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a b s t r a c t

The Qinghai-Tibet Plateau (QTP) is an important cushion plant hotspot. However, the distribution of
cushion plants on the QTP is unknown, as are the factors that drive cushion plant distribution, limiting
our understanding of the evolution of cushion species in the region. In this study, we assessed spatial
patterns of total cushion plant diversity (including taxonomic and phylogenetic) over the entire QTP and
compared patterns of diversity of cushion plants with different typologies (i.e., compact vs. loose). We
also examined how these patterns were related to climatic features. Our results indicate that the
southern QTP hosts the highest total cushion plant richness, especially in the south-central Hengduan
Mountains subregion. The total number of cushion species declines from south to north and from
southeast to northwest. Compact cushion plants exhibit similar patterns as the total cushion plant
richness, whereas loose cushion plants show random distribution. Cushion plant phylogenetic diversity
showed a similar pattern as that of the total cushion plant richness. In addition, cushion plant phylo-
genetic community structure was clustered in the eastern and southwestern QTP, whereas random or
overdispersed in other areas. Climatic features represented by annual energy and water trends, sea-
sonality and extreme environmental factors, had significant effects on cushion plant diversity patterns
but limited effects on the phylogenetic community structure, suggesting that climatic features indeed
promote the formation of cushion plants. Because cushion plants play vital roles in alpine ecosystems,
our findings not only promote our understanding of the evolution and formation of alpine cushion plant
diversity but also provide an indispensable foundation for future studies on cushion plant functions and
thus alpine ecosystem sustainability in the entire QTP region.

Copyright © 2021 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cushion-forming plants are considered ecosystem engineers in
alpine and arctic ecosystems that create suitable micro-habitats for
less stress-tolerant plants to inhabit (Arroyo et al., 2003; K€orner,
2003; Badano et al., 2006; Cavieres et al., 2005, 2007; Chen et al.,
2015b, 2019). As a result, cushion plants facilitate higher plant
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diversity and above-ground productivity at both local and regional
scale (Arroyo et al., 2003; Butterfield et al., 2013; Cavieres et al. 2014,
2016; Chen et al., 2015a; Kikvidze et al., 2015; Gavini et al., 2020).
Cushion plants also contribute to alpine arthropod diversity and
community dynamics (Molina-Montenegro et al., 2006; Molenda
et al., 2012; Reid and Lortie, 2012; Chen et al., 2021) by construct-
ing and sustaining the structures of plant-pollinator networks in
alpine ecosystems (e.g. Losapio et al., 2019), which is critical for
alpine ecosystem function and sustainability (Badano et al., 2006).
Because cushion plants are keystone species in alpine ecosystems,
understanding their current patterns of diversity and geographical
distribution allows us to predict future community dynamics of the
entire alpine ecosystem and develop effective conservation strate-
gies (Anthelme et al., 2014; Dolezal et al., 2019).
Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This
censes/by-nc-nd/4.0/).
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Cushion plants are distributed on mountains across the Earth.
However, few studies have aimed to assess their patterns of di-
versity and geographical distribution (but see Aubert et al., 2014;
Boucher et al., 2016). Aubert et al. (2014) revised the worldwide
catalogue of cushion plants and confirmed that temperate Asia has
37.1% (487 species) of all species, the highest number of cushion
plants in the world. Boucher et al. (2016) used this revised cata-
logue of cushion plant to confirm that the Himalayas are a center
for cushion plant diversity and found that coldness was more
important than dryness in explaining the presence of cushion
plants. Furthermore, adaptive capacities of cushion plant have been
shown to be species-specific (Badano and Cavieres, 2006; Chen
et al., 2015a, b). Cushion plant typology differs by compactness,
from loose dwarf/mat to densely compact cushions (Aubert et al.,
2014). These variations suggest that cushion plant morphology
may facilitate the ability of plants to adapt to different environ-
mental stressors. However, previous studies have yet to identify the
factors that drive such morphological and adaptive radiations.

