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Abstract
With technological improvements in the endovascular armamentarium, there have been tremendous advances in catheter-
based femoropopliteal artery intervention during the last decade. However, standardization of the methodology for assessing 
outcomes has been underappreciated, and unvalidated peak systolic velocity ratios (PSVRs) of 2.0, 2.4, and 2.5 on duplex 
ultrasonography have been arbitrarily but routinely used for assessing restenosis. Quantitative vessel analysis (QVA) is a 
widely accepted method to identify restenosis in a broad spectrum of cardiovascular interventions, and PSVR needs to be 
validated by QVA. This multidisciplinary review is intended to disseminate the importance of QVA and a validated PSVR 
based on QVA for binary restenosis in contemporary femoropopliteal intervention.
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Introduction

The burden of atherosclerotic peripheral artery disease 
(PAD) is projected to increase globally [1]. The femoro-
popliteal (FP) artery is the most common site of PAD 
involvement. With technological improvements in the endo-
vascular armamentarium, catheter-based FP intervention has 
gained popularity during the last decade [2–7]. Although the 
need for quantitative vessel analysis (QVA) for objective 
evaluation in FP intervention outcomes has been emphasized 
for over a decade [8], a standard methodology for assessing 
restenosis has yet to be established.

Meanwhile, because of its noninvasive nature, repeatabil-
ity, and lack of a need for contrast agents, duplex ultrasonog-
raphy (DUS) has been widely used without scientific valida-
tion in the identification of restenosis after FP intervention. 
In order to correct this chaotic situation, there is a strong 

movement to investigate the relationship between the peak 
systolic velocity ratio (PSVR) based on DUS and restenosis 
based on QVA [9, 10]. This multidisciplinary review from 
Endovascular Asia is intended to disseminate the importance 
of QVA and a validated PSVR based on QVA for binary 
restenosis in contemporary FP intervention.

QVA in FP intervention

Need for dissemination of QVA

Visual interpretation of angiography is subject to substantial 
intra- and inter-observer variability. Therefore, the method-
ology of QVA was initially introduced as quantitative coro-
nary analysis (QCA) in the field of coronary intervention 
in the mid-1980s to permit more objective, accurate, and 
reproducible visual assessment of lesion severity compared 
to angiography [11]. QCA has been developed not only to 
qualify lesion severity, but also to objectively evaluate the 
outcomes of endovascular therapy, including balloon angio-
plasty or stent. Thanks to the dissemination of this standard 
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Fig. 1   Quantitative FP artery analysis (citation from Ref. [10]). a 
Nitinol stents implanted in the left FP artery. b Angiography show-
ing intimal hyperplasia in the stented femoropopliteal artery. Note 
the proximal and distal edges of the nitinol stent (arrows). c Auto-
matically applied tracings show lumen contour (yellow lines) and 

assumed vessel (red lines). d Magnified view of the minimum lumen 
diameter within the stent (arrow). The minimum lumen diameter can 
be determined based on the lumen contour (yellow lines), and the 
assumed vessel (red lines) can be used as the reference vessel

methodology, QCA has offered highly insightful findings as 
a result of landmark clinical trials and daily clinical practice 
[12]. Given the history of coronary intervention, an aware-
ness of the importance of QVA is required for the develop-
ment of FP intervention.

Methodology of FP QVA

For QVA, an angiogram of the entire FP artery needs to 
be obtained using the anteroposterior and/or oblique view. 
To determine lesion severity, QVA using an automated 
edge detection algorithm should be performed in a blinded 
fashion (Fig. 1). In most cases, a catheter tip placed at 
the common femoral artery is unavailable as a calibration 
method because movement of the catheterization table is 
required for angiographic evaluation of the entirety of FP 
lesions. It is therefore impossible to calculate the reference 
vessel and lumen diameters and lesion length, and only 
the percent diameter stenosis (%DS) can be calculated as 
an indicator of the degree of restenosis based on a lumen 

