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A person’s genome typically contains millions of variants which
represent the differences between this personal genome and the
reference human genome. The interpretation of these variants,
i.e., the assessment of their potential impact on a person’s pheno-
type, is currently of great interest in human genetics and medicine.
We have developed a prioritization tool called OpenCausal which
takes as inputs 1) a personal genome and 2) a reference context-
specific TF expression profile and returns a list of noncoding var-
iants prioritized according to their impact on chromatin accessibility
for any given genomic region of interest. We applied OpenCausal to
6,430 samples across 18 tissues derived from the GTEx project and
found that the variants prioritized by OpenCausal are highly enriched
for eQTLs and caQTLs. We further propose a strategy to integrate the
predicted open scores with genome-wide association studies (GWAS)
data to prioritize putative causal variants and regulatory ele-
ments for a given risk locus (i.e., fine-mapping analysis). As an
initial example, we applied this method to a GWAS dataset of
human height and found that the prioritized putative variants
and elements are correlated with the phenotype (i.e., heights of
individuals) better than others.
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Aperson’s genome typically contains millions of variants
which represent the differences between this personal ge-

nome and the reference human genome. The interpretation of
these variants, i.e., the assessment of their potential impact on a
person’s phenotype, is currently of great interest in human ge-
netics and medicine. There have been many tools developed for
interpreting coding variants through the prediction of their im-
pact on the function of the gene products (1–5). For example,
SIFT (sorting intolerant from tolerant) predicts the effects of all
possible substitutions for each coding variant in the protein se-
quence using sequence homology (2); PolyPhen-2 predicts the
possible impact of amino acid substitutions on the stability and
function of human proteins using structural and comparative
evolutionary considerations (4). These tools provide an inte-
grated view to analyze the probable impact of particular coding
variants on genomic functions. Noncoding variants, however,
have been noticeably understudied due to the fact that one
variant may have different effects in different tissues, at different
developmental stages, and even in different individuals. Re-
cently, several computational approaches have been developed
for interpreting noncoding variants by utilizing various genomic
and epigenomic annotations (6–10). Ritchie et al. developed
genome-wide annotation of variants to prioritize noncoding
variants by using a wide range of variant-specific annotations of
different classes and at a wide range of genomic scales (6). Ward
et al. designed HaploReg to expand genome-wide association
studies (GWAS) tag variants into haplotype blocks and overlap
the blocks with chromatin state annotations and eQTL (i.e. ex-
pression quantitative trait loci) to identify specific regulatory loci
(7). Amlie-Wolf et al. proposed INFERNO (INFERring the
molecular mechanisms of NOncoding genetic variants) as a tool

for inferring the molecular mechanisms of noncoding genetic
variants by integrating hundreds of functional genomics datasets
spanning enhancer activity, transcription factor (TF) binding
sites, and expression quantitative trait loci with GWAS summary
statistics (8). However, all of these methods require a large
amount of genomic data as input, directly limiting their appli-
cation to a large scale of contexts. Importantly, most of the
previous methods were designed using the summary data derived
from single nucleotide polymorphisms (SNP) arrays of thousands
of individuals, which fail to capture the individual-specific effect
of genome-wide variants.
In this study, we focus on the interpretation of noncoding

variants by using personal genomic sequences and reference
context-specific expression profiles. Specifically, given a person’s
noncoding variants within a genomic region of interest, we want
to prioritize these variants according to their likely impacts on
gene regulation in a tissue-specific manner. Fig. 1A illustrates a
causal model for how a variant may impact gene regulation. In
this model, a change (relative to the reference genome [REF]) in
the sequence of a regulatory element (RE) alters the degree of
chromatin accessibility of RE (i.e., openness). The change in the
RE’s degree of chromatin accessibility then leads to more
changes in the RE’s activity, ultimately affecting the expression
of the target genes of that RE. Furthermore, a variant’s impact
on the openness depends on the cellular context: if it affects the
binding site of a TF that regulates accessibility, its impact will be

Significance

Here we use the expression and accessibility data from a di-
verse set of cell types to learn a model for the dependence of
the accessibility of a regulatory element on its DNA sequence
and TF expression. Using GTEx samples with WGS data, we
show that the noncoding variants predicted to affect accessi-
bility are more strongly associated with the expression of
nearby genes. To interpret a personal genome, we combine the
sequence information with context-specific TF expression to
prioritize variants and regulatory elements in any genomic
region of interest. This approach should be helpful in the study
of risk loci previously identified by GWAS. Results from anal-
ysis of height and WGS data from the GTEx project support this
hypothesis.

Author contributions: R.J. and W.H.W. designed research; W.L., Z.D., and W.H.W. per-
formed research; W.L. and Z.D. contributed new reagents/analytic tools; W.L. and Z.D.
analyzed data; and W.L., Z.D., R.J., and W.H.W. wrote the paper.

