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Abstract

Background: Schistosomiasis is a water-borne disease afflicting over 261 million people in many areas of the
developing countries with high morbidity and mortality. The control relies mainly on treatment with praziquantel.
Fatty acid binding proteins (FABP) have demonstrated high levels of immune-protection against trematode
infections. This study reports the immunoprotection induced by cross-reacting Fasciola hepatica FABP, native
(nFh12) and recombinantly expressed using two different expression systems Escherichia coli (rfFh15) and
baculovirus (rfFh15b) against Schistosoma mansoni infection.

Methods: BALB/c mice were vaccinated with native nFh12 or recombinant rfh15 and rFh15 FABP from F. hepatica
formulated in adjuvant adaptation (ADAD) system with natural or chemical synthesised immunomodulators (PAL
and AA0029) and then challenged with 150 cercariae of S. mansoni. Parasite burden, hepatic lesions and antibody
response were studied in vaccination trials. Furthermore differences between rFh15 and rFh15b immunological
responses (cytokine production, splenocyte population and antibody levels) were studied.

Results: Vaccination with nFh12 induced significant reductions in worm burden (83 %), eggs in tissues (82-92 %)
and hepatic lesions (85 %) compared to infected controls using PAL. Vaccination with rFh15 showed lower total
worm burden (56-64 %), eggs in the liver (21-61 %), eggs in the gut (30-77 %) and hepatic damage (67-69 %)
using PAL and AA0029 as immunomodulators. In contrast, mice vaccinated with rFh15b showed only reductions in
eggs trapped in the liver and intestine (53 and 60 %, respectively), and hepatic lesions (45 %). We observed a
significant rise in TNFa, IL-6, IL-2, IL-4 and high antibody response (IgG, IgG1, IgG2a, IgM and IgE) in mice immunised
with either rFh15 or rFh15b. Moreover, mice immunised with rFh15b showed an increase in IFNy and a decrease in
B220 cells compared to untreated mice, and less production of IgG1 and IgM than in mice immunised by rFh15.
Conclusions: Higher level of protection is obtained by using Fasciola hepatica-derived FABP protein against

Schistosoma mansoni infection. Native FABP is more effective than both recombinant systems. It could be due to post-
translational modifications or FABP isoform or changes in the recombinant proteins.
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Background

The blood flukes Schistosoma mansoni, S. haematobium
and S. japonicum are the main causative agents of schisto-
somiasis in humans in Africa, Asia and South America.
The Word Health Organisation (WHO) estimated that
261 million people living in 78 countries required treat-
ment in 2013, of whom 121 million were school-aged chil-
dren and 92 % lived in Africa [1]. Presently, the main
strategy against schistosomiasis involves the use of prazi-
quantel to reduce worm burden and morbidity due to its
high efficacy, affordable cost, operational convenience and
limited side effects [2]. However high rates of reinfection
and the reduced susceptibility of schistosomula leads to
sub-optimal cure rates. After decades of continuous treat-
ment, the concern of resistant linage selection or spread-
ing of native tolerant strains is an important threat [3].
The use of artemisinin derivatives and combinations
with praziquantel could improve cure rate in endemic
areas [4, 5]. Many researchers believe that immuno-
prophylaxis could be a promising tool together with
chemotherapy, safe water supply, adequate sanitation,
hygiene education or snail control [6]. Reduction of
parasite burden, amelioration of pathology and block-
ing of transmission are considered desirable features
of the vaccine [7]. The basis of vaccine use against
schistosomes is demonstrated by the partial resistance
developed against natural infection and the high pro-
tection induced by irradiated cercariae reaching worm
reductions of 41-75 % depending on the total num-
ber of immunising parasites [8].

A plethora of proteins have been proposed as potential
vaccines against schistosomiasis discovered by different
methods: ¢DNA library screening with sera raised
against whole or fractions of schistosomes, PCR amplifi-
cation from a cDNA library, identification of membrane
protein signal sequences, and mining the genome to
identify membrane or secretory proteins by reverse vac-
cinology [9-11]. Only a small number of vaccines have
reached Phase I clinical trials and only the glutathione-S
transferase rSh28GST (Bilhvax) have reached Phase III
against urinary schistosomiasis [12]. Fatty acid binding
proteins (FABP) in trematodes are a family of proteins
with isoforms in parenchymal and tegument cells. They
are involved in cholesterol and long chain fatty acid up-
take and transport, triclabendazole binding [13], anti-
oxidant activity, immunomodulation [14]. Classical and
non-classical such as exosomes secretory pathways were
described [15]. The protein Sm14 from S. mansoni, de-
rived from a cloned gene exhibited affinity to fatty acids
and was able to protect outbreed mice and rabbits
against the challenge with S. mansoni cercariae. Further
research led to application of Pichia pastoris expression
and the use of the synthetic adjuvant GLA-SE, which
has been utilised in Phase I clinical trials [16]. Also,
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Sm14 shows a 44 % identity with rFh15 from Fasciola
hepatica [17]. Identical basic three-dimensional struc-
ture and shared discontinuous epitopes were observed.
Moreover, Sm14 induces abolition of liver damage in
mice, sheep and goats against experimental infection
with F. hepatica [16, 18, 19]. The native nFh12 and the
recombinant rFh15 FABP from F. hepatica have shown
protection in terms of reduction of worm burden and
liver lesions using Freund’s adjuvant in C57/BL6 mice
against S. bovis infection [20, 21]. Moreover, large para-
site burden reduction, liver lesion amelioration and anti-
fecundity effects were observed in BALB/c mice and
golden hamsters vaccinated with the rFh15 using the
ADAD (adjuvant adaptation) vaccination system against
S. bovis [22, 23]. Furthermore, a FABP of 14.6 kDa puri-
fied from Fasciola gigantica has proved reductions in
parasite counts and liver lesions against S. mansoni
infection in CD1 mice [24]. New expression systems are
needed to allow a better conservation of post-translational
modifications than in prokaryotic production systems.
The baculovirus-based expression system is a safe, versa-
tile and powerful cloning tool for production of recombin-
ant proteins in eukaryotic cells that could be interesting to
test against S. mansoni challenge and study the immuno-
logical response [25, 26].

