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Abstract

Machine learning (ML) is poised as a transformational approach uniquely positioned to dis-

cover the hidden biological interactions for better prediction and diagnosis of complex dis-

eases. In this work, we integrated ML-based models for feature selection and classification

to quantify the risk of individual susceptibility to asthma using single nucleotide polymor-

phism (SNP). Random forest (RF) and recursive feature elimination (RFE) algorithm were

implemented to identify the SNPs with high implication to asthma. K-nearest neighbor (kNN)

and support vector machine (SVM) algorithms were trained to classify the identified SNPs

whether associated with non-asthmatic or asthmatic samples. Feature selection step

showed that RF outperformed RFE and the feature importance score derived from RF was

consistently high for a subset of SNPs, indicating the robustness of RF in selecting relevant

features associated with asthma. Model comparison showed that the integration of RF-SVM

obtained the highest model performance with an accuracy, precision, and sensitivity of

62.5%, 65.3%, and 69%, respectively, when compared to the baseline, RF-kNN, and an

external MeanDiff-kNN models. Furthermore, results show that the occurrence of asthma

can be predicted with an Area under the Curve (AUC) of 0.62 and 0.64 for RF-SVM and RF-

kNN models, respectively. This study demonstrates the integration of ML models to aug-

ment traditional methods in predicting genetic predisposition to multifactorial diseases such

as asthma.

Introduction

Risk prediction of complex diseases such as asthma proves to be challenging due to the combi-

natorial effects of environmental and genetic factors. The major challenges are: 1) obtaining a
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sufficient sample size to develop univariate or multivariate predictor and, 2) equipping the pre-

dictor with biological variables associated with complex disease. In general, biological model-

ling studies for disease risk assessment using genetic information have been supplemented by

several technologies and study designs. For example, genome-wide association studies

(GWAS) use single-nucleotide polymorphism (SNP), a single-base pair change in the DNA

sequence, as biomarkers to locate genetic regions associated with a particular trait. Recent

GWAS [1–5] identified SNPs linked to candidate genes implicated to asthma. However,

GWAS only accounts for a small fraction of individual traits, while heritability related to com-

plex diseases remains unresolved, thus, the emergence of “mystery of missing heritability”

phenomenon. Based on [6, 7], the estimated missing heritability of asthma from twin studies

ranges from 35% to 70%.

One possible explanation for the “mystery of missing heritability” is the compounding bio-

logical interactions inherent to a complex disease [8]. Most of the biological modeling studies

[9–11] which established SNP association with asthma still adopt the traditional statistical tests

on individual SNP subject to a certain threshold, consequently neglecting the SNP-SNP inter-

actions. Machine learning has the potential to unravel complex genetic and environment inter-

actions constituting a disease by considering SNP-SNP interactions in model development. In

genomic analysis, machine learning is employed to identify genetic variants and predict indi-

vidual’s susceptibility to disease based on the identified biomarkers [12]. Despite the limited

attempts, recent works have shown that machine learning-based approach augments the anal-

ysis on asthma at the genomic level, i.e., from genotype-phenotype association to phenotype

prediction. For instance, Xu et al. [12] utilized random forest (RF) algorithm to identify rele-

vant SNPs and to classify asthma case and control samples based on clinical data and SNPs.

Due to the well-known curse of dimensionality inherent to the SNP data, i.e., higher feature

size compared to sample size, constructing accurate machine learning-based predictive models

for complex disease presents a challenge [12]. One way to circumvent the curse of dimension-

ality problem is to integrate various machine learning algorithms. The general approach is to

employ feature selection method on the SNP data before classifying samples using machine

learning-based classifiers. For example, Mieth et al. [13] used support vector machine (SVM)

to select relevant SNPs associated with breast cancer. SVM along with Naive Bayes and deci-

sion trees have also been used to identify breast cancer cases using SNPs selected via informa-

tion gain [14]. Furthermore, mean difference calculation and k-nearest neighbor (kNN) have

also been employed to quantify SNP relevance and to perform classification task on the breast

cancer dataset [15], respectively.