Reviewers: X.L., Harvard School of Public Health; and D.L.N., University of Chicago.

The authors declare no competing interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).
1W.L. and Z.D. contributed equally to this work.
2To whom correspondence may be addressed. Email: ruijiang@tsinghua.edu.cn or
whwong@stanford.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1922703117/-/DCSupplemental.

First published August 17, 2020.

21364–21372 | PNAS | September 1, 2020 | vol. 117 | no. 35 www.pnas.org/cgi/doi/10.1073/pnas.1922703117

https://orcid.org/0000-0002-7533-3753
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1922703117&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ruijiang@tsinghua.edu.cn
mailto:whwong@stanford.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1922703117


larger for those cellular contexts where the TF is more highly
expressed. These considerations led us to develop a prioritization
tool called OpenCausal (Fig. 1) which takes as inputs 1) a per-
sonal genome and 2) a reference context-specific TF expression
profile and subsequently outputs a list of noncoding variants
prioritized according to their impact on openness for any given
genomic region of interest. An important component of Open-
Causal is Ropen, a tool designed for predicting the openness of
an RE based on its sequence and its cellular context represented
as a vector of TF expressions.
Specifically, we used assay for transposase-accessible chro-

matin with high-throughput sequencing (ATAC-seq) data on 42
Encyclopedia of DNA Elements (ENCODE) samples across 18
cellular contexts to train the prediction model, Ropen. The ef-
fectiveness of Ropen was validated on 6,430 samples across 18
tissues from the Genotype-Tissue Expression (GTEx) project as
a target gene’s expression is well correlated with the predicted
openness of its associated REs (Fig. 2). Based on Ropen, we
developed OpenCausal by computing causal scores (denoted by
ΔO) to quantify the impact of variants on RE openness. We
validated the usefulness of the scores by demonstrating that
variants with high causal scores are highly enriched for eQTLs
and caQTLs (caQTL: chromatin accessibility quantitative trait
locus; Fig. 3). To provide an initial example of this model, we
applied it to prioritize variants in GWAS loci for height. First,
using the reference TF expression profile of muscle, we calcu-
lated the open scores of variants located in muscle-specific open
regions for those donors with available whole-genome sequenc-
ing (WGS) data. Then, we defined a statistics variant causality
score (VCS) by simultaneously considering the influence of
variants on the chromatin accessibility of REs and the relation-
ship between REs and the given trait. For a given risk locus
derived from GWAS summary data, we conducted a fine-
mapping analysis to prioritize the WGS-based variants in this
loci based on their VCSs. We assessed the prioritized variants by
checking the correlation between the genotypes of variants and
the phenotype of donors and found that the prioritized variants
indeed show higher correlations than other variants. We further
extended this approach to prioritize REs within GWAS risk loci
and validated that the prioritized REs are more correlated with
the phenotype of donors. These results provided an initial vali-
dation of the usefulness of OpenCausal for the prioritization of
variants and REs in GWAS risk loci.

Results
Design of OpenCausal. Taking a personal genome and a TF ex-
pression profile as inputs, OpenCausal aims to detect causal
variants on REs according to their impact on openness. Fig. 1A
illustrates a causal model for how a variant may impact gene

regulation. In this model, a change (relative to the REF) in the
sequence of an RE alters the degree of chromatin accessibility of
that RE (i.e., openness). This leads to changes in the activity of
that RE and subsequently affects the expression of the target
genes of that RE. To develop OpenCausal according to this
model, we first design a tool named Ropen to predict the
openness of an RE based on its sequence and the cellular context
represented as a vector of TF expressions (Fig. 1B).
Ropen is a regression model for RE’s openness scores and the

expression of the selected TFs—those with TF binding sites
(TFBSs) in the RE—as predictors. For each RE, the TFBS is
derived from scanning along that sequence of RE and matching
the motifs of each TF to that sequence using a motif scanning
tool, Hypergeometric Optimization of Motif EnRichment
(HOMER) (11). Since only those sequence patterns (typically 8
to 12 bp in length) consistent with the motif profile of a TF can
be recognized as TFBSs, variants located in regulatory regions in
a personal genome may cause the appearances or disappear-
ances of TFBSs. Hence, our Ropen model leverages this infor-
mation to predict the differences between changes in the RE’s
accessibility in one’s personal genome and those in the REF.
In order to train Ropen, we fit millions of region-specific re-

gression models, each capturing the relation between the open-
ness of a given genomic region and the expression of the TFs
with binding affinity to this region. We trained these models
based on paired ribonucleic acid sequencing (RNA-seq) and
ATAC-seq data from the ENCODE project (12) (42 pairs across
18 tissues; Dataset S1). To derive a list of regulatory genomic
regions, we merged ATAC-seq peaks across all samples, yielding
a total of 2,965,129 REs. We then calculated the chromatin ac-
cessibility scores of these REs and quantified the TF binding
affinity on each RE using HOMER. Next, for each RE, we fit a
regression model (the Ropen model) to predict its chromatin
accessibility score in a given context based on the TF expression
profile in this context and the TF binding affinities on this region
(Fig. 1B).
To assess model performance, we used leave-one-out cross-