The Qinghai-Tibet Plateau (QTP) is a cushion plant diversity
hotspot that hosts over 110 cushion plant species (Aubert et al.,
2014; Boucher et al., 2016; Li et al., 1987; Huang and Wang, 1991).
The unique topology of the QTP, with closely clustered, huge
mountains separated by deep valleys, has generated diverse cli-
matic conditions across the entire QTP region, with relatively warm
andwet conditions in the southern and southeastern parts and cold
and dry conditions in the northern and northwestern parts (The
comprehensive scientific expedition to the Qinghai-Xizang
plateau, 1983; Chen et al., 2017; also see results in this study).
These diverse habitats have in turn produced high plant diversity
(more than 12,000 seed plants, Zhang et al., 2016). In addition, the
QTP has undergone massive climatic changes due to several uplift
events, which have likely affected the distribution of plant species
and the evolution of plant community structure (Wen et al., 2014
and references therein; Spicer et al., 2020). Thus, the patterns of
cushion plant diversity and their distribution might differ across
the entire QTP, especially because cushion plants are strongly
associatedwith cold and dry conditions (K€orner, 2003; Aubert et al.,
2014; Boucher et al., 2016). Although previous studies have
attempted to characterize the flora and distribution of cushion
plants on the QTP, most of these studies were conducted at local or
regional scales (Li et al., 1985, 1987; Huang andWang, 1991; Huang,
1994). In addition, the QTP is very sensitive to climate change (Liu
and Chen, 2000) and the continually increasing temperature in
alpine regions due to global warming has already significantly
affected the species composition, distribution and community dy-
namics of this alpine ecosystem (Lenoir et al., 2008; Qin et al., 2009;
Elsen and Tingley, 2015; Liang et al., 2018). Understanding which
specific climatic factors affect cushion plant communities is
essential for planning suitable conservation strategies, as cushion
plants are especially sensitive to climate change (Neuner et al.,
2000; Cranston et al., 2015; Chen et al., 2020).

Phylogenetic approaches are frequently used to measure
biodiversity and characterize the assembly of evolutionary history
in geographical space (Forest et al., 2007; Thornhill et al., 2016,
2017; Zhang et al., 2021b). Additionally, phylogenetic approaches
can reveal how climatic features filter or accumulate (phylogenetic
clustering or overdispersion) plant species under specific climatic
conditions (Webb, 2000; Swenson et al., 2012; Aldana et al., 2017;
Liu et al., 2019). Generally, strong climatic oscillations induce
phylogenetic clustering, whereas milder climatic changes induce
higher phylogenetic diversity (PD) and phylogenetic overdispersion
Fig. 1. The diversity and distribution (a and b), the phylogenetic community structure (c),
indicates protected areas, blue indicates centers of paleo-endemism, yellow indicates centers
super-endemism.
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(Feng et al., 2014). Although cushion plants are among the best
adapted life-forms, especially in the alpine ecosystem of the QTP
where they play vital roles in the local ecosystem functions (Li et al.,
1985; Yang et al., 2010; Butterfield et al., 2013; Liu, 2014; Chen et al.,
2015a, b, 2019; Cavieres et al., 2016), phylogenetic community
structures of cushion species under varying environments on the
entire QTP have yet to be characterized. Consequently, the evolu-
tionary history of cushion plant assemblages and the factors that
have driven this evolution across geographic space remain unclear.

In this study, we assess patterns of total cushion plant diversity
and phylogenetic community structure to answer the following
questions: (1) What are the current patterns of cushion plant di-
versity and their distribution on the QTP? (2) What potential cli-
matic variables drove the current patterns of cushion plant
diversity and distribution? (3) What factors drive differences in
distribution of cushion groups with distinct typology?

