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ABSTRACT

High-throughput sequencing technologies have
allowed for the cataloguing of variation in personal
human genomes. In this manuscript, we present
alu-detect, a tool that combines read-pair and
split-read information to detect novel Alus and
their precise breakpoints directly from either
whole-genome or whole-exome sequencing data
while also identifying insertions directly in the
vicinity of existing Alus. To set the parameters of
our method, we use simulation of a faux reference,
which allows us to compute the precision and recall
of various parameter settings using real sequencing
data. Applying our method to 100 bp paired Illumina
data from seven individuals, including two trios, we
detected on average 1519 novel Alus per sample.
Based on the faux-reference simulation, we
estimate that our method has 97% precision and
85% recall. We identify 808 novel Alus not previously
described in other studies. We also demonstrate the
use of alu-detect to study the local sequence and
global location preferences for novel Alu insertions.

INTRODUCTION

Background

With high-throughput sequencing (HTS) becoming a
standard methodology for the characterization of human
genomes, it has become essential that we have effective
methods to identify all types of variants from HTS data.
Although there has been extensive work in designing
methods that can identify both small-scale SNPs and
indels [see reviews (1,2)] as well as large-scale copy-
number variation (3,4), fewer methods have been
developed that can effectively identify the variability in
repeat content of human genomes directly from non-
targeted HTS data (5–8). The most common repetitive
element in the human genome is the Alu, a

retrotransposon that is �300 bp in length, with >1:1
million copies, representing >10% of human DNA (9).
The three families (AluJ, AluS and AluY) and �30
subfamilies of Alus have been active at different points
during primate evolution (10–12), and they play important
roles in genome modification by assisting in the creation of
structural variants (13,14). Although only some
subfamilies of AluY are still capable of retrotransposition
(15), the identification of novel Alu insertions in personal
genomes is of medical interest, as they have been linked to
several disorders (16–22). For more information on Alus,
see the excellent reviews (23) and (20).

Alu repeats: replication and distribution

The Alu is a Short Interspersed Element, which multiplies
using a ‘copy and paste’ mechanism. In the ‘copy’ phase,
Alus are transcribed by RNA polymerase III. For the
‘paste’ phase, Alus use a ribonucleoprotein complex
composed of proteins encoded by a different retrotrans-
poson, the Long Interspersed Element L1. L1 transcripts
produce endonuclease (EN) and reverse-transcriptase
(RT). EN initially cleaves one DNA strand, and RT
copies an Alu transcript into a single strand of DNA at
that location. The second DNA strand is cleaved by an
unknown mechanism, and then the DNA repair
mechanism generates the strand complimentary to the
novel Alu insertion. The process is called Target-Primed
Reverse Transcription (TPRT) (24–27). Because of the
two distinct single-strand breaks, the final DNA
sequence contains a Target Site Duplication (TSD),
which is a sequence of 4–25bp repeated just before and
just after the new Alu element (see Figure 1A).
The initial EN cleavage site shows a preference for certain

sequences, notably the TT/AAAA motif (the notation
emphasizes that the cut occurs between the T and the A)
(26,28,29). Several manuscripts have studied both
common sequences at the nick sites, as well as broader
genomic context of Alu insertions, including their
frequency in coding regions, or in the vicinity of other Alus.
In these studies, it is necessary to make a distinction

between analysing fixed Alus, which occur in all
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humans, and polymorphic Alus, present only in a fraction
of the population. Fixed and polymorphic Alus are subject
to different types of pressure: while there are functional
constraints preventing both novel polymorphisms and
fixed Alus from appearing in regions such as exons,
fixed Alus have been in the genome long enough to be
involved in additional events and may be removed
through unequal recombination (30). Similar to single
nucleotide substitutions and other polymorphisms, only
a small fraction of Alus in the human genome are
polymorphic. Although the reference human genome has
1.1 million Alus, most studies identify <2000 novel Alus in
an individual human genome (6–8), and the single largest
polymorphism study by (8) found <8000 polymorphic
Alus in 185 individuals of diverse ethnicities.
Many studies have used Alu annotations in the human

reference genome to correlate the locations of (implicitly)
fixed Alus with various other features of the genome: GC
content (30), segmental duplications (31), other Alus (28),
other Alus in intergenic and intronic regions (32,33) and
other Alus in sense and antisense orientations (34,35).
Others have considered the distribution of polymorphic

Alus in the genome. NCBI and Celera genomes were
compared to study polymorphic Alus in (29). They
found that Alu insertions are inversely correlated with
genes and positively correlated with known integration
sites. Novel Alus are significantly depleted in exons and

introns (6). Novel Alus were used to quantify depletion in
exons and coding exons (8).

Although most studies agree that Alu insertions
are depleted in both coding and non-coding exons, there is
some disagreement on whether they are also depleted in
introns: depletion of polymorphic Alus in introns is
observed in (6). Under the natural assumption that Alus
aremainly subject to negative selection pressure, a depletion
of polymorphic Alus should result in a depletion of fixed
Alus as well. However, (33) finds that fixed Alus have
similar density in introns and intergenic regions.

Furthermore, polymorphic Alus are most likely subject
to different types of selection pressure in living organisms
and in tissue culture systems. For instance, (36) considers
the distribution of tagged Alu insertions in ex vivo/in vitro
assays with minimal selection pressure. In contrast, we
expect that most novel Alus we find were inserted under
regular selection pressure in vivo.