validation. Briefly, we predicted the chromatin accessibility of
one tissue using the model trained on the other tissues. Each
tissue is considered as a testing set once. Ropen achieved
Pearson correlation coefficients (PCCs) of 0.628 to 0.833 (SI
Appendix, Fig. S1A) and area under the receiver operating
characteristic (AUROCs) of 0.939 to 0.996 (SI Appendix, Fig.
S1B) in 18 testing sets (details of the evaluation process are
shown in SI Appendix, Text S1). We also compared the perfor-
mance of Ropen that takes motif occurring frequency as inputs
with the performance of Ropen that takes motif scores as inputs.
We found that Ropen achieved identical performance in both
scenarios (SI Appendix, Text S2 and Figs. S2 and S3). Next, we

A B

Fig. 1. Model design. (A) Schematic overview of the OpenCausal approach. OpenCausal captures the change of chromatin accessibility caused by a variant,
where the variation is derived from WGS data. (B) Schematic overview of the Ropen model. Ropen is a sequence-based regression model that predicts
chromatin accessibility score for a RE using the expression of TFs binding on this region.

Li et al. PNAS | September 1, 2020 | vol. 117 | no. 35 | 21365

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental


compared Ropen model with two baseline models: one predicts
chromatin accessibility scores by regressing on the expression of
all TFs regardless of the TF binding information, and the other
predicts chromatin accessibility by averaging open signals across
all training samples. The results showed that our Ropen model
consistently outperformed the baseline models (SI Appendix, Fig.
S1 A and B). We further categorized the REs into four groups
based on their cross-sample variation (i.e., SD across training
samples, std) and examined the performance of Ropen in each
group. The results showed that Ropen achieves better perfor-
mance in the regions with higher cross-sample variation than
those with lower variation (SI Appendix, Fig. S1C). Moreover, we
observed that the difference in the performance between Ropen
and the mean-based baseline model is much larger in the most
dynamic group than that in all of the REs (0.081 vs. 0.030; SI
Appendix, Fig. S1D). This shows that Ropen has made effective
use of the tissue-specific TF expression data that capture the
variation across different samples.

Validation of Ropen on GTEx Samples. We collected paired RNA-
seq and WGS data on 6,430 samples across 18 tissues (Dataset
S1) from the GTEx Project and used Ropen to compute the
chromatin accessibility scores based on the paired WGS and TF
expression for these samples.
We used the proportion of gene expression variation explained

by these openness scores to assess the performance of Ropen.
First, the GTEx samples of each tissue were divided uniformly
into five subsets: one for testing and the others for training.
Then, for each tissue, we fit a regression model to predict gene
expression using openness signals of the REs located in a
neighborhood of the target gene (Methods). We used two sta-
tistics to evaluate the model performance: cross-gene Pearson’s
correlation and cross-sample Pearson’s correlation (SI Appendix,
Fig. S4). We filtered out the genes whose expressions are con-
stant across all tissues (say, the SD of expression across sam-
ples < 0.2), leaving an average of 25,298 genes to be predicted in
different tissues. The results showed that the prediction of gene
expression achieved cross-gene PCCs of 0.98 to 0.99 (SI Ap-
pendix, Fig. S5) and cross-sample PCCs of 0.42 to 0.79 (Fig. 2A)
across tissues. This indicates that the chromatin accessibility

predicted by Ropen based on the expression of a small number
of genes (i.e., 688 TFs) can indeed explain a substantial portion
of the variance in expression genome-wide and thus suggests that
the predictions by Ropen are informative.
We further checked the performance of gene expression pre-

diction on genes that are involved in eQTL interactions (referred
as eQTL genes). We collected tissue-specific eQTL interactions
from the GTEx project (9,348 genes per tissue on average) and
predicted the expression of eQTL genes for each tissue. The
results showed that the prediction on eQTL genes achieved a
higher average cross-sample PCC of 0.63 compared with an av-
erage cross-sample PCC of 0.59 of the prediction on all genes
(Fig. 2B). This implies that genes related to eQTL interactions
are better explained by open signals. Then, we further restricted
genes to those involved in eQTL interactions whose SNPs are
located in REs (8,099 genes per tissue on average, referred as
open-eQTL genes). On this subset of genes, the gene expression
prediction achieved an even higher average cross-sample PCC of
0.67, which explained 46.21% of the expression level of open-

eQTL genes (
∑g

r2g
n =   0.4621; Fig. 2C).