contour and an assumed vessel as the reference vessel that 
are automatically drawn in the QVA system. The formula 
of %DS is as follows; minimum lumen diameter in the 
lesion or within the stent/the assumed vessel diameter. If 
the entire FP artery is stented, then the control segment, 
which is evaluated and measured against in-stent steno-
sis, is defined as being within a widely patent segment of 
the proximal or distal stent. In cases of multiple resteno-
sis, the most critical restenosis can be identified (Fig. 2). 
Also, in cases of nitinol stenting with continued radial 
force and expansion over time, greater attention might 
need to be paid at follow-up to the gap elicited between 
the stent line and the luminal edge (Fig. 3). Fifty percent 
diameter stenosis is considered to be significant based on 
theoretical and experimental studies [13]. Indeed, angio-
graphically detected lesions with a %DS of 50% or greater 
have been historically considered to be a dichotomous 
event, or “binary restenosis”, in the field of cardiovascu-
lar intervention [14]. Thus, binary restenosis is defined as 
a %DS > 50% on QVA for each lesion or within the stent.  
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PSVR in FP intervention

DUS as an alternative to angiography

Over 3 decades ago, Jager et al. [15] proposed a system 
for classifying the degree of arterial stenosis in the lower 
limbs on the basis of the Doppler waveform shape, the 
degree of spectral broadening, and the increase in peak sys-
tolic velocity (PSV) within the stenosis. However, spectral 
broadening was too subjective and the waveform shape was 
affected by a variety of factors, including cardiac output 
and rhythm, resistance of the vascular bed, integrity of 
the intima, and both proximal and distal disease [16–18]. 
PSVR was found to be more closely correlated with the 
degree of stenosis than PSV [19]. This was the beginning 
of PSVR as an alternative clinical index to angiographic 
narrowing.

Practice of DUS

DUS employing a commercially available machine should be 
performed by experienced vascular specialists. All patients 
are examined in a supine position using a duplex scanner 
with a 7.5- or 8-MHz transducer [9, 10]. The segment of 
interest after balloon angioplasty or stenting can be visual-
ized using combined B-mode and color-Doppler ultrasound. 
The Doppler signal is acquired at an angle of 60 degrees 
or as small as possible, and velocity spectra are recorded 
proximal to and at the site of maximum flow disturbance. 
Doppler spectral analysis can determine the highest PSV 
(PSV at the lesion) as well as the PSV in the area adjacent 
to the normal-looking segment (PSV proximal). PSVR can 
be calculated by the following formula: PSV at the lesion/
PSV proximal (Figs. 4, 5).

Less‑validated PSVR without the use of QVA

In the 1990s, the relationship between DUS and angiography 
was evaluated, and it was suggested that on angiography, 
50% diameter reduction by inherently flawed “visual esti-
mation” was equivalent to a PSVR of 2.0–3.0 in the lower 
limb arteries, including the femoral artery, while it was 
possible to have different PSVR cut-off points for the iliac, 
common femoral, superficial femoral, popliteal, and crural 
arteries [19–23]. Even in the 2000s, two studies that did 
not involve the use of QVA focused on the optimal PSVR 
in the FP artery (Table 1) [24, 25]. According to the study 
of Schlager et al. [24], in which the majority of cases were 
de novo lesions (de novo lesion in 97%, restenosis in 3%), 
a PSVR of 2.4 indicated 50% stenosis with a sensitivity of 
81%, specificity of 93%, positive predictive value (PPV) of 

Fig. 2   QVA for multiple restenosis. a Angiography showing  mul-
tiple stenoses due to intimal hyperplasia in a stent in the mid-distal 
FP artery. b In the QVA, the most critical restenosis can be depicted 
by automatically applied tracings of lumen contour (yellow lines) and 
assumed vessel (red lines). The % diameter stenosis is 76.9%, sug-
gesting binary restenosis

Fig. 3   Difference in stent edge immediately after nitinol stenting and 
in follow-up angiography. There are 2 types of angiographic appear-
ance at the stent edge in follow-up angiography. a Type A. No gap 
between the stent line and the intraluminal line outside the stent 
(arrow), b Type B. A gap caused by significant intimal hyperplasia 
and stent expansion at the stent edge between the stent line and the 
intraluminal line outside the stent (arrow)
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84%, and negative predictive value (NPV) of 91%. Accord-
ing to the study of Baril et al. [25], PSVR was more accurate 
than PSV, and a PSVR of 1.5 yielded a sensitivity of 93%, 
specificity of 89%, PPV of 96%, and NPV of 81% in terms 
of estimating in-stent restenosis. Reflecting the lack of scien-
tifically validated PSVR values, PSVRs of 2.0, 2.4, and 2.5 
have been arbitrarily but routinely employed, even in con-
temporary FP intervention studies. Therefore, scientifically 
validated PSVR criteria based on QVA are indispensable.