Detection of Alus from HTS data

In earliest studies, the detection of Alus was conducted
with targeted methods such as PCR followed by one-by-
one genotyping of loci of interest (37–39), most recent
projects identify novel Alus in a genome-wide manner,
either by comparison of assembled genomes (29,40) or,
more recently, by direct analysis of unassembled reads
generated by HTS technologies. In particular, (6) was
the first to address this problem. They used the read-pair
based VariationHunter algorithm (41), which
computes the minimum number of clusters of paired
reads where one end maps to an Alu and the other maps
to the genome. They analysed eight Illumina samples,
finding about 1144 novel Alus per individual. An
alternative implementation of a read-pair-based algorithm
was proposed by (42). They found an average of 5990
novel Alus per individual, an unusually large number
compared with other studies (including ours).

A comprehensive map of mobile element insertion
polymorphisms, including Alus, was presented by (8),
based on the 1000 Genomes Project pilot 1 (low-
coverage) and 2 (high-coverage trios) data sets of whole-
genome sequencing (WGS) data from 185 samples (43).
Their approach used both Illumina paired reads and
longer unpaired Roche/454 data. They used the read-
pair-based Spanner algorithm on the Illumina reads to
identify variant locations and split mapping of the Roche/
454 reads with the Mosaik algorithm to identify the
breakpoints. This method provides breakpoint resolution,
but only from Roche/454 data. Their analysis identified on
average 921 novel Alus per high-coverage sample, and 490
novel Alus per low-coverage sample.

Most recently, (7) developed the Tea pipeline, which
combines read-pair and split-read approaches to detect
novel transposable elements, including Alus. They
analysed three Yoruban samples with 40� average
coverage and identified on average 1037 novel Alus per
sample, as well as 41 germline samples from cancer
patients with 35� average coverage with 742 novel Alus
per sample. This was the first method to use Illumina data
for Alu breakpoint identification.

A

B

Figure 1. Detecting Alu insertions and TSDs. (A) Genome after an Alu
insertion on the positive strand. The human reference genome is at the
bottom. The newly sequenced ‘donor’ genome with an Alu insertion and
a TSD is above. Above is the terminology. ‘Head’ and ‘tail’ refer to the
inner sequence of the Alu, whereas ‘left’, ‘right’, ‘insertion start’ and
‘insertion end’ refer to the orientation of the genome. If the Alu were
on the negative strand, the terms in italic would be flipped. (B) Detection
of Alu insertions. The donor genome is shown aligned to the reference
genome. Because of the TSD, the left end of an Alu will start at the right
end of the TSD. Two read pairs supporting the insertion are shown.
Read pair X has a split-mapped read aligned across the 50 (left) end of
the Alu (GGCC), and the right end of the TSD, directly identifying the
breakpoint. Read pair Y supports the presence of an insertion, but does
not identify the exact breakpoint (other end of the TSD). As only the left
endpoint is detected (between G/A), the right end of the confidence
interval is the A following the breakpoint, whereas the left is only
estimated. The detected breakpoint is represented by a square bracket,
and the undetected one by a round bracket.
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Our contribution

In this study, we present a new Alu detection method
called alu-detect. Our method identifies Alu break-
points and TSDs while also identifying insertions
without exact breakpoint information. The alu-
detect works with both WGS and exome-capture data
and identifies Alu insertions in the vicinity of reference
Alus. We also study the distribution of Alus relative to
other genomic features, including genic regions and other
Alus.

MATERIALS AND METHODS

In this section, we first present the alu-detect tool.
Subsequently, we discuss a novel method for setting
parameters for alu-detect, based on a faux-reference
simulation of Alus in the human genome. Finally, we
describe the HTS data sets we used, as well as the Alu
call sets made by other studies to which we compared
our results.

The Alu-detect tool

Overview
The major steps of the alu-detect algorithm are as
follows:

(1) Given the mappings of a HTS data set to the
reference, identify reads or read pairs (henceforth
called ‘fragments’) that have evidence of insertions:
poorly mapped reads and tails of reads or discordant
pairs.

(2) Remap these fragments to the reference while
allowing for some parts of each fragment not to
map. This allows us to detect the reference positions
for fragments that span insertion breakpoints.

(3) Detect evidence of Alu insertions by mapping each
fragment to the set of consensus Alu sequences.

(4) Construct clusters of fragments along the reference
genome that have evidence of Alu insertions. If the
fragments consist of paired reads, the pairing
information (orientation and relative position) is
taken into account during this step.

(5) Investigate each fragment in the cluster with a split-
mapping algorithm, which allows the alignment to
jump from the reference to an Alu consensus
sequence and back (see Figure 1B). Each candidate
novel Alu is detected with neither, one or both
breakpoints.

(6) Filter candidate insertion calls based on their
support, including number of supporting fragments,
length of the inserted Alu and quality of the read
mapping. In this study, for every WGS data set,
the filtering thresholds were set independently and
in an automated way.

