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Abstract Human rabies, an infection of the nervous system, is a major public-health
problem in China. In the last 60 years (1950–2010) there had been 124,255 reported
human rabies cases, an average of 2,037 cases per year. However, the factors and
mechanisms behind the persistence and prevalence of human rabies have not become
well understood. The monthly data of human rabies cases reported by the Chinese
Ministry of Health exhibits a periodic pattern on an annual base. The cases in the
summer and autumn are significantly higher than in the spring and winter. Based
on this observation, we propose a susceptible, exposed, infectious, and recovered
(SEIRS) model with periodic transmission rates to investigate the seasonal rabies
epidemics. We evaluate the basic reproduction number R0, analyze the dynamical
behavior of the model, and use the model to simulate the monthly data of human
rabies cases reported by the Chinese Ministry of Health. We also carry out some
sensitivity analysis of the basic reproduction number R0 in terms of various model
parameters. Moreover, we demonstrate that it is more reasonable to regard R0 rather
than the average basic reproduction number R̄0 or the basic reproduction number R̂0
of the corresponding autonomous system as a threshold for the disease. Finally, our
studies show that human rabies in China can be controlled by reducing the birth rate
of dogs, increasing the immunization rate of dogs, enhancing public education and
awareness about rabies, and strengthening supervision of pupils and children in the
summer and autumn.
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1 Introduction

Rabies, a fatal disease of humans and many other mammals, is caused by a virus
which is associated with the bite and virus-containing saliva of an infected host (CDC
2010a). Rabies may affect all mammals, including livestock and pets. In most African
and Asian countries dogs continue to be the main hosts and are responsible for most
of the human rabies deaths (WHO 2010a).

Infective dogs can bite other dogs and humans and spread the rabies virus. After
entering the body, the rabies virus travels quickly along the neural pathways to the
noncentral nervous system, from there the virus further spreads to other organs and
causes morbidity by intruding many tissues. Infected individuals can experience in-
cubation before showing symptoms. The incubation period of the disease is usually
a few months, but can be as long as years, depending on the distance the virus must
travel to reach the central nervous system. If the bitten location is near the head, the
incubation is relatively shorter. The first symptoms of rabies may be very similar to
those of the flu expressing fever or headache, progressing to symptoms of cerebral
dysfunction, anxiety, confusion, fearing light and water within days. With the disease
exacerbating, the infected individual may experience delirium, abnormal behavior,
hallucinations, and insomnia (CDC 2010b). Once the rabies virus reaches the central
nervous system and symptoms of the disease develop, the course of the disease is less
than 10 days (CDC 2010b) and the mortality rate reaches up to 100%.

Rabies transmission in dogs can be prevented by vaccination. Treatment of hu-
mans after exposure, known as post-exposure prophylaxis (PEP), is highly success-
ful in preventing the disease if administered promptly. Although it is a vaccine-
preventable disease, rabies still remains a neglected, untreatable public-health prob-
lem in many countries in Asia and Africa where 95% of human deaths occur (WHO
2010b).

Recently, mathematical models have been used to study the rabies epidemics in
dogs and the transmission dynamics of rabies from dogs to humans. For example,
Hampson et al. (2007) observed rabies epidemics cycles with a period of 3–6 years in
dog populations in Africa and built a susceptible, exposed, infectious, and vaccinated
model with an intervention response variable to show significant synchrony. Zinsstag
et al. (2009) classified both dog and human populations in susceptible, exposed, in-
fectious, and immunized classes and proposed a model for dog–human transmission
dynamics and economics of rabies control in an African city.

Human rabies is a major public-health problem in China. Since 1950, human ra-
bies has been classified as a class II infectious disease in the National Stationary
Notifiable Communicable Diseases and the annual data of human rabies have been
archived by the Chinese Center for Disease Control and Prevention. In the last 60
years (1950–2010) there had been 124,255 human rabies cases reported by the Chi-
nese Ministry of Health (MOHC 2009, 2011), an average of 2,037 cases per year.
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However, the factors and mechanisms behind the persistence and prevalence of hu-
man rabies have not been well understood. Most recently, Zhang et al. (2011) devel-
oped a deterministic model to study the transmission dynamics of rabies in China.
The model, consisted of susceptible, exposed, infectious, and recovered subpopula-
tions of both dogs and humans and described by eight ordinary differential equations,
was used to simulate the human rabies data from 1996 to 2010 reported by the Chi-
nese Ministry of Health. It was shown that reducing dog birth rate and increasing dog
immunization coverage rate are the most effective methods for controlling rabies in
China and large scale culling of susceptible dogs can be replaced by immunization of
them. Hou et al. (2012) proposed a similar dog–human interaction model consider-
ing both domestic and wild dogs and used the model to simulate the rabies data from
Guangdong Province, China. It was shown that the quantity of stray dogs also plays
an important role in the transmission of rabies.

After the outbreaks of Severe Acute Respiratory Syndromes (SARS) in 2003, the
Chinese Ministry of Health started to publish reported cases about the National Sta-
tionary Notifiable Communicable Diseases every month. We observe that the monthly
data of human rabies cases reported by the Chinese Ministry of Health since January
2004 exhibit a periodic pattern on an annual base. The cases in the summer and au-
tumn are significantly higher than in the spring and winter (MOHC 2009, 2011).
Song et al. (2009) also reported that the main seasons for rabies epidemics in China
are summer and fall. Moreover, the infected areas are mainly distributed in the south
provinces such as Sichuan, Hunan, Guangxi, Guangdong, Anhui, Fujian (Song et al.
2009), which demonstrates that rabies transmission depends on the weather.

It is well-known that many diseases exhibit seasonal fluctuations, such as whoop-
ing cough, measles, influenza, polio, chickenpox, mumps, etc. (Bjornstad et al. 2002;
Dowell 2001; London and Yorke 1973). Seasonally effective contact rate (Dushoff et
al. 2004; Schwartz 1992; Schwartz and Smith 1983; Smith 1983), periodic changing
in the birth rate (Ma and Ma 2006) and vaccination program (Earn et al. 2000) are
often regarded as sources of periodicity. In this paper, we take periodic transmission
rate into account based on the following facts. (1) In the summer and fall, people wear
light clothing and are lack of protection for the bites or scratches of dogs. Also, in
summer and fall people, in particular farmers, have more frequent outdoor activities
which increase the chance of human–dog interaction. (2) In these seasons, dogs are
more maniacal and apt to attack each other and humans. (3) From July to September
schools are closed for summer vacations and children are out of supervision and en-
joy tantalizing dogs. In fact, it was reported (Song et al. 2009) that 25.7% of human
rabies cases in China are students and unattended children. (4) In addition, tempera-
ture may be related to the fluctuation of diseases. Under high temperature in summer,
rabies virus can survive easily and its infectivity is stronger.

