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powerful analytical tools in cardiovascular research. Tran-
scriptomics can analyze mRNA abundance, which cannot 
be identical to the corresponding protein abundance, as pro-
tein abundance is influenced by the balance between syn-
thesis and degradation rates, protein processing, and micro 
RNA interference [1–5]. This is particularly pertinent to 
extracellular matrix proteins such as collagen or elastin, 
which have long half-lives [6]. These proteins support the 
biological functions of the heart and vessels, including the 
electrophysiology, contractility, and response to surgical 
insult. The proteome of diseased tissues such as the aortic 
aneurysmal wall, calcific aortic valve, or infarcted myocar-
dium can reflect serious changes in protein abundance or 
protein modifications: namely, post-translational modifica-
tion [PTM] induced by disease. Many studies have identi-
fied potential biomarkers or panels of biomarkers for aortic 
aneurysms using this technology; however, surgeons who 
plan to use mass spectrometric measurement, including 
protein identification and quantification, for their research 
may find it difficult to understand. In this review, we dem-
onstrate recent scientific evidence identified through car-
diovascular proteomics.

Proteomic strategies

There are two major proteomic strategies: gel-based proteom-
ics and gel-free proteomics. Both these separation methods are 
combined with either top-down or bottom-up mass spectrom-
etry (MS) [2–4, 7–9]. In gel-based proteomics, protein extracts 
are usually separated by 2-dimensional gel electrophoresis 
(2-DE) or 2-dimensional fluorescence difference gel electro-
phoresis (2D-DIGE). Selected protein spots are excised and 
analyzed by tandem mass spectrometry (MS). Gel-based pro-
teomics can visually demonstrate the separated protein spots 
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and quantify protein abundance at the protein level; however, 
2-DE has a major limitation in that the gel resolves only pro-
teins larger than 150 kDa within a narrow pI range (pH 4–pH 
9), indicating a narrow dynamic range of 104 [1, 4, 10]. In gel-
free bottom-up analysis, protein extracts are digested into pep-
tides using trypsin and are fractionated by liquid chromatogra-
phy (LC) before tandem MS, implying that protein abundance 
is quantified at the peptide level and that a partial sequence of 
proteins can be recovered and identified [7, 9] (Fig. 1). How-
ever, in a newly developed top-down MS, protein is analyzed 
directly by MS without digestion into peptides and thereby 
can provide a full sequence protein recovery, which is useful 
in detecting PTM and isoform composition (so called “proteo-
form”) [3, 7, 9]. Unlike the well-established bottom-up prot-
eomics, the top-down proteomics is still being developed and 
necessitates improving protein enrichment and purification, 
sensitivity and throughput [7, 9, 11]. Currently, bottom-up MS 

is superior to top-down MS in terms of protein identification 
and quantification; however, top-down MS is superior to bot-
tom-up MS in terms of protein modification due to complete 
sequence coverage of the protein [7–9].

The very wide dynamic range of protein abundance is 
estimated at 106 for cells and tissue, and 1012 for plasma [1, 
12]. Targeted proteomics has developed progressively to ana-
lyze the subcellular fractions or extracellular matrix, aiming 
to reduce sample complexity and thereby detect low-abun-
dance proteins [11, 13]. This strategy has succeeded in iden-
tifying many PTMs using several enrichment methods [14].

Post‑translational modification and cross‑talk

In the heart, much of the complexity of protein function 
arises from PTMs [15]. Van Eyk found that 62 % of 5079 

Fig. 1  Principal differences 
between top-down (a) and 
bottom-up (b) proteomics. 
a In bottom-up proteomics, 
protein extracts are separated by 
2-dimensional gel electrophore-
sis (2-DE) and excised gels are 
digested with chemical tags or 
separated by liquid chromatog-
raphy (LC) after protein extracts 
are digested with chemical tags. 
Labeled peptides are analyzed 
and isolated by mass spectrom-
etry (MS) and fragmented by 
tandem mass spectrometry (MS/
MS) to identify the protein from 
the database. Consequently, 
hundreds of proteins can be 
identified and quantified with 
significant confidences but the 
sequence coverage of proteins 
is far from complete sequence 
coverage. (b) In top-down prot-
eomics, a complex sample, such 
as a tissue sample, is separated 
by 2-DE or LC and analyzed 
directly by MS/MS without 
digestion. Thereby, this strategy 
can analyze the protein’s full 
sequence coverage
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human cardiac proteins studied had at least one PTM, 
wherein phosphorylation accounts for more than 90 % of 
all single modification proteins [15]. Acetylation is the next 
frequently identified PTM, followed by N- and O-linked 
glycosylation [15]. These modifications have been reported 
to occupy the same amino acid residue or adjacent-site resi-
due, and thereby interplay or cross-talk with each other to 
regulate cardiac function [14–18].

