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For the past 50 years, quality control and safety tests have been used to evaluate vaccine safety. However, conventional animal safety
tests need to be improved in several aspects. For example, the number of test animals used needs to be reduced and the test period
shortened. It is, therefore, necessary to develop a new vaccine evaluation system. In this review, we show that gene expression
patterns are well correlated to biological responses in vaccinated rats. Our findings and methods using experimental biology and
genome science provide an important means of assessment for vaccine toxicity.

1. Introduction

Vaccination effectively enables the control of many infectious
diseases. However, we cannot always avoid the problem
of adverse reactions accompanied by vaccination. While
most adverse reactions are mild and local, some vaccines
have been associated with very rare but severe systemic
reactions. Therefore, all vaccines for public use are made in
compliance with Good Manufacturing Practices (GMP) to
prevent safety problems. Furthermore, manufacturers must
submit samples and results of their in-house tests for each
vaccine batch to the national control authorities before
vaccines are released into the market. Among many quality
control tests, conventional animal safety tests are performed
to detect vaccine toxicity because residual vaccine toxicity
has the potential to cause adverse reactions. For example,
the animal body weight change test is the most commonly
used test to evaluate the toxicity of vaccines [1]. Although
a good correlation of the body weight loss with a vaccine’s
toxicity has been shown [2, 3], a greater understanding of the
molecular mechanisms involved in the reaction to a vaccines’
toxicity is needed. We, therefore, attempted to measure

animals’ responses to vaccines by determining changes in
gene expression profiles.

Gene expression profiling is a unique way to characterize
how cells or tissues are affected by abnormal conditions.
The measurement of gene expression levels upon exposure
to toxicants can be used to identify toxic products, and
to provide information about the mechanism of toxicity
[4]. DNA microarray technology has opened the way for
the parallel detection and analysis of expression patterns of
thousands of genes in a single experiment. Furthermore,
the development of high-quality gene arrays has allowed
DNA microarray technology to become a standard tool in
molecular toxicology. Recently, the field of toxicogenomics
has validated the concept of gene expression profiles as
“signatures” of toxicant classes [5–7]. These signatures
have effectively directed the analytical search for predictive
toxicant biomarkers and they have contributed to the under-
standing of the dynamic responses of molecular mechanisms
associated with toxic responses. In fact, many studies of gene-
expression profiles have now been reported in the toxicology
field. For example, Hamadeh et al. reported patterns of gene
expression in liver tissue taken from rats exposed to different
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chemicals [8]. DNA microarray assays have also been applied
to the analysis of the side effects of medicines [9]. Recently,
the United States Food and Drug Administration (FDA)
and the European Medicines Agency (EMEA) have, either
individually or together, started to review submissions for the
qualification of biomarkers for medical products for specific
purposes proposed by industry [10]. The introduction of
pharmacogenomics, or pharmacogenetics, to the evaluation
of medicines is a global trend.

For a better understanding of the molecular toxicology
regarding vaccines, DNA microarray analysis promises to be
an ideal method, as has been the case for pharmaceuticals.
The FDA now encourages the voluntary submission of
genomic data to the FDA outside of the regular review
process [11]. However, no studies similar to those described
above for pharmaceuticals have yet been conducted in
the field of vaccines. At the beginning of this review, we
summarized the current efforts used for the control of
vaccine safety using conventional animal tests. We then
referred to our recent efforts using DNA microarray analysis
to identify “genetic signatures” for the toxicants remaining
in vaccines. Since pertussis and influenza vaccines are among
the most commonly used vaccines, we tried to develop a
system to evaluate the “genetic signatures” of the toxicity of
these vaccines.

2. Current Vaccine Safety Test

2.1. Body Weight Change in Vaccinated Animals. To screen
for general toxicity of vaccines, the body weight of vaccine-
treated animals can be analyzed as the general safety test
[12]. Five mL of the vaccine are injected into the peritoneum
of guinea pigs weighing 300–400 g, and the weight loss
experienced by the animals is analyzed at days 1, 2, 3, 4,
and 7 after administration. None of the animals should show
any abnormal signs; no statistically significant (P = .01)
difference in weight loss should be observed between the
treated animals and the control group on any observation
day. This test has been applied to a wide variety of vaccines
in a unified way, and plays an important role in ensuring the
safety and consistency of vaccine batches [12]. For pertussis
vaccine (inactivated whole cell formulation), the effects of
vaccine treatment were also measured using test for toxicity
to mouse weight gain, in addition to the general safety test.
All mice were weighed on days 0, 1, 2, 3, 4, and 7 after
vaccine administration. The criterion for judgment is that
mean body weight 3 days after injection should be no less
than that at the time of injection upon statistical analysis, and
no mice showed any abnormal sign during the observation
periods [12]. When the reference vaccine (RE: the inactivated
whole cell pertussis vaccine) was administrated, weight loss
was observed on day 1 after administration (Figure 1(a)).