The purpose of this paper is to propose a susceptible, exposed, infectious, and re-
covered (SEIRS) model with periodic transmission rates to investigate the seasonal
rabies epidemics. We will evaluate the basic reproduction number R0, analyze the
dynamical behavior of the model, and use the model to simulate the monthly data of
human rabies cases reported by the Chinese Ministry of Health from January 2004.
We will also carry out some sensitivity analysis of the basic reproduction number R0
in terms of various model parameters. Moreover, we will show that it is more reason-
able to regard R0 rather than the average basic reproduction number R̄0 or the basic
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reproduction number R̂0 of the corresponding autonomous system as a threshold for
the disease. Finally, we will explore some effective control measures for the rabies
epidemics in China.

The article is organized as follows. In Sect. 2, we introduce the model and present
the expression of the basic reproduction number. Then we study the global asymp-
totic stability of the disease-free equilibrium and the existence of positive periodic
solutions. Simulations of the model and sensitivity analysis of the basic reproduction
number are performed in Sect. 3. In Sect. 4, we give a brief discussion. The detailed
calculation of the basic reproduction number using the spectral radius of the operator
is presented in the Appendix.

2 Mathematical Modeling and Analysis

2.1 Model Formulation

We denote the total numbers of dogs and humans by N(t) and N1(t), respectively,
and classify each of them into four subclasses: susceptible, exposed, infectious and
recovered, with the numbers of dogs denoted by S(t),E(t), I (t), and R(t), and hu-
man sizes denoted by S1(t),E1(t), I1(t), and R1(t), respectively. The transmission
dynamics associated with these subpopulations are illustrated in Fig. 1.

The transmission rate between S(t) and I (t) is β(t), the transmission rate between
S1(t) and I (t) is β1(t), and humans do not spread rabies to each other. We can write
transmission rate β(t) in the general form β(t) = λ0β

′(N)β ′′/N , where N is the total
number of dogs, β ′(N) is the number of dogs that a susceptible dog comes across per
unit time, β ′′ is the probability of getting bitten after interacting with the susceptible
dog, and λ0 is the probability of being infected after bitten for the susceptible dog.
We can express β1(t) similarly. As discussed in the Introduction, in the summer and
fall there are more frequent interactions among dogs and between dogs and humans
and these coefficients are more likely to change as season changes. Thus we use the
periodic functions β(t) = a[1+b sin(π

6 t +5.5)] and β1(t) = a1[1+b1 sin(π
6 t +5.5)]

proposed by Schenzle (1984) to describe the transmission rates among dogs and from
dogs to humans, where a and a1 are the baseline contact rates and b and b1 are the
magnitudes of forcing.

The birth numbers of dogs and humans per unit time are constant. Vaccination is
often applied to seemingly healthy dogs (S(t) and E(t)) and people bitten by dogs
(E1(t)). Particularly, we need to interpret that k1 and k are the products of the vacci-
nation coverage rate and the vaccination effective rate. However, there is a protection
period for rabies vaccine. Thus, we import loss rates of immunity λ and λ1. Because
not all the exposeds will develop clinical outbreak, clinical outcome rates γ and γ1

are presented. Natural death rates are m and m1, and disease-related death rates are
μ and μ1, respectively.
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Fig. 1 The transmission
diagram of rabies among dogs
and from dogs to humans

The model is a system of ordinary differential equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= A + λR + σ(1 − γ )E − mS − β(t)SI − kS,

dE
dt

= β(t)SI − mE − σ(1 − γ )E − kE − σγE,

dI
dt

= σγE − mI − μI,

dR
dt

= k(S + E) − mR − λR,

dS1
dt

= B + λ1R1 + σ1(1 − γ1)E1 − m1S1 − β1(t)S1I,

dE1
dt

= β1(t)S1I − m1E1 − σ1(1 − γ1)E1 − k1E1 − σ1γ1E1,

dI1
dt

= σ1γ1E1 − m1I1 − μ1I1,

dR1
dt

= k1E1 − m1R1 − λ1R1,

(1)

where all parameters are positive, the interpretations and values of parameters are
described in Table 1, β(t) = a[1 + b sin(π

6 t + 5.5)] and β1(t) = a1[1 + b1 sin(π
6 t +

5.5)].
2.2 Global Stability of the Disease-Free Equilibrium

Notice that from the equations in model (1), we have
{

dN
dt

= A − mN − μI,

dN1
dt

= B − m1N1 − μ1I1.
(2)

Let X = {(S,E, I,R,S1,E1, I1,R1)|S,E, I,R,S1,E1, I1,R1 ≥ 0,0 < S +E + I +
R ≤ A

m
,0 < S1 + E1 + I1 + R1 ≤ B

m1
}.
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Table 1 Descriptions and values of parameters in model (1)

Para. Value Unit Interpretation Source

A 2.34 × 105 month−1 Dog birth population Estimation

λ 1
6 month−1 Dog loss rate of immunity Assumption

i 1.045 month Dog incubation period Zinsstag et al. (2009)

σ 1
1.045 month−1 1/i Zinsstag et al. (2009)

γ 0.49 month−1 Clinical outcome rate of exposed dogs Zinsstag et al. (2009)

m 0.0064 month−1 Dog natural mortality rate Assumption

a 9.9 × 10−8 none The baseline contact rate Estimation

b 0.41 none The magnitude of forcing Estimation

k 0.09 month−1 Dog vaccination rate MOHC (2009)

μ 1 month−1 Dog disease-related death rate MOHC (2009)

B 1.34 × 106 month−1 Human birth population NBSC (2009)

λ1
1
6 month−1 Human loss rate of immunity ChinaCDC (2011)

i1 2 month Human incubation period ChinaCDC (2011)

σ1
1
2 month−1 1/i1 ChinaCDC (2011)

γ1 0.5 month−1 Clinical outcome rate of exposed humans AnshanCDC (2011)

m1 0.00057 month−1 Human natural mortality rate NBSC (2009)

a1 2.41 × 10−11 none The baseline contact rate Estimation

b1 0.23 none The magnitude of forcing Estimation

k1 0.54 month−1 Human vaccination rate MOHC (2009)

μ1 1 month−1 Human disease-related death rate MOHC (2009)

Theorem 2.1 The region X is positively invariant with respect to system (1).