2. Materials and methods

2.1. Data sources for cushion plant distribution

We used an updated worldwide catalogue of cushion plant spe-
cies (Aubert et al., 2014; http://www.cushionplants.eu/) to identify
and gather data on 123 cushion-forming plant species in the
Qinghai-Tibet Plateau (QTP). The database was checked for recent
additions, which were added to our species list. We also used the
database to categorize plants according to their level of compactness.
Of the total cushion plant species present in the QTP, 92 species have
densely compact morphology (either dome-shaped or flat) and 31
species have “loose morphology” (either dome-shaped or mat)
(Table S1). The densely compact cushion species used in this study
are distributed in 22 genera and 12 families, most belonging to
Saxifraga (Saxifragaceae), Arenaria (Caryophyllaceae) and Androsace
(Primulaceae). The loose cushion species belong to 19 genera and15
families, most belonging to Eritrichium (Boraginaceae), Oxytropis
(Fabaceae) and Acantholimon (Plumbaginaceae).

County-level distribution records of cushion plant were trans-
ferred into a 0.5-degree � 0.5-degree resolution following the
protocol adopted by Zhang et al. (2021a). Distribution records were
collected from national and regional flora records, Chinese Virtual
Herbarium (http://www.cvh.ac.cn), Zhang et al. (2016), and the
National Specimen Information Infrastructure (NSII: http://www.
nsii.org.cn).

2.2. Bioclimatic variables

Cushion plants are strongly associated with cold temperatures
and dry conditions. Thus, in this study, we examined whether,
temperature and precipitation play a role in driving cushion plant
distribution. For each parameter, we selected four sub-parameters
that directly reflect the relevant conditions. Mean annual tem-
perature and annual precipitation are climatic variables
frequently used to represent energy and water conditions (e.g., Xu
et al., 2013). For temperature, we selected mean annual temper-
ature (Bio1), temperature seasonality (Bio4), mean temperature of
warmest quarter (Bio10) and mean temperature of coldest quarter
(Bio11). Temperature seasonality is defined as the standard de-
viation of monthly mean temperature and precipitation season-
ality is defined as the coefficient of variation of monthly
precipitation both can reflect the climatic instability (Shrestha
et al., 2017). For precipitation, we selected annual precipitation
and CANAPE (d) of cushion plants on the Qinghai-Tibet Plateau (e). For CANAPE, black
of neo-endemism, purple indicates mixed-endemism and dark purple indicates mixed
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(Bio12), precipitation seasonality (Bio15), precipitation of wettest
quarter (Bio16) and precipitation of driest quarter (Bio17).
Importantly, mean temperatures of warmest or coldest quarters,
mean precipitation of wettest or driest quarters can reflect
extreme or limiting environmental conditions, which are assumed
to affect plant distribution and survival (Liu et al., 2020). For each
bioclimatic variable of a species, we calculated the mean climatic
values of all the distribution grid cells for this species. Bioclimatic
variables were obtained from the WorldClim database v.1.4
(Hijmans et al., 2005).

2.3. Statistical analysis

For phylogenetic analyses, we downloaded cushion plant ITS
sequences (ITS1-5.8S-ITS2) from the NCBI database (https://www.
ncbi.nlm.nih.gov/). For species without sequences, we used ITS se-
quences of closely related species (GenBank accessions, Table S2).
Sequence alignments and model selection were performed accord-
ing to Zhang et al. (2019). A forced bifid branch phylogenetic tree
without time calibration was constructed using BEAST v.1.8.4
(Drummond and Rambaut, 2007). We conducted an uncorrelated
relaxed clock and birth-death process and an independent run of
Markov chain Monte Carlo (MCMC), totaling 100 million genera-
tions, sampling every 5000 generations. TRACER v.1.6 (Drummond
and Rambaut, 2007) was used to test the effective sample size
(ESS) of the log file and ESS >200 was regarded as having less in-
fluence by autocorrelation. The maximum clade consensus tree was
generated in TREE ANNOTATOR v.1.8.4 (Drummond and Rambaut,
2007) and the first 25% of trees were discarded as burn-in. We
used BIODIVERSE v.2.0 (Laffan et al., 2010) to calculate species
richness (SR), phylogenetic diversity (PD), net related index (NRI)
and the categorical analysis of neo- and paleo-endemism (CANAPE).
NRI values reflect the phylogenetic structure in a grid cell (e.g.,
phylogenetic clustering or overdispersion) (Webb et al., 2002).
CANAPE can identify these grid cells as evolutionary “museums” or
“cradles”, which shows important conservation values (e.g., Zhang et
al., 2021b). Blomberg's Kwas calculated to estimate the phylogenetic
signal using the package “phylosignal” (Keck et al., 2016) in R 3.5.1 (R
Core Team, 2018). A K value close to 1 indicates that there is a certain
degree of phylogenetic signal or of conservatism during the evolu-
tionary process, a K > 1 indicates that traits are conserved, and K
close to 0 indicates that evolution tends to be random.