Discordant reads and initial mapping
The alu-detect tool takes as input a reference genome
(usually the NCBI human genome) and the mappings of a
donor read set to this reference (a SAM or BAM file),
including unmapped reads. The program detects the

read pairing information: whether the reads are paired
and, if so, the minimum and maximum fragment sizes,
discarding 0.1% outliers. In the process, it is assumed
that pairing information is consistent for all reads from
the same read group. Next, the reads with discordant
mappings (either partial mappings, discordant insert
sizes or paired reads where only one is mapped) are
extracted for further investigation. These reads are
progressively mapped in unpaired mode to the reference
genome using Bowtie2 (44): if a read does not map, it is
trimmed from the 50 end until it maps or until it becomes
<20 bp. This is then repeated by trimming from the 30 end.
For every read pair, if at least one read is mapped with a
mapping quality of at least 5 to the reference, that pair is
kept, and the rest are discarded. The remaining reads are
mapped to the set of Alu consensus sequences using
SHRiMP2 (45).

Split mapping
The next step is the core of the method. The remaining
reads are now clustered based on their (or their mate’s)
partial mapping to the reference, taking into account
position, strand and pairing information. Clusters of
reads with Alu evidence are then remapped to the
reference using a split-mapping algorithm. Concretely,
each read is aligned to the reference using the Smith–
Waterman algorithm (46), and the alignment is allowed
to jump between the reference and an Alu consensus
sequence using the algorithm described by (47).
For every cluster of reads, the program computes: the

mapping score of all reads assuming an Alu insertion, the
mapping score for the null hypothesis (mapping all reads
to the reference only) the read pair support for the Alu
insertion, the minimum and maximum positions inside the
Alu that were mapped and the location of one or both
breakpoints.

Alu terminology and confidence intervals
The terminology we use to describe the location and
orientation of Alus is illustrated in Figure 1. We say
that an Alu is inserted ‘on the positive strand of the
reference genome’ if its 50 end appears left of its 30 end
on the positive strand of the genome. Otherwise, we say it
is on the negative strand. We use the term ‘Alu head’ to
refer to the 50 end of an Alu, and the term ‘Alu tail’ to
refer to the 30 end of an Alu, including its poly-A tail.
When using terms such as ‘left end’, ‘right end’, ‘insertion
start’ and ‘insertion end’, we implicitly refer to the positive
strand of the reference genome. Thus, for example, if an
Alu is inserted on the positive strand of the reference
genome with a regular TSD (see Figure 1B), the terms
Alu head, Alu left end and insertion start all refer to
the 50 end of the Alu, which is connected in the donor to
the right end of the left copy of the TSD. Likewise, the
terms Alu tail, Alu right end and insertion end all refer to
the Alu 30 end and poly-A tail, which is connected in the
donor to the left end of the right copy of the TSD.
Alu-detect reports a ‘confidence interval’ (CI) for

each Alu call (we use the term ‘confidence interval’ to
emphasize the location uncertainty and not a statistical
confidence value.) (see Figure 2A–D). If neither
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breakpoint of the call is detected, the CI is computed
based on the read pairs that support the call, including
the pairing information. If both endpoints are detected,
one between x and x+1, the other between y and y+1,
the CI is minðx,yÞ,maxðx+1,y+1Þ½ �.
To understand CIs when only one endpoint is detected,

refer to Figure 2C and D. If only the left endpoint
is detected between positions x and x+1, the CI is
½x� 50,x+1�. Similarly, if only the right endpoint
is detected between positions x and x+1, the CI is
½x,x+51�. This convention ensures that for all ‘usual’ Alu
insertions, where the TSD is almost never > 50 bp (27),
the entire TSD is included in the CI. As a result of this

convention, two independent runs, e.g. on related
individuals, which detect different breakpoints of the
same ‘usual’ Alu insertion will have overlapping CIs for
that insertion.

When only one breakpoint is detected, the fact that the
CI of an Alu call intersects a genomic feature is not a
guarantee the Alu insertion would actually alter that
feature. See Figure 2E. Concretely, say a genomic
feature occurs at positions (1, 100), and the CI of an
Alu call is (71, 130), detected with one breakpoint only.
If the insertion start breakpoint is detected, that occurs
between positions 129 and 130; therefore, the insertion
intersects the genomic feature only if it has a TSD
longer than 29 bp. On the other hand, if the insertion
end breakpoint is detected, that occurs between positions
71 and 72; therefore, the insertion definitely interrupts the
genomic feature.

Filtering
Novel Alus are intially detected by alu-detect based
on only two supporting fragments (we refer to these as
‘unfiltered’ calls). To reduce false-discovery rate and
produce high-confidence Alu calls, we use several
support parameters to filter the detected insertions. The
filters are based on confidence interval length (ci-len),
span of inner Alu positions mapped (len), read pair
support for the call (supp) and difference between Alu
call score and read mapping null hypothesis score
(null). The parameters for filtering are set automatically
as explained in the next section.

Predicting Alu insertions in repetitive regions using
HTS data is naturally limited by the mappability of the
reads to the reference genome. To produce an Alu
insertion call in a certain region, a necessary (but not
sufficient) condition imposed by alu-detect is that at
least one fragment with potential Alu evidence be mapped
to that region with mapping quality five or more.
Consequently, alu-detect cannot produce calls
in regions where all mappings have quality 0 (e.g. perfectly
duplicated regions in the reference). The alu-detect
does not differ significantly form other tools in
percentage of calls in repetitive regions, except for near
reference Alus, which other methods often make no, or
fewer calls.