Immunity adjuvants are recognised to have crucial im-
portance in vaccine development. Adjuvant adaptation
(ADAD) vaccination systems was developed as an alter-
native to Freund’s adjuvant, which has side effects that
limit its use in commercial vaccines, in vaccination
against trematodes such as F. hepatica and schistosomes
[27]. ADAD combines the antigen together with non-
haemolytic saponins from Quillaja saponaria and a
natural or synthetic immunomodulator, forming an
emulsion with the non-mineral oil Montanide ISA
763AVG to obtain a long-term delivery system [27]. The
natural immunomodulator PAL is a hydroalcoholic
extract from the rhizome of the fern Phlebodium pseu-
doaureum, that is able to down-regulate the Th-
response in mice immunised with Anisakis simplex, Tri-
chinella spiralis and F. hepatica antigens [28]. The syn-
thetic diamine AA0029 inhibits lymphoproliferation,
modulates delayed-type hypersensivity in a T. spiralis
model, modifies the ratios of CD8+, CD4+ and MHC
Class II cells and increases nitric oxide production in
LPS pre-stimulated rat alveolar macrophages [29]. Ex-
periments using 14-3-3 protein from S. bovis, and FABP
from F. hepatica formulated in ADAD system have
yielded high protection in terms of parasite burden and
liver damage [22, 23, 30].

The aim of this study is to examine the immunopro-
phylactic properties of three FABP from F. hepatica
(nFh12, rFh15 and rFh15b) using the ADAD vaccination
system against S. mansoni infection in BALB/c mice.
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Also immunological response to immunisation is studied
using one recombinant obtained in Escherichia coli
(rFh15) and one produced in baculovirus-transformed
Trichoplusia ni caterpillars (rFh15b).

Methods

Animals, ethics statement and parasites

Animal procedures used in this study complied with the
Spanish (L32/2007, L6/2013 and RD53/2013) and the
European Union (Directive 2010/63/EU) regulations on
animal experimentation. The Ethics Committee of the
University of Salamanca (Spain) approved procedures
used in the present study (protocol 48531). SPF female
CD1 and BALB/c mice obtained from Charles River
(Lyon, France) weighing 19-26 g used in this work were
maintained in a temperature and humidity controlled
environment with a 12 h light/dark cycle and provided
with water and food ad [libitum at the animal experi-
mentation facilities of the University of Salamanca. The
animals’ health status was monitored throughout the ex-
periments by a health surveillance program according to
the guidelines of the Federation of European Laboratory
Animal Science Associations (FELASA). Mice were
humanely euthanised with an intraperitoneal injection of
pentobarbital (100 mg/kg), according to protocols
supplied by the animal facilities of the University of
Salamanca at the end of the experimental procedures or
when any deterioration of mice health status was evi-
denced. Size of groups was calculated by power analysis
using “size.fdr” package in R and following the 3Rs rec-
ommendations [31, 32]. All efforts were made to minim-
ise suffering. LE strain of S. mansoni was maintained in
our laboratory in Biomphalaria glabrata snails as inter-
mediate hosts and CD1 mice as definitive hosts. The
number of cercariae and their viability were determined
using a stereoscopic microscope.

S. mansoni soluble adult worm antigen and F. hepatica
native nFh12 purification

Soluble adult worm antigens from S. mansoni (SoS-
mAWA) used for ELISA were prepared as previously de-
scribed [20]. Twenty adult worms were suspended in
1 mL of sterile phosphate-buffered saline (PBS) contain-
ing 1 mM phenyl methyl sulphonyl fluoride (PMSEF;
Sigma, St Louis, MO), homogenised, frozen and thawed
thrice and then sonicated thrice (70 kHz) for 1 min each.
The suspension was centrifuged at 20,000 g for 30 min at
4 °C. Native 12 kDa F. hepatica antigen (nFh12) was
purified as described by Hillyer [17] by a combination of
gel filtration using Sephadex G-50 and two-step iso-
electric focusing runs with 3—-10 and 4—6 ampholytes. A
one dimension SDS-PAGE was performed to confirm
there was a single band and a rabbit monospecific, poly-
clonal anti-nFh12 antiserum was used in SDS-PAGE
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and immunoblot to confirm that the purified polypeptide
was nFh12.

Recombinant rFh15 and rFh15b protein expression and
purification

The recombinant fatty-acid binding proteins from F.
hepatica were produced using two different expression
systems. The first was based on the use of E. coli BL21
bacteria (rFh15). The recombinant protein was manufac-
tured following Rodriguez-Pérez et al. [33]. Briefly, total
RNA from one F. hepatica adult worm was isolated and
used for cDNA synthesis. The rFhl5 gene (GenBank
M95291.1) was amplified using the following primer se-
quences: forward 5'-GGA TCC ATG GCT GAC TTT
GTG GG-3' and reverse 5'-CTC GAG CGC TTT GAG
CAG AGT G-3’ and restriction sites for BamHI and
Xhol were added. PCR products were then purified and
cloned into pGEX-4T2 vector with a S. japonicum gluta-
thione S-transferase sequence for further detection and
purification. The resulting recombinant DNA plasmid
was purified and sequenced to verify the integrity of the
cloned insert. Transformed E. coli BL21 cells were
grown in Luria Bertani medium with ampicillin until
reaching an optical density of 0.6 and then induced by
the addition of isopropyl B-tiogalactopyranoside (IPTG)
at a final concentration of 1 mM. The cell pellet was re-
covered by centrifugation of the culture at 18000 g for
30 min, suspended in PBS with 1 mM PMSF and 1 %
Triton X-100 sonicated and centrifuged. Solubilised pro-
tein was purified by affinity chromatography with a
glutathione Sepharose 4B resin. Non-retained proteins
were eluted with PBS whilst rFh15 was eluted by
addition of PBS plus thrombin. Non-retained proteins
were eluted with PBS whilst the recombinant protein
was cleaved to obtain rFhl5 by adding 50 units of
thrombin (Amersham Biosciences) in PBS. Fractions
were analysed by SDS-PAGE and proteins quantified by
using a Micro BCA Protein Assay Kit.