2.2. Leukocytosis-Promoting Toxicity in Vaccinated Animals.
To detect the toxin present in pertussis vaccines, the number
of peripheral leukocytes can also be analyzed. Pertussis
vaccine is injected into the peritoneum of mice at a
dose of 0.5 mL. Leukocytes present in peripheral blood

are then counted 3 days after injection [12]. The white
blood cell (WBC) counts in peripheral blood of reference
vaccine-treated mice reach approximately 2,500 cells/μL
(Figure 1(b)). The standard criterion of safety for pertussis
vaccine (inactivated whole cell formulation) is that the
mean count of leukocytes in peripheral blood, 3 days after
injection, should not exceed 10 times that before injection
[12].

2.3. Leukopenic Toxicity Test in Vaccinated Animals. Quality
control of influenza vaccines is performed using the general
safety test and the leukopenic toxicity test (LTT), which
is based on peripheral WBC counts in mice 12–18 hours
after intraperitoneal injection of a vaccine. The criterion for
judgment is that the leukopenic toxicity of the test sample
relative to that of the toxicity reference sample should be no
higher than the value corresponding to 80% of the leukocyte
count of the control relative to that of the toxicity reference
sample [12–14].

3. DNA Microarray-Based Safety Test

The currently used quality control and safety tests, such
as the LTT and the general safety test, have been used
to evaluate vaccine safety for over 50 years [3]. We are
now developing a new quality control method for vaccines
using DNA microarray analysis as a substitute for the
conventional animal tests [15–17]. The principle of this
method is to translate vaccine quality, immunogenicity,
and reactogenicity, into gene expression profile data. This
method is expected to be informative, rapid, and highly
sensitive.

For DNA microarray analysis using vaccines, 8 week-
old male rats, weighing 180–220 g, were intraperitoneally
administered with 5 mL of vaccine or physiological saline
(SA). Three to 6 rats were used for each group. Vaccinated
rats were sacrificed to obtain whole lung, kidney, brain,
and the lateral left lobe of the liver on day 1, 2, 3, and
4 postadministration (Figure 2). Tissues were immediately
frozen in liquid nitrogen for storage. Thawed tissue was
homogenized and poly(A)+ RNA was purified from the
lysate. Cyanine 5-labeled poly(A)+ RNA was subjected to
DNA microarray analysis. Blood was also collected, however,
this could not be analyzed due to the low quality of purified
RNA.

For DNA microarray analysis, a set of synthetic polynu-
cleotides (80-mers) representing 11,468 rat transcripts and
including most of the RefSeq genes deposited in the NCBI
database (MicroDiagnostic, Tokyo, Japan) was arrayed on
aminosilane-coated glass slides [18, 19]. Cyanine 5-labeled
poly(A)+ RNA was competitively hybridized on the slide with
cyanine 3-labeled common reference RNA. Hybridization
signals were measured, processed into primary expres-
sion ratios ([Cyanine 5-intensity obtained from each sam-
ple]/[Cyanine 3-intensity obtained from common reference
RNA]), and then normalized by multiplying normalization
factors calculated for each microarray feature.
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Figure 1: Safety control tests for pertussis vaccines. (a) Test for toxicity to mouse weight gain. Physiological saline (SA), an inactivated
whole-cell pertussis vaccine (RE), or an acellular pertussis vaccine (PV)-administered mice were weighed on 0, 1, 2, 3, 4, and 7 days
postadministration. Ten mice in each group were used, and the mean changes in body weight are indicated. (b) Leukocytosis promoting
activity of various pertussis vaccines. White blood cell (WBC) counts in peripheral blood were measured 3 days after vaccine administration.
Ten mice in each group were used and the mean WBC counts are indicated.
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Figure 2: The gene expression analysis procedure. The detail of the procedure is described in the text.
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For data processing and hierarchical cluster analysis, the
primary expression ratios were converted into log2 ratios
(log2 Cyanine-5 intensity/Cyanine-3 intensity). The genes
with log2 ratios over 1 or under −1 in at least one sample
were extracted from the primary data matrix, then subjected
to two-dimensional hierarchical cluster analysis for samples
and genes.