In this work, we developed a novel machine learning-based approach to quantify the indi-

vidual’s susceptibility to asthma based on SNP data. We implemented a two-step approach

which involves feature selection and classification steps. The RF and RFE were utilized to select

SNPs highly associated to asthma, while SVM and kNN were employed to quantify the pro-

pensity of an individual to develop asthma. The predictive models were evaluated using the fol-

lowing metrics: accuracy, sensitivity, precision, and area under the curve (AUC). In the next

section, we describe the procedure of data collection, preprocessing, SNP selection, and classi-

fication. Finally, the results of integrating feature selection and classification methods will be

compared with baseline and external models.

Materials and methods

Data collection and preprocessing

The SNP data was obtained from openSNP database [16], a public repository from 23andMe,

deCODEme, and FamilyTreeDNA. The raw dataset is composed of an MS Excel file
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containing phenotypes information of users, and text files containing SNP data encoded in

Variant Call Format (VCF). Each text file contains meta-information lines and a header line

with the following field names: SNP ID, chromosome number, position, and genotype. Pheno-

types irrelevant to the study were eliminated and users with incomplete report on asthma were

discarded. The cleaned data is composed of 143 samples which represents the users with com-

plete asthma report, 1,088,991 SNPs as features of each sample, and class column that labels

each sample based on their phenotype (non-asthmatic or asthmatic).

We adopted similar quality control procedure from [15] which involves missing call filter-

ing and deviation from Hardy-Weinberg equilibrium to select the SNPs. For the missing call

filtering, we formulated criteria based on the quality and characteristic of the collected data.

The first criterion excludes SNPs whose percentage of present samples is� 98%. For the sec-

ond criterion, the samples were ranked based on the percentage of present SNP in which 90%

of the samples were retained. The Hardy-Weinberg equilibrium principle states that in an infi-

nitely sized population with no selection, migration and mutation, random mating will bring

about constant allele and genotype frequencies across generations. Genotypes at a bi-allelic

locus can then be predicted to have the following distribution of frequencies:

p2 þ 2pqþ q2 ¼ 1 ð1Þ

where p2 is the frequency of homozygotes for allele p, 2pq is the frequency of heterozygotes for

alleles p and q, and q2 is the frequency of homozygotes for allele q. SNPs that deviated from

Hardy-Weinberg equilibrium due to selection, population admixture, cryptic relatedness, gen-

otyping error and genuine genetic association [17] were excluded in the dataset. Chi-square

test was implemented using Hardy-Weinberg package in R [18] on allele frequencies of each

SNP from the control samples, wherein SNPs with p − value< 0.001 were discarded. After

data preprocessing and quality control, 128 samples (57 samples with asthma condition during

childhood and adulthood and 71 control samples are unaffected with asthma) were retained.

A total of 176,288 SNPs was retained with genotypes comprised of minor and major alleles.

Finally, genotypic encoding was implemented wherein homozygous, heterozygous, and vari-

ant homozygous SNPs were represented by 1, 2, 3, respectively.

Feature selection

Disease detection driven by high-dimensional data entails the use of feature selection method

to identify the features highly associated to the phenotype [19]. In this study, RF algorithm

which involves building multiple decision trees based on relevant SNPs was used. RF outper-

forms other feature selection methods in terms of robustness as a result of its ensemble trait of

measuring the predictive importance of each feature to build efficient decision trees [19]. The

RF algorithm was trained using the following input matrix,

DN ¼ f ð X1;Y1Þ; ð X2;Y2Þ; . . . ; ð XN ;YNÞg ð2Þ

where N is the number of samples, and Xi and Yi are the SNP values and the output class of ith

sample, respectively. For each data point, an out-of-bag error (OOBE) and the mean over the

forest were calculated. After training, the jth SNP was permuted among the training data and

the difference the OOBE before and after permutation was calculated. To obtain the impor-

tance score of the jth SNP, the mean of the differences were calculated and normalized.