To account for spatial autocorrelation, spatial simultaneous
autoregressive error (SAR) models were run using MuMIn (Barto�n,
2019) and spdep (Bivand et al., 2018) packages. Moreover, we
conducted ordinary least squares (OLS) linear regressions. OLS and
SAR were only used to explore bivariate relationships between
spatial indices and each variable due to the collinearity of the
variables. In order to contain collinear variables, we conducted a
partial regression analysis using the “vegan” package (Oksanen
et al., 2015). All the bioclimatic variables were divided into four
groups: energy, water, seasonality and extreme environmental
factors. We conducted the same procedures on compact and loose
cushion plants, respectively, to investigate the effects of climatic
variables on different cushion structures (compact and loose).

3. Results

3.1. Cushion plant richness and distribution patterns

Cushion plant richness was negatively correlated with latitude
(Fig. A1), indicating that geographical attributes affect the distri-
bution of cushion plants. The highest total cushion species richness
was found in the southern and southeastern QTP area, especially in
the south-central Hengduan Mountains; in contrast, from south to
234
north and southeast to northwest, total cushion plant richness
declined (Fig. 1a). The pattern of cushion plant phylogenetic di-
versity (PD) was similar to that of total cushion plant richness;
however, PD showed a different pattern than that of total cushion
plant richness (Fig. 1b). Specifically, cushion plants showed higher
PD in the southern part of the QTP, with the south-central Heng-
duan Mountains harboring the highest PD, which progressively
decreased to the northern and northwestern parts (Fig. 1b).

Consistent with total cushion plant richness, cushion plants
with compact morphology showed higher diversity in the southern
part of the QTP than in other areas (Fig. 2a). In contrast, the loose
cushion plants showed a relatively random diversity pattern, with
the south-central Hengduan Mountains and the central and
northern QTP harboring the highest diversity (Fig. 2b).

3.2. Cushion plant phylogenetic community structure

Cushion plants from the eastern and southwestern parts of the
QTP showed higher NRI (most >0), indicating that the phylogenetic
community structure is more clustered in these areas (Fig. 1c). In
contrast, in other areas, especially in the central and northwestern
parts of the QTP, the NRI values were relative lower (most <0),
indicating that the phylogenetic community structure in these re-
gions is frequently random or overdispersed (Fig. 1c). Generally,
higher degrees of phylogenetic clustering were observed in the
eastern and southwestern cushion plant communities than com-
munities in other areas of the whole QTP.

Additionally, CANAPE analysis identified only one area of paleo-
endemism for cushion species: the northeastern QTP. This finding
indicates this area might act as an evolutionary museum for
cushion plants (Table S3). Neo-endemism centers were mainly
found in the southern QTP, whereas very few were found in the
western, northern and northwestern QTP, indicating the southern
QTP might act as an evolutionary cradle for cushion plants. Mixed-
and super-endemism centers were identified in the southeastern
and northwestern QTP and scattered centers were distributed in
the northeastern and southwestern QTP, indicating these areas
might act as both the above roles (Fig. 1d; Table S3).