For the identification of biomarker genes for pertussis
vaccines, we extracted differentially expressed genes from
physiological saline and pertussis toxin-treated lung samples
using the t-test (P < .01). Among the extracted genes, we
further selected genes that exhibited mean average log2 ratio
differences greater than 0.75 between the two sample groups
[17]. For influenza vaccines, we extracted differentially
expressed genes from physiological saline and inactivated
whole-virion vaccine-treated lung samples using the t-test
(P < .005) [16].

4. Pertussis Vaccines

Pertussis, or whooping cough, is an infectious respiratory
disease caused by a Gram-negative bacillus, Bordetella per-
tussis. Bordetella pertussis possesses several pathogenic com-
ponents, including pertussis toxin (PT) [20]. PT is known
as a leukocytosis promoting factor, a major contributor to
the pathogenesis of pertussis, and an antigen in immunity to
pertussis [21]. At present, whole-cell pertussis vaccines and
acellular pertussis vaccines containing inactivated PT are in
commercial use [20].

Although pertussis vaccines are effective in the preven-
tion of whooping cough, they have occasionally caused local
reactions such as redness, swelling, and pain at the injection
site. However, little is known about the overall responses to
these vaccines. To address this problem, we applied DNA
microarray analysis and quantification of specific genes to
analyze the toxicants in pertussis vaccines [15, 17]. Three
preparations, an acellular vaccine containing inactivated
pertussis toxin (PV), an inactivated whole-cell vaccine (RE),
and a purified pertussis toxin (PT) were prepared. RE is
a reference vaccine for National Quality Control Tests of
pertussis vaccines in Japan and is made from formaldehyde-
inactivated Bordetella pertussis preparations. Physiological
saline (SA) was used as a control. For comprehensive gene
expression analysis, 5 mL of SA, PV, PT, and RE were each
injected into 3 rats and the vaccinated tissues, lung, brain,
kidney, and liver, were harvested at 1, 2, 3, and 4 days after
vaccine administration. The experiments were performed
twice and purified poly(A)+ RNA from a total of 384 samples
was subjected to DNA microarray analysis.

Of the 4 organs tested, the lung expressed genes that
were extracted by DNA microarray analysis were classified
sharply into clusters depending on sample treatment. From
the DNA microarray analysis of vaccinated rat lungs at day
1, 13 genes for which expression levels were dynamically
changed in response to PT treatment were [17] (accession
numbers were updated in Table 1). Interestingly, the DNA
microarray-based gene expression data correlated well with
the body weight change of vaccine-treated mice (Figure 1(a))
and rats [17]. The real-time PCR quantification results of

the expression levels of the 13 genes were comparable to
the relative expression ratios from the DNA microarray
analysis. Furthermore, cluster analysis using the 13 genes
could distinguish SA- and PV-treated groups from PT-
and RE-treated groups. These 13 genes are likely to be
closely involved in the toxicity of pertussis vaccines. To
quantify these genes in a convenient way, the QuantiGene
Plex assay was applied. The QuantiGene Plex assay enabled
the simultaneous analysis of the 13 genes. We evaluated
the expression levels of the 13 genes in the lungs of rats
vaccinated with various doses of RE. Nine genes, S100A9,
S100A8, IRF7, MX2, IFI27L, BEST5, MMP9, MMP8, and
CYP2E1 (indicated in bold letters in Table 1) showed dose-
dependent up-or down-regulation in response to the various
doses of RE treatment. RE vaccine toxicity could be measured
by the expression level in lung lysate of these 9 genes. The
quantification of these 9 genes using the QuantiGene Plex
assay is, we believe, a promising candidate for a new control
test for pertussis vaccines.