The second method to obtain the recombinant rFh15
protein was based on the use of a baculovirus expression
vector system, using standardised protocols of ALGENEX
(Madrid, Spain). Briefly, to clone into pFasBacHis vector a
nucleotide sequence from 15 kDa FABP protein (Gen-
Bank M95291.1) was synthesised and a Kozak sequence
was inserted into the N-terminus extreme, along with
BamHI and Xbal restriction sites at the N- and C-
terminus respectively. The plasmid pMA (ampR) with the
cloned Fh1l5 gene between Kpnl/Sacl sites was used
to amplify DNA by transformation of E. coli (DHb5al-
pha) cells and isolation of ampicillin-resistant col-
onies. The resulting amplified DNA together with the
cloning vector (pFasBacHis) were cut with restriction
enzymes BamHI and Xbal and the corresponding
band (412 bp) from Fhl5 insert was isolated and
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purified. pFasBacHis vector was dephosphorylated
with alkaline phosphatase treatment and the Fhl5 in-
sert was subsequently ligated. The resulting product
was then used to transform E. coli (DHb5alpha) cells
and ampicillin- and gentamicin-resistant colonies were
then isolated. The DNA from these isolated colonies was
isolated and characterised using the restriction enzymes
for BamHI and Xbal sites, respectively, and automated se-
quence was performed to verify the sequence of the insert.
The resulting vector and the sequence of the Fh15 insert
is depicted in Fig. 1la. To obtain the recombinant baculo-
virus, E. coli special competent (DH10B) cells were trans-
formed starting from a previously generated vector
(pFBFh15His). These cells carry the receptor b MON14272
that contains a beta-galactosidase codifying gene. Upon
incorporation in the same cell vector and receptor, the re-
combinant baculovirus presents resistance to kanamycin,
tetracyclin and geneticin and loses its beta-galactosidase

Page 4 of 13

activity. One colony resistant to the three antibiotics was
selected and the DNA was isolated and used to transfect
insect cells sf21 using the cellfectin reagent (Invitrogen,
Waltham, MA USA). Seventy-two hours after the trans-
fection, the so-called progeny 1 from the recombinant
baculovirus was collected and stored until further use. Fi-
nally, thirty Trichoplusia ni larvae were inoculated with
the previously obtained recombinant virus. Larvae were
harvested during the next 48—-96 h and the expression of
the recombinant protein was assessed using both Coo-
massie blue staining and Western blot with monoclonal
anti-6His antibodies.

ADAD vaccination system

The rFh1l5 protein was formulated in a micelle com-
posed of non-haemolytic saponins from Quillaja sapo-
naria (Qs; Sigma, St Louis, Missouri, USA) and natural
(PAL) or synthetic aliphatic diamine (AA0029) as

a
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4032 BamHl (1)
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5104 bp
Gentamicin 2802...3335
Tn7R 2511..2735

c SDS-PAGE Western blot

—
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AAAACTAAGATTACAACTTTCACATTTGGCGAGGAATTCGAAGAAG
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Fig. 1 The expression and purification of rFh15b using the baculovirus system. a The generated vector pFBFh15His; b The nucleotide sequence
from Fh15, including the Kozak sequence, the C-terminus 6-His tag and the restriction sequences for BamH| and Xbal; ¢ The expression of rFh15b
detected with Coomassie blue staining (Lane 1, molecular weight marker; Lane 2: non-induced baculovirus; Lane 3, induced baculovirus) and
Western blot using anti-6His monoclonal antibody (Lane 1, molecular weight marker; Lane 2, induced baculovirus; Lane 3: non-induced baculovirus); d
Purification of rFh15b by affinity chromatography detected by Coomassie blue staining and Western blot using anti-6His monoclonal antibody
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immunomodulator. Thereafter, this micelle was emulsi-
fied in a non-mineral oil (Montanide ISA763A, SEPPIC,
Paris, France) at an oil/water ratio of 70/30 and subcuta-
neously injected into BALB/c mice. The ADAD vaccin-
ation system consists of a set of two subcutaneous
injections. The first injection, called “Adaptation”, contains
Qs and PAL or AA0029 emulsified in the non-mineral oil.
The second injection, administered 5 days after the adapta-
tion, contains the rFhl5 antigen with Qs and PAL or
AA0029 in the emulsion oil. Individual doses per injection
included in each case were as follows: 20 pg of Qs, 600 pg
of PAL or 100 pg of AA0029, and 10 pg of nFh12, rFh15 or
rFh15b, resulting in a final volume of a 200 pl injection of
emulsion in the non-mineral oil [22, 30].