In addition to the filters described earlier in the text, we
also require Alu calls overlapping reference Alus to be
supported by at least one non-ambiguous breakpoint.
To explain this, assume the reference contains an Alu on
the positive strand, between locations (101, 400). An Alu
call on the positive strand with CI (90, 110) would pass
this filter if and only if its right end (tail) breakpoint is
detected. The rationale is that the left end (head) of the
Alu call is close to the head of the reference Alu at 101,
and deviations in the reference genome from the Alu
consensus sequence might cause the donor reads to map
better to the consensus sequence than to the reference Alu.
The same does not apply for the right end (tail) of the Alu
within the given CI: no similar sequence exists in the
reference until position 400. Thus, detecting the right
end (tail) is a more certain indicator the call is real.

A

B

C

D

E

Figure 2. (A–D) Illustration of the Confidence Intervals. The text line
shows the chromosome, the confidence interval start, end, the strand of
the insertion, the number of reads spanning the left endpoint/start of
the insertion, the number of reads spanning the right endpoint/end of
the insertion and the reported TSD length. The diagrams show the
reference on top and the inferred donor genome on bottom. Arrows
denote the reads supporting the breakpoints. A bracket denotes a
confidence interval end next to which a breakpoint was detected. A
paranthesis denotes an end, which is only an estimation. (A)
Standard call with two breakpoints and TSD. (B) Non-standard call
with two breakpoints, showing a target site loss. (C) Call with only the
left endpoint detected. Assuming the insertion has the standard form,
the TSD starts somewhere upstream of the breakpoint in the reference
(the uncertainty is represented by the dotted line). The region marked
with the ‘?’ is the second copy of the TSD; its starting sequence is not
known. (D) Similar to C, but insertion with only the right endpoint
detected. (E) Alu Calls and Genome Features. The reference and a
genomic feature (exon) are shown, together with the confidence
intervals for two Alu insertion calls. Each Alu’s left breakpoint is
detected, whereas the right is estimated. Only the left call is guaranteed
to duplicate part of the genome feature. For the right call, this depends
on the undetected right end of the insertion (TSD length).
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Automated parameter selection

Most methods for identifying genetic variants allow the
user access to a number of parameters that, when properly
set, maximize the performance of the method on the
specific data set. Although such parameters add to the
flexibility of the tool, they are often difficult to select,
and performance can be degraded if the parameters are
inappropriate. In the case of alu-detect, such
parameters include required number of supporting
fragments, length of the inserted Alu sequence and
difference in alignment scores between aligning to the
Alu and to the reference. One potential method to set
the parameters would be simulation of a data set that is
similar to the input one, but with a known ground truth.
For detecting Alu insertions, a ‘standard’ simulation
experiment would consist of the following:

(i) Adding Alu insertions to the human reference
genome to create a faux donor

(ii) Simulating HTS reads from this donor genome,
typically using uniform distribution and some
error model for the individual nucleotides

Then, one runs the detection method on the resulting
data, using the information from step (i) as ground truth
to compute the precision and recall and chooses the
parameters that offer best performance trade-offs. In
practice, such an approach is not used because both
steps (i) and (ii) are independently unrealistic: the Alus
added in step (i) might not follow the natural distribution
of novel Alus found in a real human genome and also are
not going to reflect the continuing evolution of the Alu
repeats. Simultaneously, the HTS reads produced by the
simulation in step (ii) are unlikely to follow the
distribution of reads from a real sequencing experiment.

To set the parameters of alu-detect, we use
alternate, faux-reference simulation experiments. We first
contruct a ‘fake’ reference genome by removing from the
real reference genome all sequences, which resemble novel
Alus: AluYs of at least 310 bp in length, and immediately
surrounded by a perfect TSD of at least 6 bp. These
criteria were motivated by the idea to select reference
Alus that were inserted by TPRT (hence the TSD
requirements) and looked similar to novel Alus (young
families, with large length). In all, 10 440 reference Alus
were selected. We created a new ‘fake’ reference by
removing all of these Alus, along with one copy of the
TSD, thus computationally reversing TPRT mechanism.

We then provide this faux reference genome to alu-
detect, together with a real HTS data set to generate a
set of Alu insertion calls. Each of these calls is either a
simulated variant or a true polymorphism (differences
between the original reference and the sequenced donor).
To reduce the impact of such polymorphisms on the
results, we filter the set of calls for all known Alu polymor-
phisms from the data sets of (6,7,8,48). The remaining
Alu calls were our positives (P). Every Alu call that
intersected the remaining TSD associated with a
removed Alu was labelled a true positive (TP), the rest
were labelled false positives (FP). ‘Simulated’ precision
and recall were then defined as usual: psim ¼ TP=P and

rsim ¼ TP=T (where T=10 440 was the number of Alus
removed).
We then took Alu calls made on the faux reference and

filtered them in multiple ways (see previous section for
filter definitions): len from 150–290 in steps of 10;
supp 6–25; null 0–30% in steps of 5% and ci-len
300–1100 in steps of 200. For every precision threshold
x, we compute the filter parameters that maximize rsim,
subject to psim � x. These parameters are then used to
run alu-detect with the real reference and the same
HTS data set.