3.3. Drivers of cushion plant diversity and distribution

Overall, mean annual temperature, annual precipitation and
precipitation of thewettest quarter progressively decrease from the
southeastern to the northwestern parts of the QTP (Fig. 3a, e, g);
whereas the temperature seasonality shows the opposite trend,
with the northeastern QTP having the lowest seasonality and
northwestern QTP having the highest seasonality (Fig. 3b). The
highest mean temperature of the warmest quarter was found
around the QTP, especially in the southeastern part, i.e., the
Hengduan Mountains subregion (Fig. 3c). The highest precipitation
seasonality was found in the south-central QTP (Fig. 3f), while the
highest precipitation of driest quarter was found in the south-
eastern and southwestern parts of the QTP (Fig. 3h).

All the climatic variables represented by annual energy and
water trends, seasonality and extreme environmental factors had
significant effects on patterns of cushion plant diversity (Table 1).
According to the SAR model, all climatic variables negatively
affected cushion plant richness and phylogenetic diversity (PD),
except for precipitation seasonality (Bio15), which positively
affected diversity (Table 1). These results indicate that poor envi-
ronmental conditions (e.g., dry and cold) promoted cushion plant
diversity. However, most climatic variables had no effect on cushion
plant phylogenetic community structure, with the exception of
precipitation seasonality, which showed significantly negative ef-
fects, and temperature seasonality and mean temperature of

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/


Fig. 2. Compact (upper) and loose (lower) cushion plant diversity and distribution on the Qinghai-Tibet Plateau.
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warmest quarter, which showed marginally significant effects
(Table 2). These results indicate that the intensity of climate fluc-
tuations did not strongly filter the cushion plant community as-
semblages. Partial regressions indicate that seasonality and
extreme environmental factors accounted for more variance than
energy and water in explaining cushion plant richness and PD
patterns (Fig. 4a and b), but these factors showed low explanatory
power in NRI (Fig. 4c). Climatic variables produced no phylogenetic
signal (all K ~ 0), indicating that the effect of climatic variables was
randomly distributed across cushion plant phylogeny (Fig. 5;
Fig. A2). Specifically, the distribution of all cushion plants can be
predicted by coldness (Bio1), water condition (Bio12), seasonality
(Bio15) and extreme climate (Bio10, Bio11 and Bio16), indicating
235
that cushion life-form is effectively adapted to these climatic fac-
tors. However, the ability to adapt to most of these climatic factors
is stronger in compact cushion plants than in loose cushion plants
(Table S4).
4. Discussion

This study demonstrates that the patterns of cushion plant di-
versity and their distribution on the Qinghai-Tibet Plateau (QTP) are
driven by environmental stressors, including temperature and
water conditions. These findings increase our understanding of the
evolution and formation of alpine cushion plant diversity in this
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region and establish an important foundation for future research
and conservation efforts.

4.1. Cushion plant diversity and distribution

Total cushion plant richness is highest in the southern and
southeastern parts of the QTP, especially in the south-central
Hengduan Mountains subregion, and decreases from south to
north and from southeast to northwest (Fig. 1a). This pattern in-
dicates that the Hengduan Mountains subregion and its adjacent
areas are important diversity centers of cushion plants. Such results
are consistent with those from other plant taxa and functional
groups (Wu,1988;Wu et al., 1995; Yu et al., 2017; Zhang et al., 2017;
Shrestha et al., 2017), including Rhododendron (Yu et al., 2017;
Shrestha et al., 2017), Saussurea (Xu et al., 2019; Zhang et al., 2021a)
and many other groups (Zhang et al., 2017, 2021b). Multiple factors
have been proposed to explain the high plant diversity in these
mountainous areas (e.g., Sun et al., 2002a, b; Wen et al., 2014;
Zhang et al., 2016; Xing and Ree, 2017; Shrestha et al., 2017; Yu
et al., 2019). One explanation may be that the rapid uplift of the
QTP has led to increased topographical complexity and drastic
disparities in climatic conditions on the plateau. For instance, the
eastern part of the QTP, where the Hengduan Mountains are
located, receives heavy rainfall in the summer, whereas precipita-
tion decreases along the remainder of the QTP (An et al., 2001;
Shrestha et al., 2017). These regional differences in precipitation are
likely to have driven plant speciation and diversification (Sun et al.,
2002a, b). Such mechanisms could, solely or jointly, explain the
establishment of cushion plants in this region.