Vaccination experiment schedules

BALB/c mice were randomly allocated in groups of nine
animals each as follows: Untreated and uninfected; S.
mansoni infected; Control adjuvant (injected with
ADAD with Qs and the natural immunomodulator PAL
or the synthetic AA0029) and Vaccinated groups (vacci-
nated with ADAD with the corresponding FABP nFh12,
rFh15 or rFh15b formulated with the corresponding im-
munomodulator PAL or AA0029 and infected). Two
weeks after the first immunisation animals were boosted
with the same doses. Two weeks after the second im-
munisation, each mouse was exposed to 150 cercariae of
S. mansoni for 45 min. Eight weeks post-infection all
mice were euthanised with intraperitoneal injection of
sodium pentobarbital (100 mg/kg) and then perfused by
intra-cardiac injection of PBS plus heparin, and the
number of S. mansoni adult worms recovered from the
portal and mesenteric veins was recorded. In addition,
the number of parasite eggs in the liver and intestine
was counted using a McMaster camera after digestion
with 25 ml of 5 % KOH for 16 h at 37 °C with gentle
shaking. Macroscopic lesions of the liver were quantified
as granuloma-affected surface per 100 mm? in each
mouse using Image] 1.45 s software [34]. Protection per-
centage was calculated for all parasitological and patho-
logical magnitudes as follows: (mean in the infected
control group — mean in experimental group) x 100/
mean in infected control group. Blood samples were col-
lected from each animal before immunisation, infection
and necropsy for humoral immune response studies.

Specific antibody response against FABP and SoSmAWA

Specific anti-rFh15 or anti-SoSmAWA antibody profiles
were measured using an indirect ELISA as described by
Abén et al. [20]. Briefly, 96-well polystyrene plates (Costar)
were coated with 2.0 pg of nFh12, rFh15, rFh15b or 2.5 pg
of SoOSmAWA antigen for 12 h in carbonate buffer (pH 9.0)
and then blocked with 2 % bovine serum albumin in PBS.
Sera were then added at 1:100 dilutions and incubated for
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1 h at 37 °C, followed by the addition of goat peroxidase-
labelled anti-mouse IgG, IgGl, IgG2a, IgM or IgE anti-
bodies at 1:1000 dilution (Sigma, St. Louis, MO, USA). The
reaction was developed with H,O, and ortophenilenedia-
mine (OPD, Sigma) in citrate buffer (pH 5.0) and absorb-
ance was measured at 492 nm with an Ear400FT ELISA
reader (Lab Instruments, Groding, Austria).

Immune response in BALB/c mice immunised with the
recombinant FABP rFh15 and rFh15b

Four groups of six female BALB/c each were used for the
characterisation of immunological response: Untreated;
Injected with ADAD only with AA0029+Qs as adjuvant
control; Immunised with rFh15 formulated in ADAD sys-
tem with AA0029 (AA0029+Qs+rFh15); and Immunised
with rFh15b formulated in ADAD system with AA0029
(AA0029+Qs+rFh15b). Mice were immunised and two
booster doses were given after 2 and 4 weeks, respectively.
Two weeks after the immunisation schedule all mice were
anesthetised with isoflurane and euthanised by cervical dis-
location. Spleens were then aseptically removed for obtain-
ing splenocytes by perfusion with sterile PBS to study
cytokine profile and to quantify T-cell subpopulations.
Blood samples were collected for antibody detection from
the animals before each immunisation and at the necropsy.

Cytokine measurement

Splenocytes obtained from individual mice were cultured
in a 6-well plate at 1 x 10° cells per well in a complete
RPMI 1640 medium containing 10 % heat-inactivated
foetal calf serum, 5 mM L-glutamine and antibiotics:
100 units/ml penicillin and 100 pg/ml streptomycin as
previously described [35]. Cells were in vitro stimulated
with rFh15 or rFh15b at a final concentration of 10 pg/ml
for 72 h at 37 °C in a humidified atmosphere with 5 %
CO,. Culture supernatants were recovered for cytokines
determination. Splenocytes belonging to untreated mice
were used as controls. A flow cytometry-based technique
was used for interferon y (IFNy), tumor necrosis factor o
(TNFa), interleukin (IL) 1a, IL-2, IL-4, IL-6, IL-10 and IL-
17 quantitation in each of the groups of mice used in this
study. The FlowCytomix Mouse Th1/Th2 10plex kit
(Bender MedSystems GmbH, Vienna, Austria) was used
according to the manufacturer’s instructions. Briefly, differ-
ent size fluorescent beads, coated with capture antibodies
specific for the aforementioned cytokines, were incubated
with mouse splenocyte samples and with biotin-conjugated
secondary antibodies for 2 h at room temperature. The
specific antibodies bound to the analytes captured by the
first antibodies. After washing the tubes with PBS plus 2 %
foetal calf serum, Streptavidin-Phycoerythrine (S-PE) solu-
tion was added and incubated at room temperature for
1 h. S-PE binds to the biotin conjugate and emits fluores-
cent signals. Flow cytometry data was collected using a
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FACSCalibur flow cytometer (BD Biosciences, Franklin
Lakes, NJ, USA) at the University of Salamanca’s Flow
Cytometry Central Service; 8000 events were collected
(gated by forward and side scatter) and data was analysed
using FlowCytomix Pro 3.0 software (Bender MedSystems,
Vienna, Austria). Each cytokine concentration was deter-
mined from standard curves using known mouse recom-
binant cytokine concentrations.