Abdominal aortic aneurysm and biomarker search 
using blood sample proteomics

Abdominal aortic aneurysm (AAA) is an asymptomatic dis-
order, found most commonly in the elderly, which is usually 
fatal if it ruptures. The risk factors for AAAs include old 
age, male gender, cigarette smoking, and a family history of 
aneurysms. Therefore, screening for this catastrophic disease 
is recommended and has proven to be safe and cost-effec-
tive due to high sensitivity and specificity [19, 20]. A sys-
tematic review demonstrated that serum elastin peptides and 
plasmin-antiplasmin complex were strongly associated with 
AAA expansion and rupture [21]. A recent review and meta-
analysis concluded that plasma d-dimer may have a future 
role as a biomarker [22]. Plasma or serum proteomic studies 
have demonstrated many other potential biomarkers for the 
presence of AAA, aneurysm progression, and rupture risk 
(Table 1). Six proteins (MMP9, CRP, HP, SERPINA1, SER-
PIN4, PRDX1) have been identified by proteomic studies.

Two protease inhibitors, α-1-antitrypsin (SERPINA1) 
and kallistatin (SERPINA4), have been newly identified as 
potential biomarkers [23–27]. Furthermore, PRDX1, CAT 
and HP are involved in redox regulation, or are antioxidant 
proteins, and were detected as possible biomarker can-
didates from the red blood cell membrane, cultured mac-
rophages, and the serum or plasma of AAA patients [24, 26, 
28–31]. However, low-abundance proteins like cytokines 
are difficult to quantify by conventional untargeted prot-
eomic strategies because of the very wide dynamic range of 
protein abundance in plasma or serum. At present, immu-
nodepletion of the abundant prions (albumin and immuno-
globulin) is commonly adapted to reduce the wide dynamic 
range of protein abundance [1, 10, 11].

Pathogenesis of aortic aneurysm and proteomic 
analysis

Several mechanisms have been reported to be relevant in 
the pathogenesis of AAA formation: namely, proteolytic 
degradation caused by the imbalance between several 
proteases such as matrix metalloproteinases, cathepsins, 
and serine proteases, and their inhibitors; vascular smooth 

muscle cell apoptosis and oxidative stress; inflammation 
and immune responses with leukocyte infiltration modu-
lated by cytokines (IL-1β) or chemokines; biomechanical 
stress; and genetic components, reported to be present in 
20 % of AAA patients [32–34].

Proteomic studies with abdominal aortic wall tissue or 
intraluminal thrombus (ILT)-conditioned medium have dem-
onstrated many significantly changed proteins (Table 2). 
These studies have identified PRDX1, PRDX2, thrombos-
pondin (THBS1 or 2), FGA, ACTB, VTN, ANXA2, ANXA5, 
GAPDH, and COL6A3. Peroxiredoxins (PRDX1, PRDX2) 
are antioxidant proteins upregulated in ruptured aneurysmal 
wall tissue and identified by proteomic analysis of intralumi-
nal thrombus in which reactive oxygen species and oxidative 
stress are enhanced, contributing to aneurysm formation [29, 
35, 36]. The C3 and complement pathway are identified by 
three proteomic studies [29, 36, 37]. Two studies reported a 
decreased level of C3 in ILT. However, Martinez-Pinna et al. 
[36] demonstrated increased levels of C3 and proteolytic 
fragments (C3a/3c/dg), validated by western blot and immu-
nostaining, and found that C3a activates polymorphonuclear 
cells. Another proteomic study identified increased expres-
sion of C4 beta chain in the aneurysmal wall and detected the 
massive deposition of C1q component by immunohistochem-
istry [37]. Vitronectin (VTN) is downregulated in the aneu-
rysmal wall. This protein is a cell adhesion and spreading 
factor and an important member of the integrin family, gener-
ally known as an inhibitor of the formation of the membrane 
attack pathway (the formation of c5b-9 [38]), and is reported 
to protect matrix proteins against degradation by pro-
teases through binding protease inhibitor PI-1 and clusterin 
[39]. The annexin family proteins, ANXA1, ANXA2, and 
ANXA5, are also downregulated in the aneurysmal wall and 
the inferior mesenteric vein of AAA patients. These calcium-
regulated membrane-binding proteins have been reported to 
have the antithrombotic property of reducing thrombus for-
mation, and thereby regulating the intraluminal thrombus in 
AAAs [40, 41]. Collagen alpha-3 (VI) chain (COL6A3) was 
identified in aneurysmal wall tissue in two proteomic stud-
ies [39, 42] and downregulated in acute dissecting thoracic 
aortic samples in a microarray study [43]. An important gly-
colytic enzyme, glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH), was downregulated in two proteomic studies and 
positively correlated with AAA expansion rate in another 
study [39, 40, 44], indicating failure of aerobic glycolysis to 
support energy metabolism in the normal aortic wall [40].