Derivation of PSVR threshold for restenosis based 
on QVA

In the 2010s, 2 retrospective studies (the study of Kawarada 
et al. in 2013 and that of Macharzina et al. in 2015) inves-
tigated the relationship between DUS parameters and %DS 
derived by QVA in the context of restenosis after bare-metal 
nitinol stenting and balloon angioplasty in the FP arteries 
[9, 10]. In these studies, compared to PSV, PSVR yielded 
a better correlation with %DS, suggesting that PSVR can 
provide better performance than PSV in terms of correlation 
with angiographic narrowing, both in unstented and stented 
FP lesion assessment.

According to receiver operating characteristic (ROC) 
analysis in the study of Macharzina et al. [9], the optimal 

threshold for detecting binary restenosis in an unstented FP 
artery was 2.6 for a single stenosis, with a sensitivity of 98%, 
specificity of 94%, PPV of 98%, and NPV of 94%, compared 
to 2.6 for multisegmental stenoses, with a sensitivity of 87%, 
specificity of 93%, PPV of 45%, and NPV of 99%. These 
data suggest that the accuracy for multisegmental restenosis 
is inferior to that for single restenosis even though the opti-
mal cut-off threshold is the same. In the study of Kawarada 
et al. [10], ROC analysis identified a PSVR of 2.85 as the 
best cut-off criterion for restenosis in a stented FP artery, 
with a sensitivity of 88%, specificity of 84%, PPV of 85%, 
and NPV of 88% (Table 1). These findings suggest that we 
might need to consider a different optimal PSVR for QVA-
based restenosis depending on whether the FP arteries are 
unstented or stented. The PSVR discrepancy between the 
studies of Macharzina et al. and Kawarada et al. (PSVR 2.6 
and 2.85, respectively) may be due to altered arterial bio-
mechanical properties following stent implantation, with 
the resultant stent–arterial complex decreasing FP artery 
compliance; this would in turn cause elevated blood flow 
velocity, PSV, and PSVR (Fig. 6).

Furthermore, the PSVR threshold derived from QVA 
appears to be higher than that derived from visual estima-
tion analysis, especially in the context of in-stent resteno-
sis (PSVR 2.85 in Kawarada et al.’s study and PSVR 1.5 in 

Fig. 4   DUS for restenosis after 
balloon angioplasty. a The prox-
imal PSV is 35.8 cm/s (upper) 
and the PSV at the point of ste-
nosis is 224.0 cm/s (lower). The 
PSVR is 6.26, suggesting binary 
restenosis. b In accordance with 
DUS findings, confirmatory 
angiography shows restenosis in 
the distal FP artery (arrow)
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Baril et al.’s study). In the setting of visual estimation, stent 
diameter can be the reference diameter, and %DS can be cal-
culated by the following formula: (stent diameter − in-stent 
minimum lumen diameter)/stent diameter × 100. Therefore, 

%DS based on QVA could be lower than %DS based on 
visual estimation analysis (Fig. 7), and consequently the 
optimal PSVR for in-stent restenosis (50% stenosis) could 
be higher in QVA than in visual estimation analysis.

Fig. 5   DUS for in-stent reste-
nosis after nitinol stenting. a 
The proximal PSV is 22.9 cm/s 
(upper) and the PSV at the 
point of stenosis is 187.5 cm/s 
(lower). The PSVR is 8.20, 
suggesting binary in-stent 
restenosis. b In accordance with 
DUS findings, confirmatory 
angiography shows in-stent 
restenosis in the mid-segment of 
the stented FP artery (arrow)

Table 1   PSVR for 50% de novo stenosis or restenosis in the femoropopliteal artery

PSVR peak systolic velocity ratio, Sens sensitivity, Spec specificity, PPV positive predictive value, NPV negative predictive value, NR not 
reported

References Method of angiog-
raphy analysis

Native/stented 
artery

Denovo/restenosis 
lesion

PSVR criteria 
for 50% ste-
nosis

Sens. (%) Spec. (%) PPV (%) NPV (%)

Polak et al. [20] Visual estimation Native Denovo 2 88 95 NR NR
Legemate et al. 