It is easy to see that system (1) has one disease-free equilibrium

P0 = (Ŝ,0,0, R̂, Ŝ1,0,0,0),

where

Ŝ = (m + λ)A

m(m + λ + k)
, R̂ = kA

m(m + λ + k)
, Ŝ1 = B

m1
.

We can evaluate the basic reproduction number R0 for system (1) following the
definition of Bacaer and Guernaoui (2006) and the general calculation procedure in
Wang and Zhao (2008), which is defined as z0 such that g(z0) = 1, where

g(z)

= 1

2

{√

(μ − σ − k)2 − 4(λ2(T ) + m + μ)(λ1(T ) + m + μ)

[λ1(T ) − λ2(T )]2
[
e
∫ T

0 λ2(t) dt − e
∫ T

0 λ1(t) dt
]2

}

+ 1

2

[
e
∫ T

0 λ2(t) dt + e
∫ T

0 λ1(t) dt
]
.

The detailed computations are given in the Appendix.
Before analyzing the disease-free equilibrium, we make a claim.
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Lemma 2.2 For an arbitrary positive number θ , there is t2 > 0 such that for all
t > t2, S ≤ Ŝ + θ .

Proof From the last equation of system (1), we have

dR

dt
= k(S + E) − mR − λR

= k(N − R − I ) − mR − λR

≤ k
A

m
− (k + m + λ)R.

Thus, for a positive number θ1 = (m+k)θ
λ

, there is t1 > 0 such that for all t > t1,

R(t) ≤ kA
m(m+λ+k)

+ θ1 = R̂ + θ1. Also from the first two equations of system (1), we

have for all t > t1

d(S + E)

dt
= A + λR − m(S + E) − k(S + E) − σγE

≤ A + λ(R̂ + θ1) − (m + k)(S + E),

which implies that

lim
t→∞ sup(S + E) ≤ A + λ(R̂ + θ1)

m + k
.

Because E ≥ 0, it follows that

lim
t→∞ supS ≤ A + λ(R̂ + θ1)

m + k

= A + λ(A
m

− Ŝ + θ1)

m + k

= Ŝ + λθ1

m + k
.

Thus, there is t2 > 0 such that for all t > t2 > t1, S(t) ≤ Ŝ + θ , where θ = λθ1
m+k

. �

Theorem 2.3 The disease-free equilibrium P0 is globally asymptotically stable when
R0 < 1.

Proof If R0 < 1, we know that ρ(ΦF−V (ω)) < 1 by Theorem 2.2 in Wang and Zhao
(2008). We can choose θ > 0 small enough such that ρ(ΦF−V +Mθ (ω)) < 1, where

Mθ =

⎛

⎜
⎜
⎝

0 0 θ 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ .



Modeling Seasonal Rabies Epidemics in China 1233

Considering the region X and using Lemma 2.2, we know that S1(t) ≤ Ŝ1 = B
m1

and

S(t) ≤ Ŝ + θ, t > t2 > t1. Thus, when t > t2 > t1, we derive
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dE
dt

≤ β(t)(Ŝ + θ)I − (m + σ + k)E,

dE1
dt

≤ β1(t)Ŝ1I − (m1 + σ1 + k1)E1,

dI
dt

= σγE − mI − μI,

dI1
dt

= σ1γ1E1 − m1I1 − μ1I1.

(3)

Consider the following comparison system:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dE
dt

= β(t)(Ŝ + θ)I − (m + σ + k)E,

dE1
dt

= β1(t)Ŝ1I − (m1 + σ1 + k1)E1,

dI
dt

= σγE − mI − μI,

dI1
dt

= σ1γ1E1 − m1I1 − μ1I1,

(4)

that is,

dh

dt
= (

F(t) − V (t) + Mθ

)
h(t), h(t) = (

E(t),E1(t), I (t), I1(t)
)
. (5)

By Lemma 2.1 in Zhang and Zhao (2007), it follows that there exists a positive
ω-periodic function ĥ(t) such that h(t) = ept ĥ(t) is a solution of system (4), where
p = 1

ω
lnρ(ΦF−V +Mθ (ω)). We know when R0 < 1, ρ(ΦF−V +Mθ (ω)) < 1. There-

fore, we have h(t) → 0 as t → ∞, which implies that the zero solution of system
(4) is globally asymptotically stable. Applying the comparison principle (Smith and
Waltman 1995), we know that for system (1), E(t) → 0, I (t) → 0, E1(t) → 0 and
I1(t) → 0 as t → ∞. By the theory of asymptotic autonomous systems (Thieme
1992), it is also known that S(t) → Ŝ, R(t) → R̂, S1(t) → Ŝ1 and R1(t) → 0 as
t → ∞. So P0 is globally attractive when R0 < 1. It follows that P0 is globally
asymptotically stable when R0 < 1. �

2.3 Existence of Positive Periodic Solutions

Define

X0 := {
(S,E, I,R,S1,E1, I1,R1) ∈ X : E > 0, I > 0,E1 > 0, I1 > 0

}

and ∂X0 = X \ X0. Denote u(t, x0) as the unique solution of system (1) with the
initial value x0 = (S0,E0, I 0,R0, S0

1 ,E0
1, I 0

1 ,R0
1). Let P : X → X be the Poincaré

map associated with system (1), i.e.,

P(x0) = u(ω,x0), ∀x0 ∈ X,

where ω is the period. Applying the fundamental existence–uniqueness theorem
(Perko 2000), we know that u(t, x0) is the unique solution of system (1) with
u(0, x0) = x0. From Theorem 2.1, we know that X is positively invariant and P is
point dissipative.
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Lemma 2.4 When R0 > 1, then there exists a δ > 0 such that when
∥
∥
(
S0,E0, I 0,R0, S0

1 ,E0
1, I 0

1 ,R0
1

) − P0
∥
∥ ≤ δ

for any (S0,E0, I 0,R0, S0
1 ,E0

1, I 0
1 ,R0

1) ∈ X0, we have

lim sup
m→∞

d
[
P m

(
S0,E0, I 0,R0, S0

1 ,E0
1 , I 0

1 ,R0
1

)
,P0

] ≥ δ,

where P0 = (Ŝ,0,0, R̂, Ŝ1,0,0,0).