Marfan syndrome is caused by a mutation in the fibril-
lin-1 gene (FBN-1) and is known to have catastrophic 
aortic complications including acute aortic dissection and 
thoracic aortic aneurysm. A comparative proteomic study 
identified five upregulated proteins expressed in the ascend-
ing aorta of Marfan patients, showing upregulation of the 
C-terminal filamin A and increased activity of calpain by 
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western blotting in the Marfan patients and the bicuspid 
aortic valve patients [45]. Proteomic analysis using isobaric 
tags for relative and absolute quantitation (the iTRAQ sys-
tem) identified lumican as a potential biomarker for acute 
aortic dissection [46]. Analysis of dissected ascending aor-
tic wall tissues demonstrated the downregulation of alpha-1 
antitrypsin and extracellular superoxide dismutase, sug-
gesting that both increased proteolytic damage and oxida-
tive stress play a major role in aortic dissection [47, 48].

Calcific aortic valve stenosis and proteomic 
analysis

The prevalence of aortic valve stenosis increases by up to 
25 % in adults over the age of 65 years [49], and the fre-
quency of surgery for severe calcific aortic valve stenosis 
also increases with age. Pathological studies of aortic valve 

stenosis have found dystrophic calcification (83 %), mature 
lamellar bone with hematopoietic elements (10 %), and 
active or quiescent osteoblasts (13 %) [50]. Recent stud-
ies have demonstrated that the osteogenic transdifferentia-
tion of valve interstitial cells, circulating osteoprogenitors, 
and the endothelial mesenchymal transition are relevant to 
the mineralizing cell types causing the pathology of cal-
cific valve disease [51]. Proteomic studies have found that 
several important proteins, such as gelsolin, are potential 
biomarkers [52], or biological pathways such as fibrosis, 
hemostasis, and coagulation [53], as well as blood coagula-
tion and integrin signaling pathways [54] (Table 3). Using 
the iTRAQ labeling tandem MS, we found that tenascin-X 
greatly decreased and alpha-2-HS-glycoprotein increased 
in calcific aortic valves compared with adjacent normal 
valve tissues (Fig. 2 a–d) [54]. A cluster analysis of 105 
identified proteins showed that tenascin-X was linked to the 
proteins regulating collagen structure and function.

Table 1  Biomarker candidates for abdominal aortic aneurysm identified by blood sample proteomics

Upregulated proteins are shown in bold, downregulated proteins are shown in italics, and normal text indicates no available information regard-
ing protein abundance

AAA abdominal aortic aneurysm, ELISA enzyme-linked immunosorbant assay, GPI-PLD glycosylphosphatidylinositol-specific phospholipase 
D, ILT intraluminal thrombus, iTRAQ-LC–MS/MS isobaric tags for relative and absolute quantitation-liquid chromatography-mass spectrometry, 
PAcIFIC precursor acquisition independent from ion count, PAD Peripheral arterial disease, RBC red blood cell, Ref references, 2D-DIGE MS 
2-dimensional fluorescence difference gel electrophoresis, SELDI-TOF MS surface-enhanced laser desorption/ionization mass spectrometry

Study groups Sample type Methods Identified proteins (gene name) Ref.