Next, we wondered whether chromatin accessibility prediction
based on TFBS information derived from WGS data is better
than that derived from the REF. Since we did not have the true
chromatin accessibility of GTEx samples as ground truth, we
instead compared the performance of gene expression prediction
based on the openness scores derived from WGS versus that
from REF. We observed that the predictions based on WGS
consistently outperformed predictions based on REF (Fig. 2A),
indicating that WGS data provides more reliable TFBS infor-
mation for the prediction of chromatin accessibility than REF.
As expected, the improvement of prediction performance based
on WGS data, though clear and consistent across all 18 tissues,
was modest compared with the baseline. This is mainly because
the predictor variables in both methods already include the
context-specific TF expression profiles, which can explain a large
portion of the variability in chromatin accessibility. Thus, given
TF expression, the variability explainable by adding WGS se-
quence information is limited. On the other hand, we stress that
a WGS-based model is necessary if our aim is to understand the
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Fig. 2. Performance of gene expression prediction for GTEx samples. (A) Comparison between prediction using WGS-based chromatin accessibility scores
with that using REF-based chromatin accessibility scores in terms of cross-sample correlation. (B) Performance of expression prediction on genes involved in
eQTL interactions. (C) Performance of expression prediction on genes involved in eQTL interactions whose variants are located in REs.

21366 | www.pnas.org/cgi/doi/10.1073/pnas.1922703117 Li et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922703117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1922703117


impact of variants in personal genomics studies in which ex-
pression data are typically not available for the subjects.
Therefore, instead of comparing the predictive power of WGS

data with context-specific TF expression data, a more important
question to ask is whether it is possible to leverage the predictive
power of the former to obtain useful interpretation of the

A B
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F

Fig. 3. OpenCausal detects causal variants for REs. (A) Percentage of detected causal variants in different tissues. Reference SNP (rs) represents variants overlapped with
the reported reference SNPs. Novel SNP (ns) represents variants that have not been reported as reference SNPs. (B) Schematic overview of Fisher’s exact test. (C) Validation
of detected causal variants using tissue-specific eQTL data. (D) Validation of detected causal variants using caQTL data. Odds ratio represents the odds ratios calculated from
Fisher’s exact test. Percentagemeans the percentage of eQTL/caQTL variants covered by the detected causal variants. (E and F) Schematic overviews of the direct regulatory
mechanism (E) and the indirect regulatory mechanism (F) for the interpretation of eQTL interactions. (G) Percentage of interpreted tissue-specific eQTL interactions.
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variants found in a personal genome. In the following sections,
we will address this question by developing the variant prioriti-
zation tool OpenCausal. We will also show that the variants
identified as having high impact on chromatin accessibility do
indeed have a stronger correlation with phenotype than the
variants identified as having low impact (see Fig. 5).

Identification of Causal Variants for REs. On the basis of the
sequence-based Ropen model, we designed OpenCausal, a
method to detect causal variants for REs in a personal genome
(Fig. 1A). First, for any variant in a given RE of a personal ge-
nome, we used Ropen to compute the openness score of the RE
based on 1) the sequence of the RE in the personal genome and
2) the tissue-specific TF expression profile for the individual (or
a corresponding reference profile if the personal one is not
available). Next, substituting the personal genome with the REF,
we can compute another openness score for this RE in the same
tissue. The log fold change ΔO between these two openness
scores then gives us an estimate of the impact of this variant on
the accessibility of the RE in that specific sample. We call ΔO
the causal score of this variant and use it to quantify the impact
of this variant on the accessibility in both sample-specific and
tissue-specific manner. If ΔO > 0.1, this variant is regarded as a
causal variant in this tissue for that person.
To identify causal variants from WGS data for the GTEx

samples, we first filtered out REs whose accessibility scores are
constant across all ENCODE samples, leaving a list of 1,712,731
REs. Then, we applied the OpenCausal approach to 6,430 GTEx
samples of 18 tissues for which both RNA-seq data and WGS
data are available, to detect sample-specific causal variants for
1,712,731 REs. For each sample of a given tissue, we calculated
the causal scores and identified sample-specific causal variants
using the above definition. Then, we obtained tissue-specific
causal variants by merging sample-specific causal variants across
samples of the same tissue. As a result, OpenCausal identified an
average of 1,400,041 causal variants for REs in different tissues
(Dataset S2). The percentage of causal variants among all variants
in open regions of each tissue is shown in Fig. 3A (ranging from
13.07 to 24.25%). We further checked the overlap between the
detected causal variants and reference SNPs and found that
61.80% of detected causal variants could be found as reference
SNPs while the remaining 38.20% were SNPs that had not been
reported as reference SNP before.
Next, we validated the identified causal variants using tissue-