Proof If R0 > 1, we obtain ρ(ΦF−V (ω)) > 1 by Theorem 2.2 in Wang and Zhao
(2008). Choose ε > 0 small enough such that ρ(ΦF−V −Mε (ω)) > 1, where

Mε =

⎛

⎜
⎜
⎝

0 0 ε 0
0 0 ε 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ .

Now we proceed by contradiction to prove that

lim sup
m→∞

d
(
P m

(
S0,E0, I 0,R0, S0

1 ,E0
1, I 0

1 ,R0
1

)
,P0

) ≥ δ.

If not, then

lim sup
m→∞

d
(
P m

(
S0,E0, I 0,R0, S0

1 ,E0
1, I 0

1 ,R0
1

)
,P0

)
< δ

for some (S0,E0, I 0,R0, S0
1 ,E0

1 , I 0
1 ,R0

1) ∈ X0. Without loss of generality, we as-
sume that d(P m(S0,E0, I 0,R0, S0

1 ,E0
1, I 0

1 ,R0
1),P0) < δ for all m ≥ 0. By the con-

tinuity of the solutions with respect to the initial values, we obtain
∥
∥u

(
t,P m

(
S0,E0, I 0,R0, S0

1 ,E0
1, I 0

1 ,R0
1

)) − u(t,P0)
∥
∥ ≤ ε, ∀m ≥ 0, ∀t1 ∈ [0,ω].

For any t ≥ 0, let t = mω + t1, where t1 ∈ [0,ω] and m = [ t
ω
], which is the greatest

integer less than or equal to t
ω

. Then we have

∥
∥u

(
t,

(
S0,E0, I 0,R0, S0

1 ,E0
1 , I 0

1 ,R0
1

)) − u(t,P0)
∥
∥

= ∥
∥u

(
t1,P

m
(
S0,E0, I 0,R0, S0

1 ,E0
1, I 0

1 ,R0
1

)) − u(t1,P0)
∥
∥ ≤ ε

for any t ≥ 0, which implies that Ŝ−ε ≤ S(t) ≤ Ŝ+ε, Ŝ1 −ε ≤ S1(t) ≤ Ŝ1 +ε, t ≥ 0.
Then for ‖(S0,E0, I 0,R0, S0

1 ,E0
1, I 0

1 ,R0
1) − P0‖ ≤ δ, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dE
dt

≥ β(t)(Ŝ − ε)I − (m + σ + k)E,

dE1
dt

≥ β1(t)(Ŝ1 − ε)I − (m1 + σ1 + k1)E1,

dI
dt

= σγE − mI − μI,

dI1
dt

= σ1γ1E1 − m1I1 − μ1I1.

(6)
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Next we consider the linear system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dE
dt

= β(t)(Ŝ − ε)I − (m + σ + k)E,

dE1
dt

= β1(t)(Ŝ1 − ε)I − (m1 + σ1 + k1)E1,

dI
dt

= σγE − mI − μI,

dI1
dt

= σ1γ1E1 − m1I1 − μ1I1.

(7)

Once again by Lemma 2.1 in Zhang and Zhao (2007), it follows that there exists
a positive ω-periodic function ĝ(t) such that g(t) = ept ĝ(t) is a solution of sys-
tem (7), where p = 1

ω
lnρ(ΦF−V −Mε(ω)). Because ρ(ΦF−V −Mε(ω)) > 1, when

g(0) > 0, g(t) → ∞ as t → ∞. Applying the comparison principle (Smith and
Waltman 1995), we know that when E(0) > 0, I (0) > 0,E1(0) > 0 and I1(0) > 0,
E(t) → ∞, I (t) → ∞,E1(t) → ∞ and I1(t) → ∞ as t → ∞. This is a contradic-
tion. The proof of the lemma is complete. �

Theorem 2.5 System (1) has at least one positive periodic solution.

Proof We first prove that {P m}m≥0 is uniformly persistent with respect to (X0, ∂X0).
First of all, we explain that X0 and ∂X0 are positively invariant. In fact, for any
(S0,E0, I 0,R0, S0

1 ,E0
1, I 0

1 ,R0
1) ∈ X0, solving the equations of system (1), we derive

that

S(t) = e− ∫ t
0 (m+β(t)+k) dt

[

S0 +
∫ t

0

(
A + λR(t) + σ(1 − r)E(t)

)
e
∫ t

0 (m+β(t)+k) dt dt

]

≥ Ae− ∫ t
0 (m+β(t)+k) dt

∫ t

0
e
∫ t

0 (m+β(t)+k) dt

> 0, ∀t > 0, (8)

R(t) = e−(m+λ)t

[

R0 +
∫ t

0
k
(
S(t) + E(t)

)
e(m+λ)t dt

]

≥ e−(m+λ)t

∫ t

0
kS(t)e(m+λ)t dt

> 0, ∀t > 0, (9)

E(t) = e−(m+σ+k)t

[

E0 +
∫ t

0
β(t)S(t)I (t)e(m+σ+k)t dt

]

≥ e−(m+σ+k)t

∫ t

0
β(t)S(t)I (t)e(m+σ+k)t dt

> 0, ∀t > 0, (10)
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and

I (t) = e−(m+μ)t

[

I 0 +
∫ t

0
σγE(t)e(m+μ)t dt

]

≥ e−(m+μ)t

∫ t

0
σγE(t)e(m+μ)t dt

> 0, ∀t > 0. (11)

Similarly, S1(t) > 0,R1(t) > 0,E1(t) > 0 and I1(t) > 0. So, X0 is positively invari-
ant. Clearly, ∂X0 is relatively closed in X. Set

M∂ = {(
S0,E0, I 0,R0, S0

1 ,E0
1 , I 0

1 ,R0
1

) ∈ ∂X0 :
P m

(
S0,E0, I 0,R0, S0

1 ,E0
1, I 0

1 ,R0
1

) ∈ ∂X0, ∀m ≥ 0
}
.

It is easy to show that

M∂ = {
(S,0,0,R,S1,0,0,0) ∈ X : S ≥ 0,R ≥ 0, S1 ≥ 0

}
. (12)

Note that

{
(S,0,0,R,S1,0,0,0) ∈ X : S ≥ 0,R ≥ 0, S1 ≥ 0

} ⊆ M∂,

we only need to prove that

M∂ ⊆ {
(S,0,0,R,S1,0,0,0) ∈ X : S ≥ 0,R ≥ 0, S1 ≥ 0

}
.