Our results also showed that the general trends of most climatic
features are in accordancewith thepatterns of cushionplant diversity
(Figs.1a, b and 3). For instance, climatic seasonality (i.e., temperature
and precipitation seasonality) and extreme climatic variables (i.e.,
temperature of warmest/coldest and precipitation of wettest/driest
seasons) were highest in areas with the greatest cushion plant rich-
ness and diversity. The SAR results showed that all climatic variable
examined, with the exception of temperature seasonality on total
richness andannualprecipitationandprecipitationofwettest quarter
on phylogenetic diversity (PD), had significant impacts on cushion
plant total richness and PD (Table 1). These findings indicate that
climatic conditions significantly affected the current patterns of
cushion plant diversity, and that cushion plants are more tolerant to
large climatic fluctuations and extreme climatic events (e.g.,
Anthelme et al., 2014) similar to those induced by the geological
events that characterize the history of QTP.

Cushion plants with different typology (i.e., compact vs. loose)
have different patterns of diversity on the QTP (Fig. 2). Specifically,
compact cushion plants are concentrated in the southern part of
the QTP, whereas loose cushion plants showed a relatively random
distribution (Fig. 2). Although previous studies have indicated how
cushion plants adapt to cold and drought conditions on the QTP
(Yang et al., 2010, 2017; Liu, 2014; Chen et al., 2015b, 2019), these
studies focused on compact cushion plants, failing to address which
factors drive the distribution of different cushion plant typologies.
Our results show that both compact and loose cushion plants are
well adapted to most climatic variables examined here (Table S4).
However, the adaptive capacity of compact cushion plants is
stronger than that of loose cushion plants. Specifically, compact
cushion plant diversity is more in accordance with the patterns of
Fig. 3. Spatial patterns of climatic variables on the Qinghai-Tibet Plateau. (a) Bio1 ¼ Annual
of Warmest Quarter, (d) Bio11 ¼ Mean Temperature of Coldest Quarter, (e) Bio12 ¼ Annual
Quarter, (h) Bio17 ¼ Precipitation of Driest Quarter.
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temperature seasonality (Bio4), annual precipitation (Bio12) and
precipitation in wettest quarter (Bio16) (Figs. 2 and 3); whereas,
loose cushion plant diversity was not correlated with climatic fac-
tors (Figs. 2 and 3). These findings may indicate that capacity to
collect and store water from rainfall (and thus regulate their tem-
perature) is greater in compact cushion plants than in loose cushion
plants, which allows compact cushion plants to resist larger tem-
perature fluctuations (i.e., seasonality). Thus, these climatic factors
appear to jointly promote the diversification of compact cushion
plants in the southern and southeastern QTP, whereas the micro-
climates induced by topographical features of the QTP may play a
role in driving the current, random patterns of loose cushion plant
diversity and their distributions. However, further evidence is
needed to confirm these conclusions.

