the melt-extrusion process.
The patterns identified in each of the composites obtained showed intense reflections at
angles 14.23, 16.94, 18.58, 21.43, 25.66, and 28.65◦ corresponding to the planes (110), (040),
(130), (111), (060), and (220) of the crystalline phase of the PP [8,23]. In addition, signals
could be observed for 2θ values of 27.56, 36.28, 39.41, 41.46, 44.17, 54.53, 56.98, 62.96, 64.03,
69.09, and 69.98◦ corresponding to the Miller planes (110), (101), (200), (111), (210), (211),
(220), (002), (310), (301), and (112) of the rutile crystalline phase (TiO2) (JCDPS 21-1276),
which confirms its incorporation into the polymeric matrix of the PP. However, it was not
possible to determine the lignin phase due to the amorphous nature of the material, which
lacks an ordered structure [24]. Furthermore, no increase in the intensity or width of the
PP signals was observed, which suggests that the addition of TiO2 had no effect on the
crystalline structure of the polymeric matrix, as shown in the literature [23].

3.2. Fourier Transform Infrared FTIR (ATR)

The results of the FTIR spectroscopy study are presented in Figure 3. For each of
the composites (i.e., PP-10, PP-20, PP-25, and PP-30), the absorption signals typical of a
polymer matrix of PP in the range of 2949–2836 cm−1 are shown. These signals or bands
are associated with symmetrical and asymmetrical stretching of the C–H bonds present
in the molecular structure of PP [8,25]. In addition, absorption bands at 1450, 1373, 1163,
and 988 cm−1 corresponding to CH2 and CH3 were identified. The FTIR spectrum of TiO2
nanoparticles showed signals at 3441 cm−1 for the hydroxyl group (OH), 1633 cm−1 for
the Ti–OH bond, and 740 cm−1 for the Ti–O bond [26,27]. For the lignin FTIR spectrum,
adsorption signals at 2921 and 2844 cm−1 were localized that were related to the stretching
of the C–H bonds of the aromatic methoxy groups (OCH3) and methyl and methylene
groups present in the lignin molecule. A band located at 1731 cm−1 was associated with
carbonyl groups present in the molecule; in addition, absorption bands at 1633, 1514, and
1465 cm−1 representing the vibrations of the aromatic skeleton of the molecule could also
be observed; the localized band at 1416 cm−1 with less intensity was attributed to the
deformation of the C–H bond combined with the vibrations of the aromatic ring of lignin.
The signals localized below 1400 cm−1 were related to the C–O and C–H bonds present in
the chemical structure of lignin [28,29]. The FTIR spectrum of each of the nanocomposites



Polymers 2022, 14, 1300 5 of 13

of PP/TiO2–lignin presented characteristic absorption signals of the polymer matrix (PP),
TiO2 nanoparticles, and lignin; however, the latter presented very weak or almost null
signals. Only in the composite PP-30 was it possible to observe a very weak absorption band
located at 1604 cm−1 that could be associated to the interaction of the TiO2 nanoparticles
and lignin. A similar study was reported by Guo et al., who observed an absorption band
located at 1631 cm−1 which was associated to the interaction of hydrogen bonds between
lignin surface groups and TiO2 nanoparticles [24]. In addition, in each FTIR spectrum of the
composites, an absorption band centered at 560 cm−1 was located, which was attributed
to the vibrations of Ti–O bonds that are characteristic of TiO2 nanoparticles. According to
Poudel et al. [30], signals in the range of 700–420 cm−1 can be attributed to the vibrations
of Ti–O bonds that represent the interaction of nanoparticles with the polymer matrix.

Figure 2. X-ray diffraction patterns of the composites PP–TiO2/lignin (PP-20, PP-25, and PP-30),
polypropylene (PP-0), and TiO2.

Figure 3. FTIR spectra of composites of PP–TiO2/lignin (PP-10, PP-20, PP-25, and PP-30), polypropy-
lene (PP.0), lignin, and TiO2.
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3.3. Thermogravimetric Analysis (TGA)

In order to determine the thermal stability and weight loss with respect to temperature,
thermogravimetric analyses was carried. Figure 4 shows the thermograms of the composites
obtained and of the PP polymer, and it can be seen that the weight losses were in the
temperature range between 309 and 489 ◦C.

Figure 4. Thermograms of PP/TiO2/lignin composites obtained by extrusion.