Flow cytometry analysis of splenic B and T-cell
populations

Splenocytes from untreated, AA0029+Qs-treated, rFh15-
immunised and rFh15b-immunised mice were incubated
with the blocking anti-CD16/CD32 monoclonal antibody
for 5 min at room temperature and stained with com-
mercial fluorochrome-conjugated antibodies at 1/50
dilution in PBS plus 2 % foetal calf serum for 30 min at
4 °C. Rat anti-mouse CD45-peridinin chlorophyll protein
(PerCP)- cyanine dye (Cy5.5), CD4-fluorescein isothyo-
sanate (FITC), CD8-phycoerythrin (PE), CD45R/B220-
allophycocyanin (APC), CD197-PE (CCR7), CD62L-APC
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and hamster anti-mouse CD27 APC (BD Pharmingen,
USA) were used. After incubation, cells were washed in
PBS with 2 % foetal calf serum and centrifuged at 1000 g
for 5 min and the supernatant was then discarded. The
cells were fixed with 100 pl of a 2 % paraformaldehyde
solution for 1 h at 4 °C. Phenotypic analyses were per-
formed in a FACScalibur flow cytometer. Data were col-
lected on 30,000 events (gated by forward and side
scatter) and analysed using Gatelogic Flow Cytometry
Analysis Software (INIVAI technologies Pty Ltd).

Statistical analysis

The results were expressed as the mean + standard error
of the mean (SEM). Normal distribution of data was
assessed by Kolmogorov-Smirnov test and homogeneity
of variance was tested by Barrett test. Significant differ-
ences among groups were found using one-way ANOVA
test and post-hoc Tukey’s honest significance tests (HSD)
or Kruskal-Wallis (K-W) test. All statistical analyses
were considered significant at P < 0.05. SPSS 21 software
(IBM) was used for data analysis.

Table 1 Protection levels (% of reduction, R) in worm recovery (total counts, females and males), hepatic damage extension (mm?/
100 mm?) and number of eggs per gram (EPG) in the tissues in vaccinated BALB/c mice using natural and recombinant FABP
(nFh12, rFh15 or rFh15b) formulated with the adjuvant adaptation (ADAD) vaccination system with the natural immunomodulator
PAL or the synthetic AA0029. Data presented as the mean + standard error of the mean. ANOVA F- and P-values, and post-hoc
Tukey's honest significance test P values of significant increases are included

Groups Total worms R Females R Males R Hepatic lesion R EPGin liver R EPGintestine R
(mean+SEM) (%) (mean+SEM) (%) (mean=+SEM) (%) (mean+SEM) (%) (mean+SEM) (%) (mean+SEM) (%)
Experiment 1
Infected 363+49 - 19.7+29 - 166+20 - 641£71 - 17432 +3586 - 14812+3934 -
PAL+Qs 234+25 36 124+14 37 110+10 33 744+64 NR 16551 +2620 5 17367 £2277 NR
PAL+Qs+nFh12 60+ 1.7 83 3610 82 21+08 87 94+30 85 3089+1001 82 1,186+523 92
P<0.001° P<0.001° P<0.001° P<0.001° P=0.001° P<0.001°
ANO\/A F(2'24) =2339 F(2'24) = 1849 F(2’24) =3013 F(2’24) = 3941 F(2’24) =10.27 F(3'32) = 1631
P <0.001 P <0.001 P <0.001 P <0.001 P <0.001 P <0.001
Experiment 2
Infected 490+6.1 - 240%73 - 250+88 - 612+83 - 18,008 +£2,362 - 18,197 +£2,079 -
PAL+Qs 31634 35 186+21 22 135+12 46 710+62 NR 17,098 +£2,706 5 21,700+2968 NR
PAL+Qs+rFh15 218+25 56 90+12 63 12815 49 187+£22 69 14247+668 21 12724+488 30
P=0.006" P<0.001° P<0.001° P<0.001°
ANO\/A F(2'24) =904 F(2'24) =13.80 F(2'24) =993 F(2'24) = 1837
P <0.001 P <0.001 P <0.001 P <0.001
Experiment 3
Infected 345+69 - 180+36 - 165+34 - 618+144 - 9986+2360 -  7748£1315 -
AA0029+Qs 425+80 NR 200+44 NR 225+39 NR 770£190 NR 13242+1597 NR 8084+775 NR
AA0029+Qs+rFh15  12.5+3.8 64 55+20 69 70+20 58 206140 67 3872+1814 61 1,800+730 77
P=0.046° P=0011° P=0.041° P=0.049" P=0.024° P=0.001°
AA0029+Qs+rFh15b  25.1+7.8 27 101+32 44 150+48 9 152+7.1 75 4,692+1,181 53 3,098 +800 60
P=0021° P=0.048° P=0.035° P=0.001°
ANOVA F(3/32) =3.09 F(3/32) =375 F(3’32) =297 F(3’32) =405 F(3’32) =425 F(3’32) =1161
P=0.047 P=0.026 P=0.048 P=0.007 P=0.003 P <0.001

NR no-reduction: ®Significant differences in comparison with infected controls
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Results

Recombinant expression and detection of antigens
Expression and purification of F. hepatica-derived native
nFh12 and recombinant rFh15 proteins were previously
reported [17]. Here, we used a baculovirus expression
vector system that improves the production of recom-
binant proteins compared to the classical expression sys-
tems based on the use of bacteria or yeasts, which also
retains recombinant proteins native configuration along
the production and purification steps to produce a F.
hepatica-derived FABP protein (Fig. 1a and 1b). Starting
with 30 7. ni larvae inoculated with recombinant virus,
cells were recovered during the next 48-96 h to assess
recombinant protein expression, which was confirmed
using both Coomassie blue staining and western blot
using anti-6His monoclonal antibody as shown in Fig. 1c.
Coomassie blue staining detected a majority band with
an estimated molecular weight of 15.7 kDa in the crude
extract. Specific detection with monoclonal antibody
confirmed the presence of a single band with the same
molecular weight. Upon detection, the recombinant pro-
tein was on-column purified by affinity chromatography
using a Ni-NTA column (Fig. 1d). As depicted, a single
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band with a molecular weight of 15 kDa was detected
using Coomassie blue staining, coming from pooled
column-retained fractions, dialysed against ammonium
carbonate (50 mM), lyophilised and resuspended in
high-purity distilled water. Western blot from the
same fraction also revealed the presence of a single
band with the same molecular weight (Fig. 1d). Pro-
tein quantitation revealed the recovery of 5 mg of
pure recombinant protein.