That is, for any (S0,E0, I 0,R0, S0
1 ,E0

1 , I 0
1 ,R0

1) ∈ ∂X0, we have

E(mω) = I (mω) = E1(mω) = I1(mω) = 0, ∀m ≥ 0.

If there exists an m1 ≥ 0 such that

(
E(m1ω), I (m1ω),E1(mω), I1(mω)

)T
> 0,

by replacing the initial time 0 with m1ω and following the processes as in (8)–(11),
it can be seen that S(t) > 0, R(t) > 0, S1(t) > 0, R1(t) > 0. Analogously, we have
(E(t), I (t),E1(t), I1(t))

T > 0, ∀t > m1ω. Thus, we have

(
S(t),E(t), I (t),R(t), S1(t),E1(t), I1(t),R1(t)

) ∈ X0, ∀t > m1ω,

which contradicts that (S0,E0, I 0,R0, S0
1 ,E0

1, I 0
1 ,R0

1) ∈ ∂X0 that requires

P m
(
S0,E0, I 0,R0, S0

1 ,E0
1, I 0

1 ,R0
1

) ∈ ∂X0, ∀m ≥ 0.

So, the equality (12) holds, which implies that E0 is the only fixed point of P and
acyclic in ∂X0.
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Moreover, Lemma 2.4 implies that P0 = (Ŝ,0,0, R̂, Ŝ1,0,0,0) is an isolated in-
variant set in X and WS(P0) ∩ X0 = ∅. By the acyclicity theorem on uniform persis-
tence for maps (Theorem 1.3.1 and Remark 1.3.1 in Zhao 2003), it follows that P is
uniformly persistent with respect to (X0, ∂X0).

Now Theorem 1.3.6 in Zhao (2003) implies that P has a fixed point

(
S∗(0),E∗(0), I ∗(0),R∗(0), S∗

1 (0),E∗
1 (0), I ∗

1 (0),R∗
1(0)

) ∈ X0.

From the first equation of system (1) we have

S∗(t) = e− ∫ t
0 (m+β(t)+k) dt

[

S∗(0) +
∫ t

0

(
A + λR + σ(1 − r)E

)
e
∫ t

0 (m+β(t)+k) dt dt

]

≥ Ae− ∫ t
0 (m+β(t)+k) dt

∫ t

0
e
∫ t

0 (m+β(t)+k) dt

> 0, ∀t ∈ [0,ω].
The periodicity of S∗(t) implies S∗(t) > 0 for all t > 0. Following the processes as in
inequalities (8)–(11), we have E∗(t) > 0, I ∗(t) > 0, R∗(t) > 0, S∗

1 (t) > 0, E∗
1 (t) > 0,

I ∗
1 (t) > 0, R∗

1(t) > 0, for all t ≥ 0. Therefore,

(
S∗(t),E∗(t), I ∗(t),R∗(t), S∗

1 (t),E∗
1 (t), I ∗

1 (t),R∗
1(t)

)

is a positive ω-periodic solution of system (1). �

3 Simulations and Sensitivity Analysis

In this section, we first use model (1) to simulate the reported human rabies data of
China from January 2004 to December 2010, predict the trend of the disease and
seek for some control and prevention measures. The data, concerning human rabies
from 2004 to 2010, are obtained mainly from epidemiologic bulletins published by
the Chinese Ministry of Health (MOHC 2011). We need to estimate the parameters
of model (1), most of which can be obtained from the literature or assumed on the
basis of common sense. However, we have to estimate β(t), β1(t) and A by using the
least-square fitting of I1(ti) through discretizing the ordinary differential system (1)
as follows:

I1(ti + Δt) = (
σ1r1E1(ti) − m1I1(ti) − μ1I1(ti)

)
Δt + I1(ti). (13)

The least-square fitting is to minimize the objective function

J (θ) = 1

n

n∑

i=1

(
I (ti) − Î (ti )

)2
, (14)

which is implemented by the instruction lsqnonlin, a part of the optimization toolbox
in MATLAB.
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Fig. 2 The comparison between the reported human rabies data in mainland China from January 2004
to December 2010 and the simulation of our model. The dashed curve represents the monthly data re-
ported by Ministry of Health of China while the solid curve is simulated by using our model. The values
of parameters are given in Table 1. The initial values used in the simulations were S(0) = 3.3 × 107,
E(0) = 2.2 × 104, I (0) = 1.1 × 104, R(0) = 3.3 × 106, S1(0) = 1.29 × 109, E1(0) = 178, I1(0) = 89,
and R1(0) = 6 × 107

The values of parameters are listed in Table 1. We obtain the annual number of
human population using the annual birth and death data from the National Bureau
of Statistics of China (NBSC 2009). Then we calculate the average and divide it by
12 to derive the monthly human birth population B = 1,340,000. We need the initial
values to perform the numerical simulations of the model. The number of the initial
susceptible human population at the end of 2003, S1(0), is obtained from the China
Statistical Yearbook and the number of the initial infective humans I1(0) is from
epidemiological bulletins published by the Chinese Ministry of Health. However, the
numbers of the initial exposed humans E1(0) and the recovered humans R1(0) cannot
be obtained. We derive E1(0) reversely by the parameter γ and R1(0) is estimated
roughly. Regarding the initial values for dogs, we only know that there are about 75
millions dogs in 2009 from online news. So, S(0),E(0), I (0), and R(0) are calcu-
lated reversely by the corresponding parameters r1, k1 and data fitting. The numerical
simulation of the model on the number of human rabies cases is shown in Fig. 2. We
observe that the data of 2005, 2008 and 2009 are slightly different from the solution
as observed in Zhang et al. (2011). We think this is because of large scale culling of
dogs in these years. However, culling of dogs is not considered in model (1).

Moreover, with these parameter values, we can roughly estimate that the basic re-
production number R0 = 1.03 under the current circumstances in China. From Fig. 3,
we can see that when R0 < 1, the number of infected humans I1(t) tends to 0. On the
contrary, when R0 > 1, I1(t) tends to a stable periodic solution.

We can also predict the general tendency of the epidemic in a long term according
to the current situation, which is presented in Fig. 4. From these figures we can see
that the epidemic of rabies can be relieved in a short time, but cannot be eradicated
with the current prevention and control measures.
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Fig. 3 The tendency of the human rabies infectious cases I1(t) in a long time with different values of R0.
When A = 220,000 (lower curve) and 300,000 (upper curve), and the values of other parameters in Table 1
do not change, R0 = 0.97 and 1.32, respectively

Fig. 4 The tendency of the human rabies infectious cases I1(t) in short and long times

The initial conditions adopted in model fitting are mostly assumed and back-
extrapolated by parameters. So it is necessary to study the influence of initial con-
ditions on the rabies epidemics which are showed in Figs. 5 and 6.