specific eQTL data collected from the GTEx project, based on
the assumption that if a variant can cause a significant change in
the accessibility of the RE where it locates, it should be more
likely to affect distal gene expression. We checked in each tissue
the overlap between causal variants identified by OpenCausal
and variants involved in eQTL interactions, yielding an average
of 37,794 validated causal variants across different tissues. We
conducted Fisher’s exact tests regarding all variants located in
REs of a specific tissue as background (Fig. 3B). The results
showed that the number of causal variants validated by eQTL
data were significantly higher than expected, with odds ratios
ranging from 2.52 to 4.17 (all P values < 2.2 × 10−16, Fisher’s
exact tests; Fig. 3C). In addition, we collected 297,308 lead
caQTL (chromatin accessibility QTL) variants from (13) as an-
other validation set in which the caQTL variants are defined as
putative lead variants for open peaks. Then, we checked the
enrichment of our detected causal variants in these lead caQTL
variants. The results showed that an average of 22.77% of lead
caQTL variants were detected as causal variants for REs by our
approach, with odds ratios ranging from 2.63 to 4.29 across tis-
sues (all P values < 2.2 × 10−16, Fisher’s exact tests; Fig. 3D).
From the above analysis, we noticed that 23.12% of eQTL

variants were identified as causal variants by OpenCausal
(Fig. 3C) on average. A possible regulatory mechanism behind

this can be described as follows: A variant located in an RE
causes the change of TFBS for pioneer TFs, which may influence
the open signal of this region and changes its state of being open
to closed. Then, this change can influence the expression level of a
distal gene through three-dimensional chromatin interacting.
Eventually, the relationship between variations in REs and the
change of distal gene expression is captured by eQTL interactions
(the direct regulatory process; Fig. 3E). We can explain the reg-
ulatory mechanism of 23.12% of eQTL interactions using our
approach with this understanding in mind. In addition, there is
another situation in which the variation in an RE does not nec-
essarily change the accessibility of this region but still can influ-
ence the distal gene expression by disturbing the binding affinity of
cofactors or nonpioneer TFs (the indirect regulatory process;
Fig. 3F). We detected this kind of variant by checking whether the
variants are located at the TFBS of its regulating TFs, where the
TF-RE interactions are derived from the regulatory networks
constructed with the chromatin accessibility scores predicted by
Ropen model using our previously developed gene regulatory
network inference model PECA (a statistical approach based on
paired expression and chromatin accessibility) (14) (SI Appendix,
Text S3 and Dataset S3). In this way, we identified an average of
9.78% of eQTL interactions that can be explained by the indirect
regulatory process. Altogether, our model directly and indirectly
explained the regulatory mechanism of an average of 30.23% of
eQTL interactions across different tissues (Fig. 3G).

Prioritization of Putative Causal Variants for GWAS Trait. GWAS
have been widely used to identify the genomic regions on chro-
mosomes that harbor genetic determinants of complex traits
(15–17). However, SNPs detected by the GWAS study—tag
SNPs—typically do not have a direct causal relation to the trait
(18, 19). The association between a tag SNP and a trait can be
indirect due to the association between a tag SNP and a causal
SNP, which in turn is associated with a trait. However, since
patterns of linkage disequilibrium among SNPs can be complex,
it is challenging to determine the underlying causal variants (18).
We show below a useful statistical measure that assesses the
impact of a given variant on the openness of a regulatory region,
which helps with detecting functional noncoding variants that are
most likely to be causally related to a trait.
Once we have the WGS data of an individual, we can apply

OpenCausal to detect individual-specific causal variants for REs
in different tissues for this individual, where the TF expression
input is based on a reference profile (say, obtained by averaging
the TF-expression profiles in the GTEx expression data in a
given tissue). We propose a method to integrate these variants
and their associated chromatin accessibility scores with GWAS
summary data to prioritize variants in GWAS loci for a trait
(Fig. 4). Briefly, for a given risk SNP identified from GWAS
summary data, we define the 200-kb region centering at this SNP
as a risk locus. Then, we define VCSs for variants in the risk
locus by simultaneously considering the influence of variants on
the chromatin accessibility of REs and the relationship between
REs and the given trait (Methods). Finally, by ranking variants
according to their VCS scores, we can prioritize the variants
based on their potential to affect chromatin accessibility in tissue
contexts relevant to the GWAS trait. We note that in the above
method, in order to interpret a personal genome without associ-
ated expression or accessibility data, the open scores are calcu-
lated using a reference profile (of tissue-specific TF expression)
representing the population average of profiles, rather than using
the profile from that particular donor.
Next, we illustrate this method using an initial example of the

GWAS trait of height. Since we had the phenotype information
(i.e., heights) from 635 GTEx donors, which can be used for
validation, we chose height for demonstrative purposes. We
wanted to see how well our method prioritizes variants falling
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within a risk locus. In this work, the risk loci for height were
obtained based on the summary statistics of a GWAS meta-
analysis of about 700,000 individuals of height (19).
As a sanity check, we first examined a risk locus around the

known height-related gene IGF1 (20). This is a 200-kb region

centering at a highly significant risk SNP rs12579077 (P = 3.4 ×
10−32) 2 kb upstream of IGF1. For each of 635 GTEx donors
with WGS data, we applied OpenCausal to predict individual-
specific open scores in the tissue context of muscle, which is
known to be relevant for height (21–24). We calculated the VCS