Vaccination with the native nFh12 formulated in ADAD
with PAL triggers protection against S. mansoni infection
Significant reductions in recovered total worms (83 %),
males (87 %) and females (82 %) were observed in BALB/c
mice immunised with nFh12 formulated in ADAD with
the natural immunomodulator PAL (PAL+Qs+nFh12)
compared to the infected control group (Table 1). Also, a
significant decrease in the number of eggs present in the
liver (82 %) and in the intestine (92 %) were detected
(Table 1). In concordance, hepatic damage extension was
significantly reduced (85 %) compared to the infection
control group (Table 1, Fig. 2). Furthermore, mice injected
only with PAL+Qs did not show significant protection in

Experiment 1

Infected

Uninfected

Experiment 2

Infected

Uninfected

Experiment 3

Uninfected Infected

AA0029+Qs

Fig. 2 Representative hepatic lesion area reduction in BALB/c mice after vaccination. Natural and recombinant FABP (nFh12, rfh15 or rFh15b)
formulated with the adjuvant adaptation (ADAD) vaccination system were used with the natural immunomodulator PAL or the synthetic AAO029
and challenged with 150 cercariae of S. mansoni in three separate experiments

5mm

5mm

AA0029+Qs  AAD029+Qs
+rFh15 +rFh15b
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terms of parasite burden or hepatic lesions (Table 1). A
significantly higher production of specific anti-nFh12 IgG
was observed in the nFhl2 vaccinated group com-
pared to uninfected, infected or adjuvant controls
after the second immunisation which remained until
the end of the experiment (Fig. 3a and Additional file
1: Table S1). Also all infected groups showed a sig-
nificant production of IgG, IgGl 8 weeks post-
infection against SOSmAWA but only vaccinated with
PAL+Qs+nFh12 showed significant IgG2a production
(Fig. 4a and Additional file 2: Table S2).

Vaccination with the recombinant rFh15 formulated with
ADAD using PAL stimulates high protection against S.
mansoni infection

Mice vaccinated with rFh15 formulated in ADAD with
the natural immunomodulator PAL (PAL+Qs+rFh15) in-
duced significant reduction in worm burden (56 % in
total worms, 63 % in females and 49 % in males) com-
pared to infected controls (Table 1). Slight decreases in
the number of eggs present in the liver (21 %) and the
gut (30 %) of the vaccinated group were observed in
comparison to infected group (Table 1). Moreover, in
concordance with the reduction in worm burden, liver
surface damage showed significant reduction (69 %)
compared to infected group (Table 1, Fig. 2b). Mice
injected with PAL+Qs did not show significant reduc-
tions in parasite burden or hepatic lesions (Table 1). A
significantly higher production of specific anti-rFh15
IgG, was observed in the rFhl5 vaccinated group
compared to the uninfected control group (Fig. 3b
and Additional file 1: Table S1). Also all infected
groups showed significant increase of IgG, IgGl
against SOSmAWA 8 weeks post-infection, but only
groups vaccinated with PAL+Qs+Fh15 showed statisti-
caly significant IgG2a increase (Fig. 4b and Additional
file 2: Table S2).

Vaccination with rFh15 induces more protection than rFh15b
against S. mansoni infection in BALB/c mice using ADAD

vaccination system with the immunomodulator AA0029

Vaccination with rFh15 formulated in ADAD with the syn-
thetic immunomodulator AA0029 (AA0029+Qs+rFh15) in-
duces significant reduction of worm burden (64 % in total
worms, 69 % in females and 58 % in males) in comparison
with infected controls (Table 1). Also significant decreases
in the number of eggs recovered from the liver (61 %) and
gut (77 %) of the vaccinated group were observed in com-
parison with the infected group agreeing with the reduction
in worm burden (Table 1). Moreover, there was a significant
reduction (67 %) of liver surface damage in vaccinated
mice compared to infected mice (Table 1, Fig. 2).
Vaccination with rFh15b obtained from 7. ni larvae
(AA0029+Qs+rFh15b) showed significant protection
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Fig. 3 Serum-specific IgG antibody levels by ELISA during
vaccination trials against nFh12, rfh15 or rFh15b. Data presented as
the mean + standard error of the mean. BALB/c mice were
vaccinated with their respective antigens formulated with the
adjuvant adaptation (ADAD) vaccination system with the natural
immunomodulator PAL or the synthetic AA0029 and challenged
with 150 cercariae of S. mansoni. a Vaccination using nFh12
formulated with PAL; b Vaccination with rFh15 using PAL; ¢
Vaccination using rFh15 or rFh15b formulated with AA0029. O.D.,
optical densities; *P < 0.05 compared to uninfected controls
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Uninfected Infected

PAL+Qs

PAL+Qs+nFh12

0.D. 492 nm

g6 O
gG1 |
lgG2a O

Uninfected Infected

PAL+Qs  PAL+Qs+rFh15

*

Uninfected Infected

AA0029+Qs

Fig. 4 Serum-specific IgG, IgG1 and IgG2a antibody levels by ELISA 8 weeks post-challenge against soluble adult worm antigens from S. mansoni
(SOSbAWA). Data presented as the mean + standard error of the mean. BALB/c mice were vaccinated with their respective antigens formulated
with the adjuvant adaptation (ADAD) vaccination system with the natural immunomodulator PAL or the synthetic AA0029 and challenged with
150 cercariae of S. mansoni. a Vaccination with PAL+Qs+nFh12+PAL; b Vaccination with PAL+Qs+rFh15; ¢ vaccination using AA0029+Qs+rFh15
and AA0029+Qs+rFh15b. O.D., optical densities; *P < 0.05 compared to uninfected controls