Model construction

To predict the individual’s susceptibility to asthma, two different integrated machine learning

models were constructed. These models are RF-kNN and RF-SVM which both employed RF
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as the feature selection algorithm to identify the relevant SNPs. Subsequently, the selected

SNPs were used as inputs to kNN and SVM classifiers.

k-Nearest Neighbor (kNN). kNN algorithm is a nonparametric lazy learner due to the

absence of a training phase when performing classification tasks. In this work, the kNN algo-

rithm was implemented on the SNP data to construct a predictive model that classifies non-

asthmatic and asthmatic samples. A particular set of SNPs associated to a sample is represented

as a continuous variable that can be plotted into the feature space. Hence, given a sample with

SNP as features and an unknown label, the kNN algorithm gives prediction by performing a

majority voting on the output class of the sample’s k nearest neighbors. For further discussion

of kNN using SNP data, refer to [15].

To implement kNN, we define Xi be the p-dimensional input vector of the ith sample, and is

defined as,

Xi ¼ ð SNPi1; SNPi2; . . . ; SNPipÞ; i ¼ 1; 2; . . . ; p ð3Þ

where p is the total number of SNPs. The corresponding output vector Yi is given by,

Yi 2 f 0; 1g; i ¼ 1; 2; . . . ;N ð4Þ

where N is the total number of samples. The dataset are plotted on a multi-dimensional feature

space with their corresponding class label. To determine the class of an unseen sample U, the k
nearest neighbor is determined by calculating the Euclidean distance d(U, Xi) relative to the

other labeled samples. The Euclidean distance between U and Xi is given by,

dðU;XiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

j¼1

ðUj � XijÞ
2

v
u
u
t ð5Þ

where j represents a certain SNP. We note that our selection of Euclidean distance as a similar-

ity measure is motivated by numerous literatures [14, 15, 20] which extensively used this met-

ric to analyze SNPs. Furthermore, to make our work more comprehensive, we tested several

distance metrics and compared their performance with the Euclidean distance (see S2 Table).

Support vector machine (SVM). SVM is a learning algorithm used in tasks such as non-

linear classification [11, 13, 14], function estimation, and density estimation. The learning

algorithm constructs a hyperplane that provides maximum separation or margin, between

classes. For detailed discussion of SVM implementation on SNP data, refer to [13, 14].

The construction of the classification model can be viewed as an optimization problem. To

implement SVM, the training vector representing SNP values and its corresponding label is

given by,

Di ¼ fð Xi;YiÞg
N
i¼1

ð6Þ

where N is the total number of samples, and Xi and Yi represent the SNP values and class label

of the ith sample, respectively. The algorithm minimizes,

1

2
kwk2

þ C
Xn

i¼1

εi ð7Þ

subject to the following condition,

Yiðw
TXi þ bÞ � 1 � εi; εi � 0; 8i ð8Þ

where w is learning weight vector, b is the bias, ε is the error term, and C is the tradeoff
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parameter between the error and margin. After finding the optimal solution, the function,

fðzÞ ¼ sgnðwTz þ bÞ ð9Þ

is used to predict the class of a unseen sample. The sign of the function is given by,

fðzÞ 2 f � 1;þ1g ð10Þ

wherein positive (+) and (-) values indicate non-asthmatic and asthmatic, respectively.

Hyperparameter selection and performance evaluation

One crucial step in constructing a machine learning predictive model is the selection of hyper-

parameters to achieve the highest model performance. Shown in Table 1 are the tested hyper-

parameter and their corresponding test values to train and optimize the machine learning

algorithms.

Cross-validation techniques were employed to estimate the model performance on the

unseen data. The RF classifier was evaluated using stratified k-fold cross validation (k = 10)

which ensures that each fold contains roughly the same number of samples per class.