Step 1: Derive the list of risk SNPs from GWAS trait or disease 

Step 2: Define the risk loci for each risk SNP

Case Control

GWAS

Manhattan plot of SNPs

risk SNPs

risk SNP

risk loci 

risk SNP from GWAS variant detected by WGS regulatory element gene

Explore each risk SNP

Predicted 

Step 4: Prioritize variants in the risk loci 

Prioritization

Var N

Var 1
Var 2
Var 3

Var N

Var 1
Var 2
Var 3

VarVV 1
VarVV 2
VarVV 3

VCSs Ranking List

12 1323837 9.425 
12 1323862 6.931 
12 1324892 1.201 

ATCGATCAGGATT

ATCGATCGGGATT

= ( ; )
′ = ( ′ ; )

REF genome

WGS genome

Step 3: Calculate open scores for variants in the risk loci 

′ = ( ′ ; )
′

where TFBS is donor-specific and TF expr is tissue-specific. 

where i ranges from 1 to N. 

* See Methods for the detailed definition 
of beta scores and lambda scores.

Fig. 4. Workflow of the prioritization of genetic variants for GWAS trait.
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scores for all variants detected in the risk locus and ranked these
variants according to the scores. Next, we assessed whether the
phenotype is more strongly correlated with genotype stratifica-
tion by top-ranked variants or that by bottom-ranked variants.
To ensure that the number of donors with minor alleles is large
enough for evaluation, we filtered out variants whose frequency
of minor allele is less than 10. This yielded a list of 157 variants in
the IGF1-related risk locus. For each of these variants, we cal-
culated the absolute value of the log fold change between the
average height of donors with the minor alleles and that with the
major alleles (i.e., log |FC|). We then compared the log |FC| of K
top-ranked variants with that of K bottom-ranked variants. The
result shows that variants prioritized to the top of the list are
more related to the phenotype than variants ranked at the bot-
tom of the list (K = 20, 30, and 40; Fig. 5A). The strategy of
deciding the number of causal variants is discussed in SI Ap-
pendix, Text S4 and Fig. S6.
To draw a more general conclusion, we collected 3,290 height-

associated risk SNPs, distributed across the genome, from the
combined GWAS metaanalysis of ∼700,000 individuals (19).
After merging SNPs that are close to each other (say, the dis-
tance between two risk SNPs closer than 10 kb), we obtained
2,953 risk SNPs. For each risk SNP, we again defined the 200-kb
region centering at this SNP as a risk locus. Using the method
described above, we prioritized the variants in each risk locus in
the tissue context of muscle. Then, for each risk locus, we
compared the average log |FC| of 40 top-ranked variants with
that of 40 bottom-ranked variants. Results show that the geno-
types of top-ranked variants can better stratify the donors than
that of the bottom-ranked variants in a high proportion (75.62%)
of the risk loci (Fig. 5B). Furthermore, this proportion increases
to 85.89% if we exclude essentially tied cases (i.e., cases where
the difference between the average log |FC| of top-ranked vari-
ants and that of bottom-ranked variants is less than 5 × 10−3). To
sum up, by checking the correlation between the genotypes of
variants and the phenotype of donors, we have illustrated that

our method is effective in the prioritization of putative causal
variants in GWAS risk loci.
Finally, we extended this approach to prioritize REs within

GWAS risk loci (SI Appendix, Text S5). This extension is im-
portant as it allows the interpretation of rare variants including
those unique to a person’s genome. We applied it to analyze
2,953 GWAS risk loci for human height. Since each locus has
already passed a very stringent threshold for association, our goal
is to further assess the relative importance and the tissue-specific
role of the REs within each locus. For each of 19 tissues (those in
Dataset S1, plus blood tissue), our method provided a prioriti-
zation (i.e., ranking) of the REs within each locus. If in at least
one tissue, the height prediction based on the top 40 REs is
significantly more accurate [i.e., P < 0.00263 = (0.05)/19] than
that based on the bottom 40 REs, we regard the prioritization as
significantly correct for this locus. Conversely, if the prediction
based on the bottom 40 REs is significantly more accurate, the
prioritization is regarded as significantly incorrect for this locus.
We use fivefold cross-validation to evaluate the prioritizations,
where the ranking is done based on four subgroups of donors
and the evaluation of prediction accuracy is done on the left-out
subgroup, and all modeling was sex-specific. Among all of the
loci, the prioritizations were significantly correct in 1,562 loci
(Dataset S4), and many comparisons reached a very high level of
significance (73 P values were in the range of 2.5 × 10−9 to 9.5 ×
10−6). In contrast, the prioritizations were significantly incorrect
in only 24 loci (Dataset S5). This result provided a strong vali-
dation for our approach to the prioritization of REs. Further-
more, by examining the tissues associated with the significant
results for a given locus in Dataset S4, one can identify the rel-
evant tissue contexts for that locus–trait association.