5. Influenza Vaccines

Influenza virus triggers a highly contagious acute respiratory
disease and has caused epidemics and global pandemics,
partly because it possesses the capacity for gradual anti-
genic change in two surface antigens, hemagglutinin (HA)
and neuraminidase (NA) [22]. To combat influenza, split
vaccines consisting of subvirion preparations and whole-
virus vaccines are manufactured using strains recommended
annually by the WHO, based on the antigenic characteristics
of HAs and NAs. Furthermore, the recent circulation of the
highly pathogenic avian influenza A (H5N1) virus has raised
concerns about the preparations for a coming influenza
pandemic [23]. Many efforts are underway to develop
vaccines against influenza A (H5N1).

To identify biomarkers for influenza vaccine toxicity, 3
vaccines were used: trivalent influenza HA vaccine (HAv,
a split vaccine), trivalent influenza vaccine (WPv, an inac-
tivated whole-virion vaccine), and prepandemic influenza
vaccine (PDv, inactivated whole-virion (A/H5N1) absorbed
onto an aluminum salt). All were produced by Kaketsuken,
The Chemo-Sero-Therapeutic Research Institute, Japan.
Physiological saline (SA) was used as a control. For com-
prehensive gene expression analysis, SA, HAv, WPv, and
PDv were each injected into 5 rats, and the vaccinated
tissues, lung, liver, brain, and peripheral blood, were har-
vested at 1, 2, 3, and 4 days after vaccine administration.
Purified poly(A)+ RNA from a total of 320 samples was
subjected to DNA microarray analysis [16]. Based on the
analysis of pertussis vaccines, described above, the gene
expression profiles from lung samples were subjected to two-
dimensional hierarchical cluster analysis. PDv- and WPv-
treated samples at day 1 formed an independent cluster from
other samples, indicating distinct profiles in gene expression
of these groups. As was the case with pertussis vaccines,
we tried to identify several biomarkers from the analysis of
lung gene expression. The analysis of lungs from vaccinated
rats at day 1 resulted in the extraction of 76 genes, whose
expression levels were statistically different between SA- and
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Table 1: Biomarkers for pertussis vaccine toxicity.

Category Accession no. Symbol Brief description

Inflammation

NM 053587 S100A9
A calcium binding protein that may be associated with acute inflammatory
processes, coupled with S100a8

NM 053822 S100A8
May play a role in inflammatory responses such as cell motility, coupled
with S100a9

NM 019323 MCPT9
A serine protease expressed in mast cells, but the precise function has not
yet been determined

NM 031530 CCL2 A ligand for CCR2 that acts as a chemoattractant of monocytes

IFN inducible,
immune response

NM 001033691 IRF7 Unknown

NM 134350 MX2 Involved in inhibiting vesicular stomatitis virus

NM 203410 IFI27
Induced by steroid hormone, IFN, and LPS in endometrium at
implantation, dendric cells, and macrophases

NM 001007694 IFIT3 May induced by IFN or virus infection

Y07704 BEST5 Induced by IFN and involved in bone formation

Peptidoglycan
metabolism

NM 031055 MMP9
Metalloproteinase involved in extracellular matrix remodeling, bone
resorption, and immune responses

NM 022221 MMP8
May play a role in appositional bone formation and regulation of the
extracellular matrix

Xenobiotic
metabolism

J02627 CYP2E1 Protects hepatocytes from stress-induced cell death

Others NM 001106862 NGP Unknown

Table 2: Biomarkers for influenza vaccine toxicity.

Category Accession No. Symbol Brief description

IFN inducible gene
NM 172019 IFI47

Mouse homolog may be a guanine nucleotide-binding protein induced by
IFN-gamma

AF329825 TRAFD1 Putative TRAF-interacting zinc finger protein

NM 019242 IFRD1 May be involved in proliferation of neuronal and glial precursors

IFN inducible,
immune response

NM 001033691 IRF7 Unknown

NM 134350 MX2 Involved in inhibiting vesicular stomatitis virus

Immune response

NM 172222 C2 Likely component of the classical pathway of the complement cascade

NM 012708 PSMB9
Subunit of the proteasome complex, which may play a role in protein
catabolism

NM 032056 TAP2
Transports peptides into the ER lumen for binding with MHC class I
molecules; plays a role in antigen processing and presentation

NM 033098 TAPBP
Facilitates the binding of MHC class I molecules to the transporter
associated with antigen processing (TAP) in MHC class I assembly