RF-SVM and RF-kNN were evaluated using leave-one-out cross-validation (LOOCV),

which discards a single sample to be used as a test set before training the model on the

remaining samples; hence, k is equal to the number of samples (k = 128). The performance

metrics used to evaluate the models were accuracy (ratio of correctly predicted observations

to the total observations), precision (ratio of correctly predicted positive observations to the

total predicted positive observations), and sensitivity (ratio of correctly predicted positive

observations to the actual positive observations). The AUC—receiver operating characteris-

tic (ROC) curve is another measure of performance of a machine learning classifier model.

The ROC is a probability curve while the AUC represents the capability of the model to dis-

tinguish among classes. The ROC curve is constructed by plotting the true positive rate ver-

sus false positive rate.

To further evaluate the results, we compare the integrated models with baseline model and

an external model [15] implemented for breast cancer prediction. Scripts were developed

using Python programming language and simulations were executed in a machine with 2.3

GHz Intel Core i5 processor, 8Gb random access memory (RAM), and 2 cores.

Table 1. List of hyperparameter values.

Method Hyperparameter Range of values

Random

Forest

optimum number of trees in the forest, n_estimators {20, 30, 40, 50, 60, 70, 80, 90, 100, 110,

120, 130, 140, 150, 160, 170, 180, 190,

200}

maximum number of features considered for splitting a

node to achieve least uncertainty when creating a tree,

max_features

{400, 500, 600}

SVM kernel {linear, sigmoid, rbf, poly}

regularization parameter, C {1, 10, 100, 1000}

tolerance, ε {0.002, 0.1, 0.001, 0.0001}

kNN number of neighbors, k 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,

27, 29, 31, 33, 35

https://doi.org/10.1371/journal.pone.0225574.t001
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Results and discussion

Feature selection

We optimized the hyperparameters to obtain the best RF architecture. Results show that the

highest performance having accuracy, precision, and sensitivity of 68.75%, 83.3%, and 68%,

respectively, is obtained when n_estimators = 40 and max_features = 400. This optimum RF

architecture is then used to select the SNPs which will serve as input to train the SVM and

kNN classifiers. Training phase revealed that the highest accuracy for RF-SVM and RF-kNN

were obtained when the optimum number of features are 310 and 400, respectively, see Fig 1.

To further evaluate the performance of RF in selecting highly associated SNPs, we imple-

mented recursive feature elimination (RFE) in combination with SVM and kNN. As a feature

selection method, RFE initially builds a model on the entire dataset and computes feature

importance score for each predictor. For the next iteration, the predictor with the lowest fea-

ture importance score is omitted from the dataset that will be used to rebuild the model. Result

shows (see Table 2) that RF when integrated to SVM and kNN classifiers has a better perfor-

mance as a feature selection method compared with RFE.

Shown in Fig 2 is the feature importance scores of top 20 SNPs. Table 3 shows the charac-

teristics of the top five SNPs that were selected by the RF based on feature importance score.

Based on the feature importance score, the top five SNPs were consistently selected by RF in

every fold during the cross-validation procedure. This result is indicative that integration of

Fig 1. Accuracy vs. number of SNP for SVM (left) and kNN (right).

https://doi.org/10.1371/journal.pone.0225574.g001

Table 2. Comparison of feature selection methods.

Model Accuracy (%)

RF-SVM 62.17

RF-kNN 61.70

RFE-SVM 50.90

RFE-kNN 49.68

https://doi.org/10.1371/journal.pone.0225574.t002
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RF with classifiers is robust in selecting important SNPs. Favoring a robust feature selection

algorithm apart from classification performance is highly desirable to further gain insight on

the SNP data. Moreover, the robustness of the RF can be attributed to its stability in selecting

important features, i.e., RF is insensitive to perturbations in the dataset [19].

While the asthma-associated SNPs selected by RF has low feature importance scores, it is

interesting to note that prior studies have not identified these SNPs to be associated to asthma,

nor included in the 19 asthma-associated SNPs [22] present in the dataset. This observation is

attributed to: 1) various sequencing platforms were used which may lead to the exclusion of

Fig 2. Feature importance score of top 20 SNPs.

https://doi.org/10.1371/journal.pone.0225574.g002

Table 3. Characteristics of top five SNPs selected by RF based on importance score [21].