AA0029+Qs
+rFh15

AA0029+Qs
+rFh15b

in terms of recovered females (44 %), eggs confined
in liver (53 %), eggs in the gut (60 %) and hepatic le-
sions (75 %) However, no significant reduction was
observed in the recovery of total and male adult para-
sites (Table 1, Fig. 2). Adjuvant controls treated with
AA0029+Qs showed no protection against S. mansoni
challenge (Table 1). A significantly higher production
of specific anti-rFh15 and anti-rFh15b IgG was ob-
served in the vaccinated group compared to the unin-
fected control group at the time of infection and at
the end of the experiment particularly in mice vacci-
nated with rFh15 (Fig. 3c and Additional file 1: Table
S1). Also all infected groups showed significant in-
crease in of IgG, IgGl against SOSmAWA 8 weeks

post-infection but not IgG2a (Fig. 4c and Additional
file 2: Table S2).

Cell immune response induced by rFh15 and rFh15b
using ADAD vaccination system with AA0029 as an
immunomodulator

Cytokine levels were measured in cultured splenocyte
supernatants to analyse Thl, Th2, Treg and Th17 T-cell
responses. It was observed that mice immunised with
AA0029+Qs+rFh15 showed a significant increase in
TNFa, IL-6, IL-2 and IL-4 compared to untreated and
adjuvant controls (Table 2). Similarly, mice treated with
AA0029+Qs+rFh15b had high levels of TNFa, IL-2 and
IL-4 compared to untreated and adjuvant controls
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Table 2 Cytokine production (TNF-q, IL-6, IL-Ta IFNy, IL-2, IL-4, IL-10, IL-17) in supernatants of splenocyte cultures in untreated BALB/
¢ mice, treated with AA0029+Qs and immunised with AA0029+Qs+rFh15 and AA0029+Qs+rFh15b 2 weeks after immunisation
schedule. Data are presented as the mean + standard error of the mean. Kruskal-Wallis x?, degrees of freedom (df) and P-values, and

P-values in case of significant differences in pairwise comparisons

Cytokine Untreated AA0029+Qs AA0029+Qs+rFh15 AA0029+Qs+rFh15b Kruskal-Wallis
(pg/ml) (pg/m) (pg/ml) (pg/ml) X df p
TNFa 313+98 214+ 20 937+130 1,074 + 89 16.22 3 0.001
P=0.001° P=0.001°
IL-6 964+ 118 1318+ 137 2,755+ 226 1,613 +137 17.11 3 0.001
P=0.001° P=0001°
P<0001°
IL-1a 527 £65 368 £32 448 + 23 581+ 142
IFNy 543 +35 643+ 16 735+ 23 890+ 79 2040 3 < 0.001
P<0001°
P<0001°
IL-2 592 +74 774+ 84 1,025+ 47 888 + 41 10.27 3 0.016
P<0.001° P=0.001°
IL-4 1,138+ 101 1,508 + 82 2,078 £ 145 1,653+ 18 1691 3 <0.001
P<0.001° P<0001°
IL-10 481 +46 485+ 39 424+7 459 + 21
IL-17 1,724 +£167 2,048 £43 2,053 £46 1,988 + 268

3significant differences in comparison with untreated group; Significant differences compared to AA0029+Qs+rFh15 vaccinated group

(Table 2). Additionally, we observed less IL-6 production
and highly significant levels of I[FNy than mice vaccinated
with AA0029+Qs+rFh15 (see Table 2). We observed that
untreated mice and adjuvant controls (PAL+Qs) showed
similar cytokine patterns. Also, no differences were
found in IL-17 and IL-10 cytokine levels in either
rFh15- or rFhl15b-immunised mice. Regarding the
percentage of splenocyte populations, only mice vacci-
nated with AA0029+Qs+rFh15b showed a significant
reduction in B220 cells compared with untreated and
PAL+Qs treated animals (Table 3). No differences in
T and B splenocyte population were observed between
untreated mice and those treated with PAL+Qs.

Differential antibody patterns in mice vaccinated with
rFh15 vs rFh15b

Antibody response of rFh15- and rFhl5b-immunised
mice were studied to understand the intensity of the
humoral response elicited by the two recombinant pro-
teins, due to the importance of antibodies in resistance
to schistosomiasis and in an attempt to explain the dif-
ferential protection observed between these molecules.
Two weeks after the immunisation schedule, a signifi-
cantly higher production of specific IgG, 1gG1, IgG2a,
IgM, IgE anti-rFh15 or anti-rFh15b was observed in
AA0029+Qs+rFh15 and in AA0029+Qs+rFh15b vacci-
nated mice respectively, compared to untreated controls

Table 3 Percentages of splenocyte populations (CD45, CD4, CD8, CD197, CD62L, CD27, B220) in untreated BALB/c mice, treated
with AA0029+Qs and immunised with AA0029+Qs+rFh15 and AA0029+Qs+rFh15b 2 weeks after immunisation schedule. Data

presented as the mean + standard error of the mean

Cell population Untreated AA0029+Qs AA0029+Qs+rFh15 AA0029+Qs+rFh15b
(%) (%) (%) (%)

CD45 757+34 770£0.7 755+28 66.7+1.3

D4 211£13 20.7£04 21305 21.7£40

CD8 84+05 84+06 102+06 95+13

CD197 169+17 180+ 2.1 126+28 149+ 06

CD62L 232+32 20.1£50 172+09 152+50

CD27 194+19 180+ 16 169+08 16.7+36

B220 359+32 394+06 232+17 21.3+0.7%

*Significant differences in comparison with untreated group P < 0.001 (Kruskal-Wallis x> = 15.51, df=3, P=0.001)
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Fig. 5 Antibody detection (IgG, IgG1, IgG2a, IgE and IgM) against rFh15 or rFh15b 2 weeks after immunisation schedule in BALB/c mice. Data
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(Fig. 5 and Additional file 3: Table S3). Furthermore, we
observed significantly higher levels of IgG1 and IgM in
mice vaccinated with rFh15 than mice vaccinated with
rFh15b (Fig. 5 and Additional file 3: Table S3).