NM 017264 PSME1 May play a role in proteasome activation

Chemokine and
Cytokine function

AF065438 LGALS3BP
Displays differential expression in a fibroblast cell line transformed by
human T-cell leukemia virus type 1 Tax protein

NM 012977 LGALS9 A highly selective urate transporter/channel

NM 053819 TIMP1
Acts as an inhibitor of metalloprotease activity; may play a role in vascular
tissue remodeling

NM 023981 CSF1 Plays a role in macrophage formation

NM 145672 CXCL9
Chemokine which plays a role in the recruitment of mononuclear cells and
in allograft rejection

XM 223236 CXCL11 Mouse homolog is a chemokine and is involved in the immune response

Transcription activity AJ302054 ZBP1
DNA binding protein; thought to bind Z-DNA, which is largely controlled
by the amount of supercoiling
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WPv-treated samples (P < .005) [16]. The cluster analysis
using these 76 genes successfully distinguished WPv- and
PDv-treated groups at day 1 from other groups, indicating
the suitability of the 76 genes as biomarkers for influenza
vaccines.

The extracted 76 genes were categorized according to
function, such as interferon-inducible, chemokine and
cytokine function, immune response, transcriptional activ-
ity, and so on. Among the 76 genes, 17 genes met the
requirement for high expression levels and were chosen
as representatives for each functional category (Table 2).
Among the 17 genes, IRF7 and MX2 were also nominated
for biomarkers of pertussis vaccine toxicity. Real-time PCR
quantification results of the expression levels of the 17 genes
were comparable to the relative expression ratios determined
by DNA microarray analysis. We are now working to estab-
lish a rapid quantification system for these 17 biomarkers
using the QuantiGene Plex assay.

6. Japanese Encephalitis Vaccines

Japanese encephalitis (JE) is a seasonal and sporadic
encephalitis in East Asia caused by the JE virus. Vaccination
is very important to prevent JE infection, because pallia-
tive care is the only treatment available for JE patients.
Recently, a Vero cell-derived JE vaccine had been licensed
in Japan as an alternative to the long-used mouse brain-
derived JE vaccines. The newly developed Vero cell-derived
vaccine should be at least equivalent to the mouse brain-
derived vaccines, because the mouse brain-derived vaccines
were considered generally safe and succeeded in the near
elimination of JE in certain endemic regions. In this context,
we performed DNA microarray analysis of tissues from
rats administered with mouse brain-derived or Vero cell-
derived JE vaccine and compared the gene expression
profiles. As expected, the gene expression patterns in brain
and liver were comparable between mouse brain-derived
and Vero cell-derived vaccines, indicating that both vac-
cines possessed equivalent reactivity characteristics in rats
[24].

7. Conclusions

Over recent decades, the safety control of vaccines has
been assessed using several animal tests, including the body
weight change test and white blood cell counts. However,
conventional animal safety tests need to be improved in many
aspects. For example, the number of test animals used needs
to be reduced and the test period needs to be shortened. This
requires the development of a new vaccine evaluation system.
In this review, we showed that gene expression patterns were
well correlated to the biological responsiveness of vaccinated
animals. From the DNA microarray analysis of lungs from
vaccinated rats, we identified 13 and 17 biomarkers to
detect the toxicity of pertussis and influenza vaccines,
respectively.

Furthermore, the QuantiGene Plex assay for gene expres-
sion analysis is being introduced. The QuantiGene Plex assay
was revealed to be as accurate as real-time PCR and has

the great benefit of being able to evaluate all biomarkers
simultaneously. Using the QuantiGene Plex assay, we could
rapidly and sensitively detect the gene expression changes
that accompany biological reactivity in vaccinated rats.

Thus, it may be concluded that DNA microarray tech-
nology is an informative, rapid, and highly sensitive method
with which to evaluate vaccine quality. Our data suggest that
this new method has the potential to shorten the time for
safety tests and can reduce the number of animals used.
In addition, our test may contribute to the development of
urgently required vaccines. Further analyses are required to
confirm that gene expression changes correlate with vaccine
quality.

In this review, we referred to our recent efforts of
exploring new safety control methods using gene expression
pattern indexes, focusing on pertussis and influenza vaccines.
In the future, for the evaluation of all kinds of vaccines,
microarray analysis is expected to play an important role
in the new safety control test, especially for checking toxin-
reactive transcripts.
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