SNP ID Chromosome

Location

Gene Functional

Consequence

GeneCard Summary

rs7541950 1:147903855 GJA8 intron variant GJA8 (Gap Junction Protein Alpha 8) is a Protein Coding gene. Diseases associated with GJA8

include Cataract 1, Multiple Types and Cataract Microcornea Syndrome. Among its related

pathways are Development Slit-Robo signaling and Vesicle-mediated transport. Gene

Ontology (GO) annotations related to this gene include channel activity and gap junction

channel activity

rs7541956 1:111366426 LOC105378904 intron variant RNA Gene, and is affiliated with the ncRNA class

rs7542025 1:40643890 RIMS3 intron variant RIMS3 (Regulating Synaptic Membrane Exocytosis 3) is a Protein Coding gene. Gene

Ontology (GO) annotations related to this gene include ion channel binding

rs7542028 1:168718584 DPT intron variant DPT (Dermatopontin) is a Protein Coding gene. Diseases associated with DPT include

Commensal Bacterial Infectious Disease and Anisometropia

rs7542082 1:118617643 NA NA NA

https://doi.org/10.1371/journal.pone.0225574.t003
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lung-function associated SNPs or affect the phenotypic variance within the population; 2) as

demonstrated in [23–26], RF takes into account SNP-SNP interactions while the traditional

approach only performs direct genotype-phenotype association testing. Considering the result

of our feature selection scheme, in which the selected SNPs are currently excluded in the list of

known SNPs associated to asthma [22], we posit that the integration method can be utilized as

a preliminary method to discover new biomarkers associated with complex diseases.

Model comparison

The SVM and kNN were implemented on both entire and selected dataset to establish baseline

models. Furthermore, a more stringent test on the performance of SVM and kNN classifiers

were implemented on the 19 asthma-associated SNPs. Considering the higher accuracy of RF

as a feature selection method when integrated to SVM and kNN as discussed above, we com-

pare the performance of RF-SVM and RF-kNN with the baseline model. Table 4 shows that

the integrated models obtained higher classification performance than the baseline models.

To further evaluate the performance of the integrated models, MeanDiff-kNN derived

from [15] was implemented on the dataset. Fig 3 shows the comparison of the three inte-

grated models RF-SVM, RF-kNN, MeanDiff-kNN. The RF-SVM attained the highest perfor-

mance among the models with an accuracy, precision, and sensitivity of 62.17%, 65.3%, and

69%, respectively. We note that the baseline model [15] previously proposed for breast can-

cer detection when applied to the asthma dataset achieved 55% accuracy. Similar perfor-

mance metrics percentage of 61.7% and 55% were attained for RF-kNN and MeanDiff-kNN,

respectively. The SVM outperformed other classifiers in predicting asthma susceptibility by

considering the interactions among SNPs to construct a more suitable predictive model tai-

lored to the input data [13, 14, 27]. Compared to other machine learning methods, SVM is

very powerful in detecting intricate trends and patterns in complex genomic dataset [20].

While SVM has better performance in high-dimensional data with few samples, kNN works

well with data points in low-dimensional space. Shown in Table 5 is the optimal hyperpara-

meters for each model.

Fig 4 shows the ROC curves of RF-SVM, RF-kNN, and MeanDiff-kNN. Among the inte-

grated models, RF-kNN attained the highest AUC of 0.64. The AUC of the RF-SVM and RF-

kNN were comparable to the results in [12] which reported an AUC of 0.66 using 160 SNPs

and clinical data to predict severe asthma exacerbations. Despite the absence of clinical data in

the predictor variables, our integrated models obtained good performance in distinguishing

case from control samples. Moreover, the integrated models achieved good prediction results,

notwithstanding the limited sample size. This further indicate that the combination of

machine learning algorithms used in the proposed models are able to predict asthma suscepti-

bility with satisfactory performance despite the limited biological variables used in the model

construction.