Methods
Data Collection and Preprocessing. We collected paired RNA-seq and ATAC-
seq data for 42 samples of 18 tissues from the ENCODE project (12). Chro-
matin accessibility peaks were called from binary alignment map (BAM) files
of ATAC-seq samples using MACS2 (i.e. model-based analysis of ChIP-Seq v2)
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Fig. 5. Validation of prioritized putative causal variants for height GWAS. (A) Comparison between K top-ranked putative causal variants and K bottom-
ranked variants (K = 20, 30, and 40) in the IGF1-related risk locus. y axis is the absolute log value of fold change between the average height of donors with
the minor allele and that of donors with the major allele (i.e., |log FC|). *P < 0.05. (B) Comparison between top-ranked variants and bottom-ranked variants
for 2,953 risk loci. Each dot represents a risk locus. The y-axis value of each dot is the average |log FC| of 40 top-ranked variants, and x axis is that of 40 bottom-
ranked variants in this locus.
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(25) with default settings. We then merged peaks of all samples and ex-
tended the length of each peak to 500 bp surrounding its middle site,
yielding a list of 2,965,129 REs. Processed fragments per kilobase million
(FPKMs) of RNA-seq samples were downloaded from the ENCODE project.
The detailed information of ENCODE samples is described in Dataset S1.
WGS data and RNA-seq data of GTEx samples were obtained from the
dbGaP accession number phs000424.v7.p2 on 30 May 2019. Tissue-specific
eQTL interactions were downloaded from the GTEx Portal on 30 May 2019.

Definition of Chromatin Accessibility Scores. For each ATAC-seq sample, we
denote the number of reads falling into each RE of length L (i.e., a 500-bp
peak) as N. To remove the effect of sequencing depth, we choose a back-
ground window of length W surrounding this peak and denote the number
of reads falling into this window as M. The chromatin accessibility openness
score is formally defined as the fold change of the read counts per base pair
and can be simply calculated as

O =  
N=L
M=W

,

where the length of REs L is set to be 500 bp and the length of a background
window W is 1 Mb, according to the suggestion from refs. 26 and 27.

Ropen Model. Ropen regresses the chromatin accessibility scores of REs using
the expression of TFs as predictors. For each RE, we train a locus-level re-
gression model. Specifically, for a biological sample j, we calculate the
chromatin accessibility score Oij of RE i based on ATAC-seq data. The TFBSs

are obtained by scanning each RE for motifs of different TFs using HOMER
(11) with default settings. The regression process can be formulated as the
following optimization problem:

min
α

‖ Oij − α0 −∑
k

αkTFkjBik‖2F + λ ‖ α‖22  + ‖ α‖1( ),

where TFkj is the log format of expression of TF k in sample j and Bik rep-
resents the occurring frequency that region i contains the binding site of TF
k; i = 1,2,⋯,N; k = 1,2,⋯M. Here N is the total number of REs, and M is the
number of TFs. λ is selected using the cross-validation strategy based on the
mean squared error. We solve the optimization problem of each RE using
the elastic net (28).

Gene Expression Prediction Using Chromatin Accessibility Scores. For each
gene, we train a regression model using chromatin accessibility scores of the
REs neighboring this gene. Specifically, we detect REs of each tissue from
ATAC-seq data. Then, we rank the tissue-specific REs based on their distances
to a given gene. To predict the expression of a gene, we train a regression
model using the chromatin accessibility scores of K REs nearest to this gene
as predictors. This process can be formulated as the following optimization
problem:

min
β

‖ Ggj − β0 −∑
Sg

βkOkj‖2F + λ ‖ β‖22  + ‖ β‖1( ),

where Ggj is the log form of the expression of gene g in sample j, Sg is the set
of K neighboring REs for gene g, and Okj is the chromatin accessibility score

of kth neighbor region in sample j; g = 1,2,⋯, T ; j = 1,2,⋯,Q; k = 1,2,⋯,K.
Here T is the total number of genes, and Q is the number of samples in each
tissue. K is set as 30 in our case. We solve the optimization problem of each
gene using the elastic net (28).

Design of OpenCausal. Based on the Ropen model, we can predict the
chromatin accessibility score of a given region using the TF expression and
genomic sequence information as input, which can be denoted as

f(TFBS; TF   expr) = α0 +∑
k

αk   TFk   Bk ,

where the TFBS can be derived from the sequences of the REF, or alterna-
tively, it can be learned from WGS data. We use the change of chromatin
accessibility scores before and after SNPmutation tomeasure the influence of
a variant on an RE. To quantify this influence, we define the absolute value of
log fold change between chromatin accessibility scores calculated based on
the REF and that calculated based on WGS data as the causal score for the
given region, formulated as

ΔO =
⃒⃒
⃒log2(OREF

OWGS
)
⃒⃒
⃒ =

⃒⃒
⃒log2

f(TFBS; TF   expr)
f(TFBS′; TF   expr)

⃒⃒
⃒.