For polymer PP, its weight loss started at 258 ◦C and ended at 482 ◦C, while the PP-10
sample showed a weight loss in a temperature range from 312 to 455 ◦C, and the PP-20
sample presented an important weight loss from 309 to 488 ◦C. The sample with a 25% load
weight (i.e., PP-25) showed a weight loss temperature range from 335 to 488 ◦C, while the
sample with the 30% load weight (i.e., PP-30) presented a weight loss temperature range of
323–489 ◦C. Samples PP-25 and PP-30 presented the highest thermal stability and contained
the highest percentage by weight of lignin. Lignin has excellent thermal properties; its
thermal decomposition temperature is reported at 450 ◦C [31]. The thermal behavior of
the analyzed PP samples was consistent with that reported by Lukasz Klapiszewski et al.
In 2016, they studied lignin–polypropylene composites and showed that low contents of
lignin compounds are thermally less stable than pure polypropylene; kraft lignin supplied
by Sigma–Aldrich was used in that study [15].

Table 2 shows the temperature at which 50% weight loss (T50) was achieved. The 10%
and 20% loaded samples lost weight at lower temperatures (401 and 413 ◦C, respectively)
in comparison to the unfilled PP polymer (431 ◦C). However, the PP-25 and PP-30 samples
exhibited the highest thermal stability with T50 values of 448 and 453 ◦C, respectively. The
residues at 500 ◦C of samples PP-10, PP-20, PP-25, and PP-30 according to the thermogravi-
metric study were 6%, 17%, 16%, and 21%, respectively (See Table 2). The values were
similar to the percentage by weight of TiO2 used in each formulation, with the exception of
the PP-20 sample, which was slightly larger. The PP-25 sample presented a value of 16 wt.%
lower than that of the PP-20 sample; this was attributed to inhomogeneity of the samples.

Table 2. Temperature at 50% weight loss and residue at 550 ◦C of the PP/TiO2/lignin composites.

Sample Temperature at 50% Weight Loss,
T50%

◦C Residue at 550 ◦C (%)

PP-0 429 0
PP-10 401 6
PP-20 413 17
PP-25 448 16
PP-30 453 21
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PP and polyolefins (POs) do not contain polar groups in their structure; this feature
limits their compatibility with polar polymers. Lignin has a strong polarity and functional-
ity; thus, complete immiscibility with non-polar polyolefins would be expected. However,
some studies suggest the opposite and claim that good dispersion and compatibility is
achieved despite the different chemical structures of the two types of polymers, and the
effect is more important when the amount of lignin added to the polymer is high. The
thermal oxidative stability of PO can be improved considerably due to the fact that lignin
phenolic OH groups are able to eliminate free radicals during the processing of polyolefins.
Lignin can act as a stabilizer and protect the polymer matrix against oxidation [32–35].

In the PP-10 and PP-20 samples, the thermal stability effect decreased, probably due to
the fact that the amount of lignin was not enough to prevent the thermal degradation of PP
and that TiO2 did not act to stop thermal degradation. It has also been reported that when
polypropylene/lignin compounds begin to degrade, carbonized aromatic radicals of lignin
tend to reduce the rate of degradation of PP and produce char as a protective layer [36].
When there is a proper interface interaction, the particles are able to restrict the movement
of the polymer chain, making it more difficult for polymer chains to break down at lower
temperatures, leading to an increase in the material degradation temperature, and this has
also been reported by Cabello-Alvarado et al. [8].

In the present study, the thermal stability of the PP matrix was only achieved in the
PP-25 and PP-30 samples, where the charges (lignin and TiO2) were 25 and 30 wt.%; with
these percentages, a good amount of phenolic OH groups is ensured and favor carbon
structures that serve as protective layers during degradation.

3.4. Scanning Electron Microscopy (SEM)

Figure 5 shows SEM images of the PP polymer and the PP-20 and PP-30 compos-
ites. These composites were chosen because they had the highest thermal stability of the
composites studied. Images with 1000× and 4000× resolutions were taken of analyzed
samples. In these micrographs, it can be seen that by increasing the load content of TiO2
and lignin, there were small clusters in which the size of the agglomerated particles was
much larger than the primary TiO2 particles (200 nm). In addition, other particles were
homogeneously embedded in the PP matrix that had quasi-spherical shapes and sizes
similar to the TiO2 NPs.