From Figs. 5 and 6, we can see that the initial value S(0) has a stronger influence
on I1(t) and other initial conditions have little or almost no effect on I1(t). It implies
that the increasing number of dogs is really an important factor for the prevalence
and persistence of rabies in China.

Finally, we perform some sensitivity analysis to determine the influence of param-
eters A, k, γ and a on R0. From Fig. 7(a), it is obvious that when A is less than
226,920, R0 can be less than 1. However, the annual birth population of dogs can
achieve 400,000 or more in China. This indicates that human rabies in China cannot
be eradicated if the birth number of dogs cannot be controlled under 2 million.

Post-exposure prophylaxis (PEP) is used for most situations for human rabies. In
model (1), it is embodied in the terms k and k1 and it can affect γ and γ1. We observe
that R0 is a concave function of k from Fig. 7(b). So k has an obvious effect on R0.
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Fig. 5 The influence of initial conditions of dogs on the number of human rabies cases I1(t). (a) Different
values of S(0); (b) different values of E(0); (c) different values of I (0); (d) different values of R(0)

We also know that immunization is an effective measure to control rabies. Next, we
consider the effect of γ on R0, which is depicted in Fig. 7(c). We can observe that
it is linear in γ . Most people, especially in the rural and remote areas, have little
knowledge about rabies and even do not know what to do after being bitten by dogs.
Song et al. (2009) reported that 66.3% of rabies victims did not seek medical services
at all and 27.6% of the cases received inadequate PEP. Although the effect of γ on
R0 is less than k, we can enhance people the awareness and knowledge about rabies
and the emergency measure and treatment after they are bitten and scratched by dogs
to decrease the rate of clinical outbreak of rabies.

Now we discuss how a effects R0 in Fig. 7(d). Although they are linear, a is
very small and a slight change of a can lead to large variations of R0. Since β(t) =
a[1+b sin(π

6 t +5.5)] = λ0β
′(N)β ′′/N , we can manage a by controlling β ′(N), i.e.,

the number of dogs a susceptible dog runs into per unit time, which is to strengthen
the management of dogs, especially stray dogs, in case they run wild and bite each
other and humans.

Finally, we consider the combined influence of A and k, and a and k on R0 in
Fig. 8, respectively. From the contour surfaces, we can see that when vaccination,
management of dogs and controlling the birth rate of dogs are combined, controlling
rabies will be more effective. Moreover, the effect of a is greater than A by comparing
the two figures.
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Fig. 6 The influence of initial conditions of humans on the number of human rabies cases I1(t). (a) Dif-
ferent values of S1(0); (b) different values of E1(0); (c) different values of I1(0); (d) different values of
R1(0)

In conclusion, controlling the population of dogs, reducing the birth rate of dogs,
increasing the immunization rate of dogs, improve the management of dogs, enhanc-
ing the awareness of people about rabies, and combining these measures are effective
measures to control rabies in China. In addition, because the monthly data of hu-
man rabies cases exhibits a periodic pattern on an annual base and the human rabies
cases in the summer and autumn are higher, it will be useful to take extra measures
from May to July every year before the infection peaks, such as extra supervision of
children and students out of school.

4 Discussion

The transmission of rabies has been a growing concern in China. The data of hu-
man rabies cases reported by the Chinese Ministry of Health exhibit seasonal char-
acteristics that the morbidity rates in the summer and autumn are much higher than
in the winter and spring. In order to study the transmission dynamics of rabies in
China, seasonality of the spreading of the rabies was incorporated into an SEIRS
mathematic model with periodic transmission rates. Firstly, we calculated the basic
reproduction number R0 (Diekmann et al. 1990) and analyzed the dynamics of the
model including the global stability of the disease-free equilibrium and the existence
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Fig. 7 The influence of parameters on R0. (a) Versus A; (b) versus k; (c) versus γ ; (d) versus a. Other
parameter values in Table 1 do not change

Fig. 8 The graph of R0 in terms of (a) A and k and (b) a and k. Other parameter values in Table 1 do not
change

of periodic solutions. R0 was calculated following the definition of Bacaer and Guer-
naoui (2006), namely R0 = ρ(L), where L is the next infection operator, which has
been employed in some other studies (Bai and Zhou 2011; Liu 2010; Liu et al. 2010;
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Fig. 9 The fitting result of the
tendency of the infected human
rabies cases I1(t) using the
corresponding autonomous
system. A = 232,000,
β = 9.56 × 10−8,
β1 = 3.68 × 10−11 and other
parameter values are the same as
those in the nonautonomous
system. The oscillatory curve is
the data reported and the skewed
curve is the fitting result by the
autonomous system

Nakata and Kuniya 2010; Wang and Zhao 2008; Zhang and Zhao 2007). In particular,
Wang and Zhao (2008) generalized the techniques and results of van den Driessche
and Watmough (2002) to periodic ODE models and provided a recipe to calculate the
basic reproduction number. Their results also indicate that R0 is a threshold value for
determining the local stability of the disease-free periodic solution. We then used our
model to simulate the monthly data on the number of infected human cases from Jan-
uary 2004 to December 2010 in China reported by the Chinese Ministry of Health and
predicted the general tendency of disease in China. Moreover, we carried out some
sensitivity analysis of parameters on R0. The demographic data were estimated from
National Bureau of Statistics of China (NBSC 2009). The values of most parameters
in our model were obtained from the literature or by assumptions. The values of β(t),
β1(t) and A were estimated through least-square fitting of I1(ti) by discretizing the
ordinary differential system as in Chowell et al. (2006) and Stafford et al. (2000).

Moreover, we discussed and compared the basic reproduction numbers under dif-
ferent conditions. In Sect. 3, we evaluated that R0 = 1.03 for the nonautonomous
model. We can also define and calculate the basic reproduction number for the cor-
responding autonomous system (see Diekmann et al. 2010; van den Driessche and
Watmough 2002). In this case, the fitting results and parameter values which also
are obtained by the least-square method are shown in Fig. 9. Comparing Fig. 9 with
Fig. 2, we can see that the new model gives a better fit to the monthly human rabies
cases.

The basic reproduction number of the corresponding autonomous system is

R̂0 = σγβŜ

(m + σ + k)(m + μ)
= 1.