Evaluation of automated parameter selection
To show that our simulated precision closely correlates
with performance at detecting known Alus, we
computed the ‘relative’ precision prel as the percentage of
Alu calls made (using the real reference) that are present in
either (8) or (48). Figure 3 (top) shows the close
correlation between psim and prel on the HTS data sets
for NA12878 (CEU individual) and NA18506 (Yoruban)
for all thresholds under consideration. prel will vary widely
between individuals, as different individuals have a
different fraction of novel Alus already characterized in
the two data sets.
To have a single set of results to compare our method

to other studies, we have chosen a simulated precision
cutoff of 0.97 that produces a relative precision values
ð0:596, 0:602, 0:590Þ on the Yoruban trio (NA18506,
NA18507, NA18508), comparable with ð0:574, 0:578,
0.576) achieved by (6). Thus, every HTS data set was
filtered with settings corresponding to maximum rsim,
given that psim � :97.
We present a similar plot in Figure 3 (bottom), showing

the connection between simulated recall rsim and relative
recall rrel. Relative recall is harder to estimate than relative
precision because we need a set of known Alu insertion
calls for the specific individual in question. For this plot,
we used the calls made by (8) on NA12878 and the calls
made by (7) on NA18506 as relative truth for those two
individuals. For values of simulated precision greater than
�0.97, the correlation between relative and simulated
recall becomes weaker because of the true novel insertions
in the donor (i.e. polymorphisms).

Alu insertions near reference Alus

To analyse the distribution of Alu insertions near
reference Alus, we selected those reference Alus that are
at least 200 bp away from other Short Interspersed
Elements, whose annotation starts before position 10 (of
the corresponding consensus sequence) and ends between
positions 290 and 350, and where the difference between
the Alu lengths in the genome and in the consensus
sequence is not >10%. The reason for these restrictions
was to have clear non-conflicting information for the start
and end regions of each reference Alu under
consideration. Notably, because of these restrictions we
do not consider insertions near clusters of reference
Alus. In total, we selected 443 292 of 1.1 million reference
Alus for our analysis. We refer to these as ‘clear’ Alus.
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We analysed insertions in three distinct regions related
to reference Alus: the ‘Alu head region’, starting 100 bp
upstream of the 50 end of a reference Alu and ending 50 bp
downstream from it [as observed by (19), this region
contains the original site where EN cleaved the genome
during the insertion of this Alu]; the ‘Alu middle region’,
starting 50 bp downstream from the 50 end, and ending
50 bp upstream from its 30 end (this region contains the
A-rich linker between the two dimers that form an Alu);
and the ‘Alu tail region’, starting 50 bp upstream from the
30 end, and ending 100 bp downstream from it (this
includes the poly-A tail of the Alu). We say that an Alu
is inserted ‘on the positive strand of a reference Alu’ if it is
inserted in the same orientation as the reference Alu. We
say that an Alu is inserted ‘on the positive strand in the
head region of a reference Alu’ if the Alu is inserted in
the same orientation as the reference Alu, and the TSD of
the novel Alu intersects the head region of the reference
Alu. For reference, see Figure 4.

Preparation of other Alu call sets

The Alu calls in dbRIP (48) typically include both
breakpoints of the insertions, along with the flanking
region. The database includes both novel Alus and
reference Alus; however, we use only the novel ones.
Each of these calls was enclosed in a confidence interval
of length equal to its TSD (as included in the dbRIP
record).

Each Alu call from (6) includes a confidence interval. In
our analysis, we expanded the confidence interval to a
minimum of 20 bp to include a potential TSD.

The Alu calls of (8) include both insertions and
deletions. We only use the insertion data. Each Alu
insertion includes a confidence interval and possibly a
TSD. In our analysis, we added the TSD to the confidence
interval.

A final source of Alu calls was (7). All calls in these data
are reported with both breakpoints, and the confidence
interval includes the TSD. We disregarded Alu insertions
without strand information.

Comparing 3 (or more) sets of Alu calls (intervals) is
non-trivial because interval intersection is not transitive.
In our evaluations, we used the multi-inter program
that is part of the bedtools (49) suite (using the option -
cluster).

HTS data sets analysed

We analysed WGS data for seven individuals: one
Yoruban trio NA18506 (ERX009608), NA18507
(ERX009609), NA18508 (ERX009610); one Central
European (CEU) trio NA12877 (ERX069504), NA12878
(ERX069505), NA12882 (ERX069506); and one
additional individual of unreported ancestry SRS228129
(SRX083311, SRX083314). To compare the performance
of alu-detect on WGS and exome capture data, we
used the sample SRS228129 (50), for which we had both
WGS and exome capture data. To compare our results

Figure 3. Top: Relative Precision (prel) versus Simulated Precision (psim). Bottom: Relative Recall (rrel) versus Simulated Recall (rsim). Each dot
represents a filter setting. We highlight, for x between 0.920 and 0.990 in steps of 0.005, the filter with psim � x and maximum simulated recall rsim.
NA12878 is an individual of European ancestry, whereas NA18506 is an individual of Yoruban ancestry.
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with those of (7), we also ran alu-detect on two data
sets used in that study: SRX006833 for NA18506 and
SRX016231 for NA18507. We obtained HTS data from
the Sequence Read Archive and the European Nucleotide
Archive. All data sets analysed consisted of HTS paired
100 bp Illumina reads, except for SRX006833, which
consisted of 36 bp Illumina paired reads. We also analysed
exome capture HTS data from 96 individuals part of the
FORGE Canada project (http://care4rare.ca/).