Figure 5. Scanning electron micrographs of PP-0, PP-20, and PP-30 at 1000× and 4000×.
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A detailed analysis of the observed particle size suggests that the PP-20 sample had
agglomerates that measured at their longest length from 1.6 to 23.4 microns, and quasi-
spherical particles distributed in the PP matrix measured from 200 to 260 nm. For the
PP-30 sample, the size of most agglomerates fluctuated between 1.9 and 6.2 microns, and
only the micrograph presented in Figure 5 shows an agglomerate of 31.8 microns. The
quasi-spherical particles had a size between 250 and 350 nm, and the size was slightly
higher than those observed in PP-20. This microscopic evidence suggests that the in-
teraction of lignin and TiO2 avoids the strong agglomeration of each filler into the PP
matrix, favoring its dispersion during the melt-mixing extrusion process. It has been re-
ported that PP nanocomposites with TiO2 present strong agglomerations from 4.0 wt.%,
forming agglomerates of approximately 45 microns [37]. Composites of PP and modified
lignin also present agglomeration from the concentration 5.0 wt.% [38]. PP composites
obtained with a combination of TiO2 and lignin by the melt-mixed extrusion method led to
nanocomposites with quasi-spherical particles well-dispersed in PP matrix to provide a
larger interfacial area between the TiO2 nanoparticles and the surrounding polymer phase.
PP/TiO2 nanocomposites with TiO2 contents greater than 2 wt.% suffer a strong agglomera-
tion, and an increase in the average particle size of original TiO2 has been reported [8,39,40];
this phenomenon also occurs in nylon 6 nanocomposites with copper nanoparticles; in this
polymer, the nanoparticles change their shape and size. The formation of aggregates of a
micrometric size seems to be unavoidable and could be studied in more detail in the future.
Zohrevand et al. proposed that micrometric aggregates can be dispersed during the melt
extrusion process [41].

3.5. Cone Calorimetry

Figure 6a shows the HRR (heat release rate) results for PP polymer (1260 kW/m2)
and the composites obtained at different load concentrations. In this graph, it can be seen
that there is a decrease in the HRR peak for materials loaded with the TiO2/lignin addi-
tive. In particular, the PP-25 sample showed the best flame-retardant effect (827 kW/m2),
decreasing the peak of HRR by 34.37% in relation to the pure polymer (Table 3). The fact
that the peak was less intense implies lower flame propagation and less released heat.
There are reports of polymer–lignin composite materials forming a carbonaceous layer that
can prevent heat transfer and diffusion of small combustible products created by polymer
degradation, also this layer reduces the rate of heat release, slowing down the process
combustion [42].

Table 3. Data of the cone calorimetry test of the samples analyzed.

Sample Peak HRR
(kW/m2)

THR
(MJ/m2)

Reduction %
HRR

Reduction %
THR

PP-0 1260 ± 0.40 11.02 ± 0.72 - -
PP-10 1463 ± 0.67 109.0 ± 0.40 16.11 ± 0.42 2.68 ± 0.4
PP-20 1041 ± 0.90 72.9 ± 0.50 17.39 ± 0.26 35.72 ± 0.2
PP-25 827 ± 0.34 72.3 ± 0.30 34.37 ± 0.37 35.45 ± 0.2
PP-30 853 ± 0.25 67.5 ± 0.12 32.31 ± 0.10 39.74 ± 0.6

THR (total heat release) curves for the PP polymer and the samples obtained are
presented in Figure 6b. A THR value of 112 MJ/m2 was obtained for PP, while for composite
materials, the THR decreased with increased loading (i.e., 109, 72.8, 72.3, and 67.5 MJ/m2),
and the comparison of these values can be seen in Table 3. This trend is due to the
thermal stability conferred by the TiO2/lignin charge on the polymer. It is known that
TiO2 has a high decomposition temperature (700–800 ◦C) and an oxygen index of 29,
and it has also been widely used as an anti-flame additive alone or in combination with
other additives [43]. Bamboo substrates were covered with TiO2 and ZnO nanoparticles,
significantly improving their flame-retardant properties, which is due to the formation of a



Polymers 2022, 14, 1300 9 of 13

network of TiO2 particles derived from the nanometric size of the particles, thus increasing
their anti-flame property [44].

Figure 6. Calorimetric measurements: (a) comparison of the peaks of the heat release rate (HRR) and
(b) THR curves for the results.

Figure 7 shows images of the calorimetric cone and the residue that was obtained
after evaluating the PP-0 and PP-30 samples. The pure PP did not leave any residue
on the aluminum tray, while the sample tray PP-30 showed residue that adhered to its
entire surface.