It can be seen that R̂0 is slightly less than R0. From the fitting results and the basic
reproduction number, we think that the nonautonomous system is better and biologi-
cally more realistic than our previous autonomous model (Zhang et al. 2011).

When studying the transmission dynamics of periodic epidemic models, some re-
searchers use the average basic reproduction number R̄0, namely the basic repro-
duction number of the time-averaged autonomous system of the periodic epidemic
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Fig. 10 The tendency of the
human rabies infectious cases
I1(t) when A = 220,000 and the
values of other parameters do
not change. Here, R0 = 0.97
and R̄0 = 1.17

model over a time (Greenhalgh and Moneim 2003; Ma and Ma 2006; Moneim 2007;
Wesley and Allen 2009; Williams 1997). However, the average basic reproduction
number R̄0 can overestimate or underestimate infection risks. Using the expression of
R̂0, we can give the corresponding average basic reproduction number in the nonau-
tonomous system,

R̄0 = σγ β̄Ŝ

(m + σ + k)(m + μ)
,

where

β̄ = 1

12

∫ 12

0
β(t) dt, Ŝ = (m + λ)A

m(m + λ + k)
.

Using the parameter values in Table 1, we have R̄0 = 1.24, which is larger than R0.
By numerical simulations of our model, we found that the average basic reproduction
number R̄0 overestimates infection risks. When A = 220,000 and other parameters
values do not change, R0 = 0.97 and R̄0 = 1.17. Note that R̄0 = 1.17 predicts that
the disease should be prevalent. However, the curve in Fig. 10 tends to zero.

Furthermore, we would like to point out that Zhang et al. (2011) estimated that the
basic reproduction number R0 = 2, but in this paper, we calculated it to be 1.03 with
similar model structure. This can be explained as follows. In Zhang et al. (2011), the
data adopted by model fitting were from 1996 to 2010. In this paper we only used the
data from 2004 to 2010. From Fig. 11, we can see that the numbers of infected human
cases increased dramatically from 159 cases in 1996 and were fierce from 1996 to
2004. After 2004, the spread of rabies began to slow down. Moreover, the data in
2005 and after 2007 decreased. So the fact that R0 in this paper is less than in previous
paper is reasonable. We also would like to calculate the basic reproduction number
for the nonautonomous system from 1996 to 2010. However, we cannot obtain the
monthly data before 2004 since only after the SARS outbreaks in 2003 the Chinese
Ministry of Health began to publish monthly data on various infectious diseases.

In summary, firstly we have proposed a nonautonomous system with periodic
transmission rates to study the transmission dynamics of rabies in China, which is
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Fig. 11 The data of the number
of human rabies cases from
1996 to 2010 reported by the
Chinese Ministry of Health

more realistic and described the monthly rabies data from China more accurately.
Moreover, the nonautonomous differential system is different from and better than
the autonomous model used in Zhang et al. (2011). The dynamics, especially the
basic reproduction number, are more complex. Thirdly, by comparing the basic re-
production numbers, we found that it is more realistic to regard R0 rather than R̄0 or
R̂0 as a threshold to determine whether the disease can establish or vanish eventually.
Finally, we concluded that human rabies in China can be controlled by reducing the
birth rate of dogs, increasing the immunization rate of dogs, enhancing the awareness
of people about rabies, improving supervision of children and students in the summer,
and increasing the medical service and treatment such as PEP after bitten by dogs.

Finally, we would like to comment that most human rabies cases in China are dis-
tributed the south provinces such as Guangdong, Guangxi, Guizhou, Hunan, Sichuan.
However, the monthly data about human rabies cases we used in our simulations,
reported by the Chinese Ministry of Health, were national data and homogeneous
mixing was assumed in the model. In future studies, it will be very interesting to
obtain regional rabies data (such as provincial data) and more realistic to make inho-
mogeneous mixing assumption. Reaction–diffusion equation models (Ruan and Wu
2009 and Zhang et al. 2012) or multi-patch models may be more suitable to study the
spatial transmission dynamics of rabies in China. We leave these for future consider-
ation.
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Appendix: Calculation of the Basic Reproduction Number

We evaluate the basic reproduction number R0 for system (1) following the defini-
tion of Bacaer and Guernaoui (2006) and the general calculation procedure in Wang
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and Zhao (2008). It is easy to see that system (1) has one disease-free equilibrium
P0 = (Ŝ,0,0, R̂, Ŝ1,0,0,0), where Ŝ = (m+λ)A

m(m+λ+k)
, R̂ = kA

m(m+λ+k)
and Ŝ1 = B

m1
. We

rewrite the variables of system (1) as a vector x = (E,E1, I, I1, S, S1,R,R1). Fol-
lowing Wang and Zhao (2008), we have

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β(t)SI

β1(t)S1I

0
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

mE + σ(1 − γ )E + kE + σγE

m1E1 + σ1(1 − γ1)E1 + k1E1 + σ1γ1E1
mI + μI − σγE

m1I1 + μ1I1 − σ1γ1E1
mS + β(t)SI + kS − [A + λR + σ(1 − γ )E]
m1S1 +β1(t)S1I −[B +λ1R1 +σ1(1−γ1)E1]

mR + λR − k(S + E)

m1R1 + λ1R1 − k1E1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

V− =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

mE + σ(1 − γ )E + kE + σγE

m1E1 + σ1(1 − γ1)E1 + k1E1 + σ1γ1E1
mI + μI

m1I1 + μ1I1
mS + β(t)SI + kS

m1S1 + β1(t)S1I

mR + λR

m1R1 + λ1R1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

V+ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0

σγE

σ1γ1E1
A + λR + σ(1 − γ )E

B + λ1R1 + σ1(1 − γ1)E1
k(S + E)

k1E1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

So we derive

F(t) =

⎛

⎜
⎜
⎝

0 0 β(t)Ŝ 0
0 0 β1(t)Ŝ1 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

and

V (t) =

⎛

⎜
⎜
⎝

m + σ + k 0 0 0
0 m1 + σ1 + k1 0 0

−σγ 0 m + μ 0
0 −σ1γ1 0 m1 + μ1

⎞

⎟
⎟
⎠ .