Detection was run using both NCBI build 36 (hg18) and
build 37 (hg19) human reference genomes. We used Alu
calls against hg18 to compare with Alu calls made by
other studies (all of which use hg18). We used calls
against hg19 to compute nick site preferences and in the
enrichment analysis. For exome capture data, we initially
produced calls against hg18; then we translated them to
hg19 using the liftOver tool. We used GENCODE v12
gene annotations (51). We labelled a locus ‘coding’ if for
any transcript it is part of coding sequence; ‘non-coding
exon’ if it is not part of coding sequence for any transcript,
and there is a splicing variant where it is part of an exon,
and ‘an intron’ if it is neither coding nor exonic, and it is
part of an intron for any transcript.

Exome capture data

To compare Alu insertion calls made with WGS and
exome capture HTS data, we used the SRS228129
sample. WGS calls were filtered as explained earlier, by
choosing a filter based on performance when run against
the faux reference. To be reasonably sure that those Alu
insertions actually intersected (or were close to) the
capture kit and exons, we only considered WGS calls
with a confidence interval <100 bp (calls with larger con-
fidence intervals are almost always made with no break-
points detected, and their position can be imprecise.).

We could not use the faux-reference simulation to set
parameters for the exome data because there are not
enough recently inserted Alus in the proximity of the
probes/exons. Instead, we filtered exome capture data
with the following parameters: len � 150; supp � 10;
null � 20 %; ci-len � 100 (refer to the Filters
subsection for definitions). In particular, every exome
capture Alu call was required to be supported by at least
10 read pairs. The exome data sets vary widely in coverage
(100� to 283�), making them difficult to filter
consistently. We did not try many parameter settings;
final selected settings were validated to have the fraction

of identified variants that were AluYs (as opposed to
AluS/J) �90%, the same ratio observed with WGS data.

RESULTS

In this section, we start by presenting the results of
running alu-detect on seven human genomes
(including two trios) and 96 exome data sets, comparing
our results with those of previous methods. We then use
alu-detect to explore the nick-site preferences of Alus
insertions and also explore the distribution of novel Alus
in the genome while correcting for these preferences.

WGS data

We ran alu-detect on WGS data from seven
individuals, including two trios. The results are
summarized in Table 1. We detected on average 1519
novel Alus per individual. The number of Alus is
correlated with individual ancestry: there were on
average 1339 and 1718 Alu calls per CEU and Yoruban
individual, respectively.
In Figure 5A, we show the number of calls versus

relative precision [fraction of our predictions that are in
the data sets of (8) and (48)], which we achieve on the
Yoruban trio by varying the target simulated precision
from 0.920 to 0.990 in steps of 0.005. We also display
data corresponding to (6) and (7).
In Figure 5B, we show the comparison of our Alu calls

with those made by (6) and (7) on the Yoruban trio.
Compared with (6), we make more calls, but fewer of
them are unique to our study, which suggests better
precision. Compared with (7), we have higher recall,
making on average 769 more calls, of which 515 are
previously identified Alus by other studies, but our
relative precision is lower. We emphasize this is a
comparison of the results, not of the methods behind the
results, because different studies used different HTS data
sets for the same individuals.
To directly compare our method with the method of (7),

we ran alu-detect on two of the HTS data sets
included in that study: SRX006833 (36 bp Illumina
reads) for NA18506 and SRX016231 (100 bp Illumina
reads) for NA18507. We compared the Alu insertion
calls in (7) and those made by alu-detect with two
other sets of calls: those in (8) and (48), (mostly calls
made in other individuals, and hence more useful for
evaluating precision) and calls in (6) for that same
individual (and more useful for evaluating recall). The
results, summarized in Table 2, demonstrate the
complementary strengths of the methods: the method of
(7) has higher precision, whereas our method has better
recall. The difference in recall is especially noticeable with
newer 100 bp reads used for the NA18507 data set, which
are more amenable to our split-read mapping approach.
On these data, alu-detect has overall nearly double the
recall of (7) (0.732 versus 0.390), with > 90 % of the calls
detected with one or more breakpoint. Overall, alu-
detect achieves a higher f-score (harmonic mean of
precision and recall) compared with (7).

Figure 4. Alu insertions next to a reference Alu. We show the relevant
regions around a reference Alu, along with two novel Alu insertions
with their reference mappings. Novel Alu one is inserted on the positive
strand of the head region of the reference Alu, and novel Alu two is
inserted on the negative strand of the tail region of the reference Alu.
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PCR validation of individual variants

We worked with The Centre for Applied Genomics
(Toronto) to perform PCR validations on 10 random
calls with one breakpoint detected and 10 random calls
with two breakpoints detected. PCR primers were
designed to be �100—150 bp away from the confidence
interval of each call. Thus, the reference allele was
expected to generate a product of �250—350 bp,

whereas an allele with a novel Alu would generate an
amplification product of >550 bp.

Of the 10 calls with one breakpoint detected, six (three
heterozygous, three homozygous) were validated by the
PCR experiment, whereas of the 10 calls with two
breakpoints, three PCRs failed, whereas of the seven
that generated a product, six validated the insertion (five
heterozygous, one homozygous). Interestingly, when we
inspected the five calls that only generated the reference
allele (and thus appear to be false positives), we found that
each of them is also reported (in multiple individuals) by
all of (6), (7), and (8). Moreover, two of these five calls
also appear in dbRip (48), and one of them was PCR
validated by a previous study. Thus, although these calls
may be false positives, they may also be poorly accessible
to PCR validation, for example, because our probes were
placed across the breakpoints of the novel insertion, or the
amplification product with the novel insertion is too long
for PCR.