In order to quantify the flame-retardancy performance of the different formulations
studied, the FRI was calculated [10,22]. The FRI values presented in Table 4 show that the
new composites can be classified as good based on the proposed criteria [22].
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Figure 7. Digital photos of PP-0 and PP-30 after cone calorimeter measurements.

Table 4. Flame retardancy index of PP/TiO2/lignin composites.

Sample Fire Retardancy Index

PP-10 0.87
PP-20 1.45
PP-25 1.76
PP-30 1.93

3.6. Mechanical Properties

The tensile and flexural properties of the PP-0, PP-10, PP-20, PP-25, and PP-30 com-
posites are shown in Table 5. It can be seen that the tensile strength and elongation at
break were diminished with addition lignin and TiO2; the results are those expected if we
consider that TiO2 and lignin fillers tend to form large agglomerates in PP composites and
are in accordance with some reported studies [45,46]; but other authors report an increase
in properties, the difference in the results is attributed to the synthesis process. For example,
Abdelwahab et al. reported that the tensile strength of the composite containing 20 wt.%
lignin increased from 21.4 to 24.6 MPa, while the composite with 30 wt.% of lignin contents
increased from 23.1 to 26.5 MPa; other properties, such as flexural modulus and impact
strength, did not show significant changes. They used three different compatibilizers for
better adhesion to the polymer matrix, but not in all cases was this property improved [47].
In the present study, the synthesis of composites of PP with two fillers and a high agglom-
eration capacity was carried out in a one-step process, avoiding the use of compatibilizers
aiming to maintain an economic and scalable process at an industrial level

Table 5. Tensile and flexural properties of the composites.

Sample Tensile
Strength (MPa)

Elongation at
Break (%)

Flexural
Strength

(MPa)

Flexural
Modulus

(GPa)

PP-0 24.7 ± 0.25 218 ± 1.2 42.2 ± 1.79 1.26 ± 4.7
PP-10 20.8 ± 1.79 10.8 ± 0.2 39.4 ± 0.61 1.33 ± 1.6
PP-20 18.2 ± 2.21 4.9 ± 2.5 36.4 ± 0.91 1.34 ± 2.5
PP-25 13.7 ± 1.58 4.8 ± 4.12 33 ± 1.28 1.35 ± 3.0
PP-30 12.7 ± 1.93 3.1 ± 2.36 39.6 ± 1.51 1.52 ± 4.8
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On the other hand, it can be seen in Table 5 that the flexural modulus of composites
increased gradually with increasing lignin and TiO2 content and the flexural strength de-
creases slightly. It was clear that the presence of agglomerates detected on the composites’
surface by SEM affected the mechanical properties, but it should be noted that the compos-
ites also presented TiO2 particles with particle sizes very similar to primary TiO2 samples.
This suggests that lignin interacts with TiO2, reducing its strong agglomeration capacity, as
has been reported [37]. In addition, it was possible to detect by SEM surfaces free of holes
or cracks, which indicates a good dispersion of the fillers. The results obtained suggest
that it is possible to synthesize well-dispersed PP/TiO2/lignin composites with improved
mechanical properties, reducing the amount of TiO2 and lignin in the formulations, as some
reports suggest [37], another possible solution is to modify the process conditions with the
purpose of breaking the agglomerates [41].

4. Conclusions

This paper presented the synthesis of composites based on PP/TiO2/lignin. The
results obtained suggest that lignin can be considered an excellent alternative to be used in
environmentally friendly fire safety plastics. All composites were synthesized in one-step
by melt-mixing extrusion. The presence of TiO2 in the PP polymer matrix was detected in
XRD; but lignin has an amorphous nature and did not show any peak in this study. The
analyses of the PP-30 sample using FTIR showed evidence of all components (i.e., lignin,
TiO2, and PP). SEM analysis showed uniform dispersion of TiO2 particles and lignin fibers,
and the synthesis method used led to composites with few agglomerates. Because of this,
the composites presented good results as flame retardants; specifically, the PP-25 and PP-30
composites both presented a reduction in HRR and THR, probably due to the synergy of
lignin and TiO2, which managed to form a carbon layer that did not allow the diffusion of
oxygen and heat, creating a barrier effect for combustion. It is important to highlight that
the PP-30 sample presented an FRI value of 1.93 and represents one of the highest values
reported for PP composites. In addition, the composites presented good thermal stability,
which helps its possible application as green flame retardant.
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