[21]
Visual estimation Native Denovo 2.5 65 97 69 96

Leng et al. [19] Visual estimation Native Denovo 3 70 96 95 74
Aly et al. [23] Visual estimation Native Denovo 2 95 99 94 99
Schlager et al. [24] Visual estimation Native (97%) and 

stented (3%)
De novo and 

restenosis
2.4 81 93 84 91

Baril et al. [25] Visual estimation Stented Restenosis 1.5 93 89 96 81
Kawarada et al. 

[10]
Quantitative vessel 

analysis
Stented Restenosis 2.85 88 84 85 88

Macharzina et al. 
[9]

Quantitative vessel 
analysis

Native Restenosis (single) 2.6 98 94 98 94
Restenosis (multi-

segmental)
2.6 87 93 45 99
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Drawbacks of PSVR

The fact that the assessment of DUS might be inconclu-
sive in nearly 20% of cases in clinical practice needs to be 
taken seriously [26]. The limitations of DUS are as fol-
lows (Fig. 8): (1) subtotal reocclusion, whether stented or 
unstented, does not necessarily represent high-velocity flow; 
(2) the performance of DUS for detecting restenosis within 
the diffusely extended significant intimal hyperplasia is not 
elucidated yet; (3) during surveillance, identification of 
unstented lesions such as those after plain or drug-coated 
balloon angioplasty might be challenging due to lack of 
landmarks; (4) severely calcified vessels do not permit clear 
visualization or measurement of flow velocity; and (5) ultra-
sound quality is dependent on operator skill and ultrasound 
machine.

Unlike QVA, PSVR is potentially subject to intra- and 
inter-observer variability [27]. Also, it is noteworthy that 
flow velocity can be influenced by vessel compliance. There-
fore, in addition to the extent of underlying arterial calcifi-
cation and calcified intimal hyperplasia, a variety of nitinol 
stents with distinct mechanical properties, rigidities, degrees 

Fig. 6   Illustration showing differences between an unstented and 
stented FP artery in terms of the effect of vessel compliance on flow 
velocity (citation from Ref. [10]). a Unstented FP artery. b Stented FP 

artery. The stented FP artery has less compliance than the unstented 
SFA. The PSV and the PSVR increased more in the stented FP artery 
than in the unstented FP artery, despite the same degree of stenosis

Fig. 7   Representative sample of difference in %DS between QVA 
and visual estimation analysis (citation from Ref. [10]). QVA results 
in a %DS of 48%; however, when stent diameter is used as the refer-
ence diameter (white line), %DS based on visual estimation analysis 
is 65%
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of continued expansion due to radial force over time, and 
stent platforms might potentially yield heterogenous flow 
velocities, PSVs, and cut-off thresholds of PSVR for resteno-
sis. In particular, at the stent edge where vessel compliance 
can change drastically, PSVR might be inconsistent. Fur-
thermore, in parallel with the development of new devices, it 
remains unclear whether downstream effect of drug particles 

or excipient from drug-eluting devices can affect flow veloc-
ity [28], and a late lumen loss after the use of drug-eluting 
device might be an ongoing dynamic process. We empha-
size the need for recognizing the drawbacks of PSVR when 
applying and interpreting DUS in clinical trials and clinical 
practice.

Fig. 8   Representative cases of drawbacks of DUS for assessing reste-
nosis. a Subtotal occlusion. In this stented case, there is no accelera-
tion or increase in blood flow because of subtotal occlusion (arrow), 
although a Doppler color signal is present. b Diffuse lesion. In this 
stented case with critical restenosis embedded in diffuse intimal 
hyperplasia  (arrow), determination of the proximal reference point 

for Doppler sample volume might be confusing. c Calcified lesion. In 
this stented case, angiography demonstrates significant in-stent reste-
nosis (arrow) in the mid-FP artery (left). However, the underlying 
calcification in the arterial wall prevents visualization of the artery 
and measurement of velocity on DUS because of the acoustic shadow 
(right)
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Conclusions

From the viewpoint of methodology standardization, QVA 
should be the mainstay in contemporary FP intervention. If 
PSVR is used to assess restenosis as an alternative to QVA, 
an optimal PSVR criteria should be derived from QVA. As 
of today, based on the currently available studies utilizing 
DUS and QVA, a PSVR of 2.6 for unstented lesions and a 
PSVR of 2.85 for stented lesions are valid to identify reste-
nosis in the FP artery.
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