AAA vs control Exosomes and  
microparticles (plasma)

Label-free quantitative MS PLF4, FTL, CRP, OIT3, DCD, ANXA2 [64]

ApoE(−/−) mouse Plasma, aorta iTRAQ-LC–MS/MS Eight proteins, including APOC1 [65]

Small AAA vs control Plasma 2D-DIGE MS GPI‑PLD, ITIH4, IGHM, GSN, IGHG1, 
IGHG2

[66]

AAA vs control Plasma SELDI-TOF MS Serum elastin peptides, plasmin-antiplasmin 
complexes, MMP9, IFNG, CRP, SERPINA1, 
lipoprotein (a), IL6

[27]

AAA vs control Plasma LC–MS/MS (PAcIFIC MS) 80 proteins, including ADIPOQ, SOD3,  
AMBP, SERPIN4, CPB2

[23]

AAA vs control Serum 2D-DIGE MS APOA1, GC, APCS, HP, HPX, C4A [30]

AAA (large/small) vs 
control

Polymorphonuclear  
neutrophil, plasma

2D-DIGE MS 41 proteins, including CAT, TXNRD1 [24]

AAA (small/large,  
stable/progressive)

Serum 2D-DIGE MS/MS ALB, C3, SERNA1, F12, IGKC [25]

AAA vs control Plasma 2D-DIGE MS 33 proteins, including fibrinogen,  
SERPINA1, HP, GC, HBB

[26]

AAA (pre- vs  
post-operative

Serum iTRAQ-nanoLC- MS/MS 18 proteins, including SERPINA4 and A2 M [67]

AAA vs control RBC membrane Label-free quantitative MS 39 proteins, including CAT and PRDX2 [31]

AAA vs PAD Macrophage 2D-DIGE, MS/MS with  
transcriptome

PRDX1, MAPT, HSPA8, ATP5A1, PKM,  
PDIA3, GDI2, UQCRC2, FBP1, CAPG, 
GAPDH, ACTB, CTSS

[28]

AAA vs control Serum 2D-DIGE, MS/MS PRDX1 [29]

AAA vs control Serum SELDI-TOF–MS Hemorphin‑7 (HBB) [68]

AAA
AAA vs control

ILT-conditioned  
medium Serum

LC–MS/MS
ELISA

150 proteins, including CLU, THBS1 [69]
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Fig. 2  Proteomic analysis of human calcific aortic valve tissue iden-
tified tenascin-X protein by nano LC-MALDI-TOF/TOF–MS/MS 
using Protein Pilot software [54]. The scores of each protein confi-
dence were calculated based on the identified peptide confidences. A 
representative MS spectrum for the LNWEAPPGAFDSFLLR peptide 
from tenascin-X protein is shown in a. MS/MS spectra: namely, frag-
mentation spectra are shown in blue with matched b-ions (fragment 
ions extended from the amino terminus) and y-ions (fragment ions 
extended from the C-terminus) shown in green and red (b), respec-
tively. The quantification evidence is also shown by 114 and 116 

iTRAQ reporter ion spectra (c) highlighted by the square with broken 
lines in the MS/MS spectra (b) and its ratio, demonstrating that pro-
tein abundance is measured at the peptide level (bottom-up proteom-
ics). The samples from calcified aortic valve tissues were labeled with 
a 116 iTRAQ tag, whereas those from adjacent normal aortic valve 
tissues were labeled with a 114 iTRAQ tag. The iTRAQ ratios were 
calculated from [116 iTRAQ intensity]/[114 iTRAQ intensity] shown 
in c. The green or red m/z (Da) figures in d show matched ions on the 
LNWEAPPGAFDSFLLR peptide, which are also shown in b
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Cardiopulmonary bypass, hypothermia, 
and remote ischemic preconditioning

Cardiopulmonary bypass (CPB) and hypothermia have 
been utilized in cardiovascular surgery for more than 
50 years, but their profound and pleiotropic effects 
remain to be fully elucidated. The proteomic approach 

has been receiving much attention in this clinical area. 
Proteomic analyses of plasma taken from patients 
undergoing coronary artery bypass grafting with CPB 
revealed that a protease/antiprotease imbalance devel-
ops after surgery, with early activation of cathepsin G 
(a serpin involved both in inflammation and coagula-
tion activation), and then a delayed increase in alpha 

Fig. 3  Coagulation cascades, the kallikrein–kinin system, and com-
plement cascades interact with each other. By analyzing plasma from 
patients undergoing aortic surgery during hypothermic and normother-
mic cardiopulmonary bypass (CPB), proteomics revealed 13 proteins 
(red circles on the pathway map) on the Kyoto Encyclopedia of Genes 

and Genomes (KEGG, http://www.kegg.jp/kegg) [57]. The standard 
clinical tests for biocompatibility of CPB are FDP and d-dimer (blue 
circles on the map), indicating that these tests measure the final prod-
ucts of these cascades, but that proteomic analysis can quantitatively 
detect protein expressed differently during the interaction process