Discussion
A significant effort has been focused on schistosomiasis
vaccine development because of its potential ability to
control or eradicate the disease. FABP from F. hepatica
have demonstrated a valuable cross-protection against S.
bovis in experimental models [20-23]; similar effects
were reported for FABP of 14.6 kDa from F. gigantica
[24]. Also, the S. mansoni FABP Sml4 have reached
Phase I studies [19]. However, the immunoprotective po-
tential of F. hepatica FABPs has not been tested against
S. mansoni infection until now. In this study, we present
the immunoprotective potential of FABP obtained from
F. hepatica represented by the native form (nFh12) and
two recombinants (rFh15, rFh15b) against the S. man-
soni infection in BALB/c mice. These molecules have
been expressed in prokaryotic and eukaryotic systems.
The inbred mice have a biased Th2 genetic background,
resembling the immunological profile observed in people
living in endemic areas [36]. In this study, we used the
adjuvant adaptation (ADAD) vaccination system using
natural (PAL) and synthetic (AA0029) immunomodula-
tors developed by our research group for vaccination
against fasciolosis and schistosomiasis to improve limita-
tions of the classical Freund’s adjuvant [27, 30, 35, 37].
We observed a high protection in terms of worm re-
covery, eggs trapped in the tissues and hepatic damage
in mice vaccinated with the native nFh12 and the E. coli
recombinant rFh15. These results are close to those ob-
tained by vaccination against S. bovis with both antigens
formulated in ADAD vaccination system with PAL as

well as AA0029 [22, 23]. Our results are also comparable
to those shown using the FABP Sm14 obtained from S.
mansoni in experimental models [16] or using the F.
gigantica 14.6 kDa molecule [24]. Taken together, these
results reinforce the value of FABPs in schistosomiasis
vaccination development. We observed a high produc-
tion of specific IgG by ELISA against the three antigens
used for vaccination, indicating an intense immuno-
logical response. A vigorous humoral response is found
in natural resistance to infection possessed by people liv-
ing in hyperendemic areas [36, 38, 39] and experimental
models [40]. Also, vaccinated animals generated high
levels in both IgG and IgG1 against SOSmMAWA 8 weeks
post-challenge, but there was significant production of
IgG2a only using the natural immunomodulator PAL.
This effect has been observed in previous studies related
to the use of PAL in vaccination against F. hepatica and
S. bovis and its association with protection and downreg-
ulation of the dominant Th2 established in schisto-
somes or F. hepatica infections [22, 23, 41, 42]. An
appropriate adjuvant system able to induce an ad-
equate immune response is recognised as an import-
ant tool for developing vaccines. A good feature is
the specific adjuvant activity driving the immuno-
logical response together with the antigen [36, 43]. We did
not find any protection induced in mice treated either
with PAL+Qs or AA0029+Qs after challenge with S. man-
soni when compared with infection controls. This indicates
the specific activity of both adjuvants in our experiments.
Additionally, we observed that the antigen obtained
using baculovirus as vector (rFh15b) formulated with
AA0029 in ADAD showed high reductions of eggs in the
tissues and liver damage, but there were only small, non-
significant reductions in total worm burden compared to
AA0029+Qs+rFh15-vaccinated mice after the challenge.
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Then we studied the immune response induced with
rFh15 and rFh15b using the synthetic immunomodulator
AA0029 along E. coli recombinant rFh15 in the ADAD
vaccination system. We observed that it promoted an
early potent mixed Th1/Th2 pro-inflammatory immune
response with significant production of TNFa, IL-6, IL-2,
IL-4 and high level of specific antibodies. All of this could
explain the protection against S. mansoni challenge as
pointed out in previous studies of experimental pro-
tection against F. hepatica and S. bovis using AA0029
formulated in ADAD [23, 35, 36]. Vaccination with
the protein produced in 7. ni (AA0029+Qs+rFh15b)
showed high levels of TNF«, IL-6, IFNy IL-2, IL-4 and
antibodies, but there was a reduction in B220 cells percent-
age compared to untreated mice. Moreover, we observed
less IL-6, IgG1 and IgM in these mice compared to those
immunised with AA0029+Qs+rFh15. This indicates a po-
tent pro-inflammatory and Th1/Th2 mixed response with
an impairment of humoral response involving B memory
cells and immunoglobulins that could be responsible for
the low protection in terms of worm recovery [44]. An-
other possible explanation of the differences in protection
could be the post-translational modifications that occur in
the different expression systems involving glycosylation
and the fact that only one isoform was used [45].

Conclusions

In conclusion, our data demonstrated the ability of FAPB
obtained from F. hepatica to induce protection against
infections with S. mansoni in BALB/c mice. Also the use
of PAL seems to induce an increase in Thl-like immune
response during infection. ADAD formulation with the
immunomodulator AA0029 showed an intense pro-
inflamatory and mixed Th1l/Th2 immune response.
These molecules may have valuable effects leading to re-
duction of pathology and transmission of the disease.
Our results warrant further studies in other animal
models closer to humans to state the actual protection
ability of FABP against S. mansoni infection.
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