We introduce some notation. Let Y(t, s), t ≥ s, be the evolution operator of the sys-
tem

dy

dt
= −V (t)y. (15)
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That is, the 4 × 4 matrix Y(t, s) satisfies

dY (t, s)

dt
= −V (t)Y (t, s)

for any t ≥ s, Y (s, s) = I , where I is the 4 × 4 identity matrix. Now we introduce the
linear ω-periodic system

dw

dt
=

[

−V (t) + F(t)

z

]

w, t ∈ R+, (16)

with parameter z ∈ R. Let W(t, s, z), t ≥ s, be the evolution operator of system (16)
on R

4. Clearly, ΦF−V (t) = W(t,0,1), ∀t ≥ 0.
Following the method in Wang and Zhao (2008), we let φ(s) be ω-periodic in s

and the initial distribution of infectious individuals. So F(s)φ(s) is the rate of new
infections produced by the infected individuals who were introduced at time s. When
t ≥ s, Y(t, s)F (s)φ(s) gives the distribution of those infected individuals who were
newly infected by φ(s) and remain in the infected compartments at time t . Naturally,

∫ t

−∞
Y(t, s)F (s)φ(s) ds =

∫ ∞

0
Y(t, t − a)F (t − a)φ(t − a)da

is the distribution of accumulative new infections at time t produced by all those
infected individuals φ(s) introduced at time previous to t .

Let Cω be the ordered Banach space of all ω-periodic functions from R to R
4,

which is equipped with the maximum norm ‖ · ‖ and the positive cone C+
ω := {φ ∈

Cω : φ(t) ≥ 0, ∀t ∈ R+}. Then we can define a linear operator L : Cω → Cω by

(Lφ)(t) =
∫ ∞

0
Y(t, t − a)F (t − a)φ(t − a)da, ∀t ∈ R+, φ ∈ Cω.

L is called the next infection operator and the spectral radius of L is defined as the
basic reproduction number

R0 := ρ(L)

for the periodic epidemic model. To determine the threshold dynamics, we use Theo-
rems 2.1 and 2.2 in Wang and Zhao (2008). First of all, we verify the seven assump-
tions in the theorems.

(1)–(5) The first five conditions can be verified by observing F , V+ and V−.
(6) ρ(ΦM(ω)) < 1, where ρ(ΦM(ω)) is the spectral radius of ΦM(ω) and ΦM(t) is

the monodromy matrix of the linear ω-periodic system dq
dt

= M(t)q with

M =

⎛

⎜
⎜
⎝

−m − k 0 λ 0
0 −m1 0 λ1
k 0 −(m + λ) 0
0 0 0 −(m1 + λ1)

⎞

⎟
⎟
⎠ .

When M is a constant matrix, M is stable if and only if ρ(ΦM(ω)) < 1. So,
we just need to show that M is stable, that is, all eigenvalues are negative. It is
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obvious that −(m1 + λ1) and −m1 are the eigenvalues of M and are negative.
Then we consider the eigenvalues of

(−(m + k) λ

k −(m + λ)

)

.

By calculating, −(m + k) − (m + λ) < 0 and [−(m + k)] × [−(m + λ)] − kλ =
m2 + (k + λ)m > 0. So the remaining two eigenvalues are also negative. We can
conclude that M is stable, namely ρ(ΦM(ω)) < 1.

(7) ρ(Φ−V (ω)) < 1, where Φ−V (t) is the monodromy matrix of the linear ω-
periodic system dy

dt
= −V (t)y with

−V =

⎛

⎜
⎜
⎝

−m − σ − k 0 0 0
0 −m1 − σ1 − k1 0 0

σγ 0 −m − μ 0
0 −σ1 − γ1 0 −m1 + μ1.

⎞

⎟
⎟
⎠ .

Because −V is a constant matrix, we need to show that −V is stable. We can
see that the eigenvalues of −V are the diagonal elements and negative. So this
condition is satisfied.

Using (ii) in Theorem 2.1 in Wang and Zhao (2008), we derive

Φ
F− V

z
(t) = W(ω,0, z) =

⎛

⎜
⎜
⎝

a11 0 a13 0
a21 a22 a23 0
a31 0 a33 0
a41 a42 a43 a44

⎞

⎟
⎟
⎠ ,

where

λ1(t) = −(2m + σ + k + μ) +
√

(σ + k − μ)2 + 4β(t)Ŝσγ
z

2
,

λ2(t) = −(2m + σ + k + μ) −
√

(σ + k − μ)2 + 4β(t)Ŝσγ
z

2
,

a11 = λ1(T ) + m + μ

λ1(T ) − λ2(T )
e
∫ T

0 λ1(t) dt − λ2(T ) + m + μ

λ1(T ) − λ2(T )
e
∫ T

0 λ2(t) dt ,

a13 = [λ1(T ) + m + μ][λ2(T ) + m + μ]
σγ [λ2(T ) − λ1(T )]

[
e
∫ T

0 λ1(t) dt − e
∫ T

0 λ2(t) dt
]
,

a21 = e−(m1+σ1+k1)T

∫ T

0

β1(t)Ŝ1

z
a31e

∫ t
0 λ1(t) dt e(m1+σ1+k1)t dt,

a22 = e−(m1+σ1+k1)T ,

a23 = e−(m1+σ1+k1)T

∫ T

0

β1(t)Ŝ1

z
a33e

(m1+σ1+k1)t dt,
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a31 = σγ

λ1(T ) − λ2(T )

[
e
∫ T

0 λ1(t) dt − e
∫ T

0 λ2(t) dt
]
,

a33 = λ2(T ) + m + μ

λ2(T ) − λ1(T )
e
∫ T

0 λ1(t) dt − λ1(T ) + m + μ

λ2(T ) − λ1(T )
e
∫ T

0 λ2(t) dt ,

a41 = e−(m1+μ1)T

∫ T

0
σ1γ1a21e

(m1+μ1)t dt,

a42 = σ1γ1

μ1 − σ1 − k1
e−(m1+μ1)T

[
e(μ1−σ1−k1)T − 1

]
,

a43 = e−(m1+μ1)T

∫ T

0
σ1γ1a23e

(m1+μ1)t dt,

a44 = e−(m1+μ1)T .

We see that all eigenvalues of the above matrix are real and the largest one is

g(z)

= 1

2

{√

(μ − σ − k)2 − 4(λ2(T ) + m + μ)(λ1(T ) + m + μ)

[λ1(T ) − λ2(T )]2
[
e
∫ T

0 λ2(t) dt − e
∫ T

0 λ1(t) dt
]2

}

+ 1

2

[
e
∫ T

0 λ2(t) dt + e
∫ T

0 λ1(t) dt
]
.

So the basic reproduction number is z0 such that g(z0) = 1.
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