http://www.kegg.jp/kegg
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1-antichymotrypsin (an inhibitor of neutrophil cathepsin 
G) [55] (Table 3). This imbalance is consistent with the 
postoperative systemic inflammatory response and dys-
regulation of hemostatic balance. Although deep hypo-
thermic circulatory arrest is used in complex congeni-
tal or aortic arch surgery aiming for cerebral protection 
during circulatory arrest, the mechanism of protection 
of hypothermia against cerebral ischemia is not fully 
understood. Proteomics of the cerebral cortex and plasma 
newly identified six proteins expressed differently in 
an animal model. Sheikh et al. [56] concluded that the 
plasma apolioprotein A-1 level may be a new potential 
biomarker of cerebral injury. Exposure of blood compo-
nents to the CPB circuit activates blood cells, endothe-
lial cells, and proteins, resulting in the dysregulation of 
multiple organs and leading to postoperative complica-
tions. We investigated this biological response by com-
parative proteomic analysis between normothermic and 
deep (22 °C) hypothermic CPB in aortic surgery [57]. 
The CPB-induced complement activation was suppressed 
by deep hypothermic CPB compared with normothermic 
CPB, suggesting that deep hypothermia could improve 
the biocompatibility of the CPB circuit. The complement 
cascade has been reported to interact with both the coag-
ulation cascade and the kallikrein–kinin system [58]. We 
identified 13 proteins belonging to the complement and 
coagulation cascades, with abundances as demonstrated 
in the pathway map of the Kyoto Encyclopedia of Genes 
and Genomes (KEGG, http://www.kegg.jp/kegg) (Fig. 3). 
These data are thought to be important in comprehen-
sively evaluating the biocompatibility of the CPB circuit, 
as previously evaluated by the levels of the final product, 
such as fibrin degradation products.

Brief episodes of distal organ ischemia can protect the 
heart against ischemia. This phenomenon is called remote 
ischemic preconditioning (RIPC) [59] and it has been suc-
cessfully translated into coronary artery bypass surgery, 
where RIPC was proven as an effective method in periop-
erative cardiac protection and improved patient prognosis 
[60]. The effects of RIPC could be produced via systemic 
release of an unknown cardioprotective factor [61]. Plasma 
proteomics using both 2D-DIGE MS and liquid chroma-
tography–mass spectrometry identified 6 and 48 proteins, 
respectively, which were differentially regulated in blood 
taken from the ischemic arm, but did not identify the pro-
tein that provided cardioprotection [62] (Table 3). Cardiac 
phosphoproteomics revealed upregulation of the phospho-
rylation of Z-disk proteins, including phosho-myozenin-2, 
during RIPC in an animal study [63]. These studies indi-
cate that proteomics could help to explore the underlying 
mechanism through unbiased searches at the protein level, 
obtaining a “system-wide perspective”. However, this is 
not enough to enable us to detect a unique target protein 

because of the wide dynamic range of protein abundance, 
requiring further technology in mass spectrometry. Future 
targeted proteomics using multiple-reaction monitor-
ing MS (MRM-MS) could help us overcome this obstacle 
[6]. Multiple-reaction monitoring, also known as selected 
reaction monitoring (SRM), is generally performed with 
the triple quadrupole instrument. The specific m/z selec-
tion of precursor ions from the target protein is done in the 
first quadrupole, the analytes are fragmented in the second 
quadrupole, and the product ions are filtered through the 
m/z selection in the third quadrupole, leaving only a par-
ticular fragment for specific detection. This process results 
in higher sensitivity, better quantitative accuracy, and wider 
dynamic range in target proteomics [11, 72–74]. Top-down 
proteomics can also be employed as a targeted proteomic 
technique in cardiovascular research [9]. However, the top-
down proteomics is still a developing method designed to 
improve separation of intact proteins, sample preparation, 
sensitivity/detection limits, and the detection of large pro-
teins (>60 kDa) [7–9].

Conclusion

This review highlights proteomic analysis in cardiovascular 
research, analyzing the sample taken during cardiovascu-
lar surgery. Blood samples, aneurysmal wall tissue, calcific 
valve tissue and myocardial tissue are effectively utilized by 
proteomics to quantify hundreds of protein expressions and 
changes in post-translational modification that could lead 
to deteriorated cardiac function or cardiovascular diseases. 
Despite rapidly developing mass spectrometry technology 
and internet-based bioinformatics tools, investigation of the 
wide dynamic range of protein abundance and PTMs pre-
sents many challenges. Researchers should select methodol-
ogies such as gel-based or gel-free, top-down or bottom-up 
proteomics most appropriate for their study designs.
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