We also applied Sanger sequencing to the products of
the six calls with two breakpoints detected that showed
evidence of an insertion allele. Five of the six Alu head
breakpoints and five of the six Alu tail breakpoints were
confirmed as called by alu-detect either through
automatic or manual inspection of the traces (sequencing
quality drops significantly at the breakpoint owing to a
mixture of the reference and insertion alleles). The
remaining Alu head breakpoint was miscalled by 12 bp

Table 1. Summary of calls on WGS data sets

Sample cv tlen prel rsim sup calls 1 brk 2 brk

NA12877 55 322 0.707 0.834 13 1328 1327 346
NA12878 57 322 0.694 0.841 12 1379 1337 329
NA12882 54 322 0.702 0.835 13 1310 1310 367
NA18506 44 310 0.596 0.864 6 1727 1570 429
NA18507 45 311 0.602 0.864 7 1634 1492 419
NA18508 45 302 0.590 0.864 8 1794 1656 511
SRS228129 41 329 0.671 0.865 6 1461 1267 336

We show coverage and mean template length for all HTS data sets
(The reads were always 100 bp paired.).
All calls were made by selecting a filter with simulated precision psim of
at least 0.97 and maximizing recall. We display relative precision prel
[percentage of calls in (8) or (48)], simulated recall rsim, the number of
read pairs required to support each call based on our parameter
selection simulation (supp), the total number of filtered calls (calls),
those with at least 1 breakpoint detected and those with both
breakpoints detected.

Figure 5. Alu calls on the Yoruban trio. Columns, in order: NA18506 (son), NA18507 (father), NA18508 (mother). Top: Number of calls versus
relative precision achieved by alu-detect. For x ranging from 0.920 to 0.990 in steps of 0.005, we show the filter parameters that achieve
simulated precision at least x and maximizes simulated recall (x ¼ 0:970 is highlighted). We also show data points corresponding to the results of (6)
and (7). Bottom: Intersections of calls on each sample between studies (area-proportional). Next to the study identifier: calls made and relative
precision (fraction of the calls also present in dbRIP or Stewart et al.). The numbers in the diagram do not always add up because interval
intersection is non-transitive.
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owing to the presence of reference Alu at the insertion
position, whereas the remaining Alu tail breakpoint was
inconclusive (the trace was unreadable).

Non-mendelian calls

The rate of Alu insertions is estimated to be about 1 in 20
births (52) and (14). Having analysed two trios, we expect
to see most likely none, and at most one or two Alu calls
in the children that are not present in either parent. For
the Yoruban trio, there are 88 calls made in the son
(NA18506) that do not match any calls from either
parent (NA18507, NA18508). However, after removing
all Alu call thresholds (e.g. only requiring two fragments
to support the insertion; see ‘Materials and Methods’
section for full list of parameters), only 4 of 88 do not
match any unfiltered call from either parent. Moreover,
one of these calls appears in (8), and the others were
labelled as part of the AluSx subfamily, which is no
longer active, making it unlikely they are authentic de
novo insertions in the child. In the case of the Central
European trio, there are 70 calls in the son (NA12882)
that do not match calls from either parent (NA12877,
NA12878), but only 6 of 70 do not match any unfiltered
call in the parents. On closer inspection, the alignment
score for each of these calls is low, and some of them
overlap existing Alus in the reference, making it more
likely they are false positives. In general, the dramatic
drop in candidate de novo events when we remove filter
thresholds in the parents suggests that these non-
Mendelian calls are much more likely to be false negatives
(in the parents) rather than false positives (in the children),
which is consistent with our simulation results.

Alu detection from exome capture sequencing

An important feature of alu-detect is its ability to
identify novel retrotranspositions in the immediate
proximity of exons from whole-exome capture sequncing
experiments. Exome capture data typically have

additional biases compared with WGS, including uneven
coverage and strand bias at the ends of the capture probes.
To evaluate the accuracy of alu-detect on such data,
we compared the Alu insertion calls made with genomic
and exomic data for the SRS228129 individual from (50),
for which the genomic data set had 41� coverage
(SRX083314) and the exomic one was generated with
the Agilent SureSelect Human All Exon 50Mb kit and
had 100� coverage (SRX083311).
We identified Alu insertion calls with alu-detect in

three (overlapping) sets of regions: all exons (coding and
untranslated), coding exons (excluding untranslated) and
locations of the probes in the exome capture kit (the
probes target most, but not all exons, and often do not
fully span them). With these calls serving as the ground
truth, we then evaluated the ability of exome capture data
to identify the same variants. To emphasize the effect of
variability in sequencing coverage, we separately show
data for regions where exome capture data had coverage
of at least 10�, computed using 100 bp windows. The
results are summarized in Table 3. Overall, 9/12 (75%)
of genomic calls that took place inside the directly
targeted regions could be retrieved with exome capture
data, whereas the performance degraded if the insertion
location was outside of the probe. This was especially
notable in non-coding exons, which typically have fewer
probes.
To further evaluate the ability of alu-detect to