Previous studies have suggested that harsh environmental
conditions lead to phylogenetic clustering in plants, whereas mild
conditions lead to phylogenetic overdispersion (e.g., Kluge and
Kessler, 2011; Li et al., 2014; Zu et al., 2019). Phylogenetic clus-
tering also indicates that plants in harsh environmental condi-
tions show niche conservatism (Webb et al., 2002), in which
habitat filtering only allows some lineages to survive harsh envi-
ronments (Li et al., 2014). In contrast, phylogenetic overdispersion
indicates that negative interactions (e.g., competition) are
important in plant assembly in such communities (Graves and
Gotelli, 1993; Webb et al., 2002). Climatic variables showed no
evidence of phylogenetic signal, indicating that the adaptation of
cushion plants of different taxa to climate is relatively consistent
across phylogeny. However, NRI showed relatively higher values
(>0) in the southern and eastern parts than in the remaining areas
of the QTP (Fig. 1c), indicating that cushion plants still show
spatially phylogenetic clustering in these areas. Spatial phyloge-
netic clustering indicates that environmental stressors may filter
certain cushion plants. As a result, closely related species with the
capacity to adapt to the same environmental stresses persist in
these environments. This finding is consistent with previous
studies that showed communities of alpine plants are phyloge-
netically clustered likely due to environmental filtering at high
elevations (e.g., low temperature and precipitation) (Li et al.,
2014; Zu et al., 2019). Phylogenetic clustering of cushion plant
communities in the southern and eastern parts of the QTP may be
explained by the extremely high topographical complexity of the
region, which is characterized by huge mountains and deep val-
leys (Muellner-Riehl, 2019). Such topographical features can, in
combination with changes in climatic features between various
micro-topographies, promote species accumulation by offering
more niche space, preventing extinction and providing increased
opportunities for allopatric speciation (e.g., Kadereit et al., 2004;
Linder et al., 2014; Wallis et al., 2016; Shrestha et al., 2017). In the
central-northern and northwestern QTP, which have a less com-
plex topography (i.e., plateau terrace, basins or semiarid deserts)
and relatively uniform climate features (i.e., arid and/or semiarid)
(The comprehensive scientific expedition to the Qinghai-Xizang
plateau, 1983; Chen et al., 2017; Muellner-Riehl, 2019), cushion
plants are distributed randomly or compete with each other, as
indicated by random or overdispersed community phylogenetic
structures (Fig. 1c). Relatively uniform climates might lead to high
homogeneity in niche requirements of cushion plants, which in
turn may lead to neutral or even highly competitive interspecific
interactions.
Mean Temperature, (b) Bio4 ¼ Temperature Seasonality, (c) Bio10 ¼ Mean Temperature
Precipitation, (f) Bio15 ¼ Precipitation Seasonality, (g) Bio16 ¼ Precipitation of Wettest



Table 1
Results of climatic variable OLS and SAR for the cushion species richness and phylogenetic diversity on the QTP. R2 (or pseudo R2) and regression coefficients (Coef) are given.

Species richness

Climatic variable OLS SAR

Coef R2 Coef R2

Energy Bio1 0.072* 0.004 -0.149*** 0.796
Water Bio12 0.228*** 0.051 -0.184** 0.793
Seasonality Bio4 -0.419*** 0.175 -0.137 0.792

Bio15 0.165*** 0.026 0.323*** 0.797
Extreme Factors Bio10 -0.13*** 0.016 -0.128*** 0.796

Bio11 0.225*** 0.049 -0.171*** 0.795
Bio16 0.267*** 0.071 -0.147* 0.793
Bio17 0.031 e -0.223*** 0.796

Phylogenetic diversity
Energy Bio1 -0.03 e -0.196*** 0.762
Water Bio12 0.189*** 0.035 -0.092 0.756
Seasonality Bio4 -0.353*** 0.124 -0.235** 0.757

Bio15 0.078* 0.005 0.331*** 0.761
Extreme Factors Bio10 -0.221*** 0.048 -0.172*** 0.763

Bio11 0.138*** 0.018 -0.223*** 0.761
Bio16 0.212*** 0.044 -0.061 0.755
Bio17 0.105*** 0.011 -0.186*** 0.758

Note: Bio1 ¼ annual mean temperature; Bio4 ¼ temperature seasonality; Bio10 ¼ mean temperature of warmest quarter; Bio11 ¼ mean temperature of coldest quarter;
Bio12 ¼ annual precipitation; Bio15 ¼ precipitation seasonality; Bio16 ¼ precipitation of wettest quarter; Bio17 ¼ precipitation of driest quarter.
*P < 0.05, **P < 0.01, ***P < 0.001.

Table 2
Results of climatic variable OLS and SAR for the cushion plant phylogenetic community structure (NRI) on the QTP. R2 (or pseudo R2) and regression coefficients (Coef) are given.