Table 4. Comparison of performance between RF-SVM and RF-kNN to the baseline SVM and kNN models. The

selected SNPs for Baseline SVM and kNN refers to the 19 asthma-associated SNPs.

Models Accuracy (%)

Entire Dataset Selected SNPs

Baseline SVM 52.83 51.81

Baseline kNN 49.69 49.09

RF-SVM 56.30 62.17

Baseline kNN 54.70 61.70

https://doi.org/10.1371/journal.pone.0225574.t004
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Conclusion

We developed machine learning-based predictive models which utilized SNP data to quantify

the individual susceptibility to asthma. More precisely, we employed an integrated approach

consisting of a feature selection step to identify the SNPs highly associated to asthma, and a

classification step to predict asthma susceptibility. Results show that the integrated RF-SVM

model achieves the highest accuracy, precision, sensitivity, and AUC compared to RF-kNN

and baseline models. Furthermore, this study demonstrated that the integration of various

machine learning methods is a well-suited approach to investigate high dimensional SNP

data for genotype-phenotype association and phenotype prediction. To a large extent, we have

shown how machine learning approach can augment the insights derived from GWAS in ana-

lyzing massive and complex biological data obtained from next generation sequencing (NGS)

Fig 3. Performance of the three ML models (RF-SVM, RF-kNN, MeanDiff-kNN).

https://doi.org/10.1371/journal.pone.0225574.g003

Table 5. Optimal hyperparameters determined for the models.

Method Hyperparameter values

SVM kernel = rbf

regularization parameter, C = 100

tolerance, ε = 0.001

number of selected SNP = 310

kNN number of nearest neighbors, k = 7

number of selected SNP = 400

https://doi.org/10.1371/journal.pone.0225574.t005
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platforms. The integrated approach can be naturally extended on a wide variety of biological

data such genetic mutations, copy number variations as well as clinical data which may take

into account environmental factors to come up with a more holistic understanding of genetic

etiology of complex diseases.

Source code

The Python codes as well as the SNP data used in this study is available in this github

repository.

Supporting information

S1 Table. Feature importance table.

(PDF)

S2 Table. Distance metrics performance table.

(PDF)

Author Contributions

Conceptualization: Joverlyn Gaudillo, Jae Joseph Russell Rodriguez, Allen Nazareno, Lei Rigi

Baltazar, Julianne Vilela, Jason Albia.

Data curation: Joverlyn Gaudillo, Rommel Bulalacao, Jason Albia.

Formal analysis: Joverlyn Gaudillo, Jae Joseph Russell Rodriguez, Allen Nazareno, Lei Rigi

Baltazar, Julianne Vilela, Jason Albia.

Funding acquisition: Mario Domingo.

Investigation: Joverlyn Gaudillo, Jae Joseph Russell Rodriguez, Jason Albia.

Methodology: Joverlyn Gaudillo, Jae Joseph Russell Rodriguez, Lei Rigi Baltazar, Julianne

Vilela, Jason Albia.

Project administration: Mario Domingo, Jason Albia.

Resources: Jason Albia.

Fig 4. ROC Curves of RF-SVM (a), RF-kNN (b), and MeanDiff-kNN (c).

https://doi.org/10.1371/journal.pone.0225574.g004

Machine learning in asthma prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0225574 December 4, 2019 10 / 12

https://github.com/jdgaudillo/SNP-ML
https://github.com/jdgaudillo/SNP-ML
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225574.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225574.s002
https://doi.org/10.1371/journal.pone.0225574.g004
https://doi.org/10.1371/journal.pone.0225574


Software: Rommel Bulalacao, Jason Albia.

Supervision: Mario Domingo, Jason Albia.

Validation: Joverlyn Gaudillo, Jason Albia.

Visualization: Jason Albia.

Writing – original draft: Joverlyn Gaudillo, Jae Joseph Russell Rodriguez, Allen Nazareno,

Julianne Vilela, Jason Albia.