Definition of VCS. First, we assess the marginal influence of REs on the
phenotype of a given trait (say, heights) using a regression model,

ht = ∑K
k=0

βkOk + θSEX,

where ht is the heights of donors, ht = (h1,h2,  ⋯,hD). Ok is the predicted
open scores of kth RE, Ok = (Ok1,Ok2,⋯,OkD), k = 1,2, . . . ,K. D is the num-
ber of donors used in this regression model, and K is the number of REs
located on the given risk locus. SEX is a Boolean vector that indicates the sex
of donors. In this way, beta scores can be used to reflect the correlation
between REs and heights. Variants located on the same RE share the same
beta score.

Then, for each variant, we defined a lambda score to access the influence
of mutated variants,

λ =
⃒⃒
⃒⃒
⃒
∑D1

i Oi

D1
−∑D2

j Oj

D2

⃒⃒
⃒⃒
⃒,

where Oi is the predicted open score of a variant in donor i. D1 is the number
of donors with the minor allele, and D2 is the number of donors with the
major allele. For each variant, λ is the difference between the average open
scores of donors with allele 1 and those with allele 2. Thus, lambda scores
reflect the influence of variants on the chromatin accessibility of REs.

Finally, we define the VCS as the absolute value of the product of beta
scores and lambda scores, to reflect the importance of variants for a specific
trait, denoted as

VCS = |β × λ|.
To avoid the possible information leakage, the VCSs for the GTEx donors were
computed using fivefold cross-validation; i.e., we use a subset of donors (say,
one of five fold) to train the above regression model for beta scores and use
the other donors (say, the other four of five fold) to implement the priori-
tization and evaluation analysis.

Discussion and Conclusions
In this paper, we propose the method of OpenCausal to priori-
tize genetic variants based on their impact on chromatin acces-
sibility of REs. The core component of this method is a
sequence-based regression model designed to predict the chro-
matin accessibility scores of REs using genomic sequences and
TF expression. By capturing the change of chromatin accessi-
bility scores after involving personal genetic variants on the se-
quences of REs, we quantify the impact of variants on the
accessibility of regulatory regions. The Ropen model has been
trained on 42 samples of 18 tissues from the ENCODE project.
We statistically evaluated the performance of the Ropen model
using a cross-tissue validation strategy. On the basis of Ropen,
we have developed the OpenCausal method and applied it to
6,430 samples of 18 tissues derived from the GTEx project. First,
we validated the effectiveness of Ropen on GTEx samples by
showing that a target gene’s expression is well correlated with the
predicted openness of its associated REs. Then, we applied
OpenCausal to calculate causal scores for REs in different tis-
sues. The quality of causal scores was validated since variants
with high causal scores are highly enriched for eQTLs and
caQTLs. As an initial application of OpenCausal, we applied it
to prioritize variants in a GWAS data set on human height. For a
given risk locus derived from GWAS summary data, we con-
ducted a fine-mapping analysis to prioritize the WGS-based
variants in this loci based on VCS scores. We validated the pu-
tative causal variants by checking the correlation between gen-
otypes of variants and phenotypes of donors. The results showed
that heights stratified by variants with high VCSs are more
differentially distributed than those stratified by other variants.
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This indicates that our method can effectively prioritize variants
that are related to the phenotype of a given trait, which provides
a point of view for the fine-mapping analysis.
The encouraging performance of VCS scores in prioritizing

noncoding variants is attributed to the ability of our prediction
model in integrating sequence information with expression data
to capture functional variants. As the most important component
of OpenCausal, the Ropen model can be independently applied
to predict chromatin accessibility scores. This kind of model is
currently urgently in demand because RNA-seq data are usually
easier to be obtained than ATAC-seq data, but in some cases we
may need paired RNA-seq and ATAC-seq data. Furthermore,
according to previous studies, the frequency of variants has a
large effect on the success of fine mapping by statistical methods
(29). WGS can be informative for fine-mapping rare variants.
Our method provides insight into detecting functional noncoding
rare variants by quantifying the influence of variants on the
chromatin state of open regions. For an individual, if the WGS
data and context-specific expression data are available, Open-
Causal can be applied to detect individual-specific causal vari-
ants for REs in different tissues for this individual. The VCS
scores designed by our method can be regarded as an annotation

for the variants to help WGS data to prioritize common vari-
ants and rare variants. In this way, OpenCausal provides a
valuable resource for the detection of functional noncoding
variants and the interpretation of how genetic variants are in-
volved in the regulatory process and further related to diseases.
With the accumulation of available WGS data, we believe there
will be more and more methods developed to detect and fine-
map rare variants.

Data Availability. Source code and data are freely available at
https://github.com/liwenran/OpenCausal.
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