NRI

Climatic variable OLS SAR

Coef R2 Coef R2

Energy Bio1 0.156*** 0.023 -0.036 0.852
Water Bio12 0.307*** 0.093 0.037 0.852
Seasonality Bio4 -0.303*** 0.091 -0.181*ms 0.853

Bio15 -0.175*** 0.029 -0.148* 0.853
Extreme Factors Bio10 0.015 e -0.039*ms 0.853

Bio11 0.251*** 0.062 -0.026 0.852
Bio16 0.275*** 0.075 0.0193 0.852
Bio17 0.269*** 0.071 0.032 0.852

Note: Bio1 ¼ annual mean temperature; Bio4 ¼ temperature seasonality; Bio10 ¼ mean temperature of warmest quarter; Bio11 ¼ mean temperature of coldest quarter;
Bio12 ¼ annual precipitation; Bio15 ¼ precipitation seasonality; Bio16 ¼ precipitation of wettest quarter; Bio17 ¼ precipitation of driest quarter.
*P < 0.05, **P < 0.01, ***P < 0.001.
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4.2. Future studies on cushion plant functions and conservation on
the QTP

Climate change has decreased biodiversity globally (Raven and
Wackernagel, 2020 and references therein). Because mountain eco-
systems, particularly those in the QTP, are located on the top of the
earth's surface, they are extremely sensitive to climate changes
(K€orner, 2003; Liu and Chen, 2000; Lenoir et al., 2008; Dullinger
et al., 2012). In fact, some cushion plant species are already threat-
ened at high altitudes by surrounding vegetation (Chen et al., 2020).
Cushion plants play a key role as foundation species in mountain
ecosystems (e.g., Molenda et al., 2012; Cavieres et al., 2014, 2016;
Kikvidze et al., 2015; Yang et al., 2010; Chen et al., 2015a, b, 2019;
Gavini et al., 2020). The extinction of cushion plants (as key species)
in the community could lead to local extinction or even cause,
through cascading effects, the collapse of the whole species net-
works (Memmott et al., 2004; Fortuna and Bascompte, 2006; Losapio
and Sch€ob, 2017). Therefore, preserving cushion plant communities,
especially in centers of diversity and endemism (Fig. 1), is very
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important for the conservation of alpine diversity and the long-term
sustainability of mountain ecosystems.

This study has primarily revealed the current cushion plant
diversity and their distribution on the QTP. However, a number of
unknows remain. Importantly, the evolutionary history of
cushion plants on the QTP remains unclear. Understanding where
and how cushion plants evolved may be a requisite for predicting
where and how they will fare in the future. An additional major
concern for conservationists is that most cushion plant centers of
diversity are outside of established nature reserves (Fig. 1d; also
see Zhang et al., 2021b). In addition, although cushion plants are
well known to positively influence plant and arthropod diversity
and community dynamics (Molenda et al., 2012; Liczner and
Lortie, 2014; Kikvidze et al., 2015; Cavieres et al., 2016; Gavini
et al., 2020; Chen et al., 2021), little is understood about how
they contribute to species networks. Finally, understanding how
specific cushion plant communities recruited, degraded and
sustained under specific harsh environments and particular areas
(like the paleo-endemism and neo-endemism centers) could be



Fig. 4. Partial regression for partitioning the effects of energy (EN), water (WA), seasonality (SE) and extreme environmental factors (EF) on cushion species richness (SR),
phylogenetic diversity (PD) and net related index (NRI).
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Fig. 5. Phylogenetic tree of cushion species on the Qinghai-Tibet Plateau and the distribution of species-specific environmental factors. The typology of cushion species is marked in
the tree with different colors. All environmental factors are scaled and mapped onto the tree. Bio1 ¼ Annual Mean Temperature, Bio4 ¼ Temperature Seasonality, Bio10 ¼ Mean
Temperature of Warmest Quarter, Bio11 ¼ Mean Temperature of Coldest Quarter, Bio12 ¼ Annual Precipitation, Bio15 ¼ Precipitation Seasonality, Bio16 ¼ Precipitation of Wettest
Quarter, Bio17 ¼ Precipitation of Driest Quarter.
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very important not only for predicting community dynamics but
also for establishing suitable conservation programs.
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