Writing – review & editing: Joverlyn Gaudillo, Jae Joseph Russell Rodriguez, Allen Nazareno,

Julianne Vilela, Jason Albia.

References
1. Hancock DB, Romieu I, Shi M, Sienra-Monge JJ, Wu H, Chiu GY, et al. Genome-wide association

study implicates chromosome 9q21.31 as a susceptibility locus for asthma in Mexican children. PLoS

Genet. 2009; 5 (8): e1000623. https://doi.org/10.1371/journal.pgen.1000623 PMID: 19714205

2. Himes BE, Hunninghake GM, Baurley JW, Rafaels NM, Sleiman P, Strachan DP, et al. Genome-wide

association analysis identifies PDE4D as an asthma-susceptibility gene Genet. 2009; 84(5): 581–593.

3. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, Depner M, et al. Genetic variants reg-

ulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007; 448(7152): 470–

473. https://doi.org/10.1038/nature06014 PMID: 17611496

4. Li X, Howard TD, Zheng SL, Haselkorn T, Peters SP, Meyers DA, et al. Genome-wide association

study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions. J Allergy Clin Immunol. 2010; 125

(2): 328–335.e311. https://doi.org/10.1016/j.jaci.2009.11.018 PMID: 20159242

5. Sleiman PM, Flory J, Imielinski M, Bradfield JP, Annaiah K, Willis-Owen SA, et al. Variants of

DENND1B associated with asthma in children. N Engl J Med. 2010; 362 (1): 36–44. https://doi.org/10.

1056/NEJMoa0901867 PMID: 20032318

6. Duffy DL, Martin NG, Battistutta D, Hopper JL, Mathews JD. Genetics of asthma and hay fever in Aus-

tralian twins. Am Rev Respir Dis 1990; 142:1351–1358. https://doi.org/10.1164/ajrccm/142.6_Pt_1.

1351 PMID: 2252253

7. Nieminen MM, Kaprio J, Koskenvuo M. A population-based study of bronchialasthma in adult twin

pairs. Chest 1991; 100:70–75. https://doi.org/10.1378/chest.100.1.70 PMID: 2060393

8. König IR, Auerbach J, Gola D, Held E, Holzinger ER, Legault MA, et al. Machine learning and data min-

ing in complex genomic data—a review on the lessons learned in Genetic Analysis Workshop 19.

InBMC genetics 2016 Dec (Vol. 17, No. 2, p. S1). BioMed Central.

9. Savenije OE, John JM, Granell R, Kerkhof M, Dijk FN, de Jongste JC, et al. Association of IL33–IL-1

receptor—like 1 (IL1RL1) pathway polymorphisms with wheezing phenotypes and asthma in childhood.

Journal of Allergy and Clinical Immunology. 2014 Jul 1; 134(1):170–7. https://doi.org/10.1016/j.jaci.

2013.12.1080 PMID: 24568840

10. Forno E, Celedón JC. Predicting asthma exacerbations in children. Current opinion in pulmonary medi-

cine. 2012 Jan; 18(1):63. https://doi.org/10.1097/MCP.0b013e32834db288 PMID: 22081091

11. Spycher BD, Henderson J, Granell R, Evans DM, Smith GD, Timpson NJ, et al. Genome-wide predic-

tion of childhood asthma and related phenotypes in a longitudinal birth cohort. Journal of allergy and

clinical immunology. 2012 Aug 1; 130(2):503–9. https://doi.org/10.1016/j.jaci.2012.06.002 PMID:

22846752

12. Xu M, Tantisira KG, Wu A, Litonjua AA, Chu JH, Himes BE, et al. Genome Wide Association Study to

predict severe asthma exacerbations in children using random forests classifiers. BMC medical genet-

ics. 2011 Dec; 12(1):90. https://doi.org/10.1186/1471-2350-12-90 PMID: 21718536

13. Mieth B, Kloft M, Rodrı́guez JA, Sonnenburg S, Vobruba R, Morcillo-Suárez C, et al. Combining multiple
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