identify novel retrotranspositions from exome capture
data, we ran the tool on a data set of exomes generated
by the FORGE project, a Canadian consortium for the
study of rare disorders. We ran our method on 96 samples
from this repository. The mean coverage was 160� (min:
67�, max: 283�). After filtering, we found an average of
7.8 Alu calls per sample (min: 1, max: 20, total: 749). Only
243 calls were within 50 bp of an exon, of which 28 were
unique, with the following breakdown: 59 in total (unique:
9) interrupted a coding exon; 30 in total (unique: 4)
interrupted a non-coding exon; 86 in total (unique: 8)
fell within 50 bp of a 30 end of an intron, potentially
disrupting the splice site or the polypyrimidine tract; and
68 in total (unique: 7) fell within 50 bp of a 50 end of an
intron.
Although most of the disorders within FORGE are

solved, a small fraction does not have an identified
causative mutation. To determine whether any were due
to an Alu, we filtered out the Alu calls occuring in more
than five samples between the samples in FORGE, as well
as (6), (7), (8), and (48). We were left with five potential
Alu insertions investigate: one interrupting the coding
sequence of ACAD11, one interrupting an exon
downstream of the stop codon of TTLL5, and three
potentially interrupting the polypyrimidine tract in
introns of LOC646278 (3 bp upstream of a coding exon),
FASTKD1 (27 bp upstream of an exon) and GNE (17 bp
upstream of an exon). None of these calls segregated
between affected and non-affected individuals in the
respective pedgrees, indicating they are not causative.
However, they demonstrate the types of analyses that
can be performed with alu-detect using exome
capture data only.

Table 2. Comparison of calls made by (7) and alu-detect on the

same HTS data set

set dbRip+Stewart Hormozdiari

n.calls prec. recl. f-scr. prec. recl. f-scr.

NA18506: 36 bp paired Illumina
Lee 1177 0.732 0.184 0.293 0.822 0.562 0.668
ad, all 1615 0.628 0.216 0.322 0.765 0.719 0.741
ad, 1 brk 1275 0.653 0.178 0.279 0.780 0.578 0.664
ad, 2 brk 281 0.705 0.042 0.080 0.829 0.135 0.233

NA18507: 100 bp paired Illumina
Lee 726 0.771 0.119 0.207 0.848 0.390 0.534
ad, all 1646 0.587 0.206 0.305 0.702 0.732 0.717
ad, 1 brk 1543 0.614 0.202 0.304 0.730 0.714 0.722
ad, 2 brk 734 0.666 0.104 0.180 0.767 0.357 0.487

We break down the calls made by alu-detect into all, those made
with at least one breakpoint detected, and those made with both
breakpoints detected. We show precision, recall and f-score of these
call sets compared with two other calls sets: calls in dbRIP (6) and
calls in (8) and (48) (mostly in other individuals), and calls made by (6)
in that same individual.
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EN nick site preferences

We used the Alu calls made on the WGS data sets to
analyse the distribution of EN nick sites that lead to a
successful Alu integration. We applied more stringent
filtering criteria than before, keeping only those calls for
which we were able to detect both breakpoints, which had
an inner length of at least 300 bp, and which had a TSD of
length <50 bp (consistent with TPRT). If two or more
calls were overlapping between the seven analysed
individuals, we kept only one such call. In total, we were
left with a set of 961 high-confidence Alu insertion calls.
First, for every 6mer s, we compute the EN nick site

preference for s as:

pðsÞ ¼
#insertions using s

#insertions
�

1

#occurences of s in genome
:

Intuitively, this is the probability that a new insertion
cleaves the genome at a specific location, given that s is the
6mer at that location. The results are presented in Table 4.
We observe that EN prefers TT/AAGA as much as the
more widely reported TT/AAAA The absolute count of
nick sites of the latter form is larger only because that
6mer has a higher number of occurences.

Alu distribution

As the process of Alu insertions is not completely
understood, it is not clear whether it depends on factors
other than the genomic 6mer at the initial EN nick site.
For example, (28) observes that following an Alu insertion
the initial EN cleavage site continues to exist at the 50 end
(‘head’) of the Alu, but not at its 30 end (‘tail’). However,
analysis of 27 (likely fixed) insertions, showed
approximately equal numbers of insertions next to the
heads and tails of existing Alus (28). We used alu-
detect, including 961 polymorphic insertions identified
in seven genomes to evaluate whether we can observe any

statistically signifcant enrichment or depletion of Alus in
proximity to reference Alus.

Having computed EN nick site preferences, we consider
the distribution USP of Alu insertions, where EN nick sites
are chosen solely on the basis of the 6mer at that site.
Specifically, the probabilty that a new Alu will be
inserted on the positive strand between positions x and
x+1 equals p(s), where s ¼ Gx�1,...,x+4 is the 6mer at
positions x� 1, . . . ,x+4 of the genome:

Pr
USP

insertion between x,x+1½ � ¼ p Gx�1,...,x+4

� �
: ð1Þ

Using Equation (1), the probability under USP that an
Alu will be inserted in a stranded segment S is the sum of
probabilities that it will be inserted on the positive strand
in between every 2 consecutive locations in S:

Pr
USP

insertion in S½ � ¼
X

x,x+12S

Pr
USP

insertion between x, x+1½ �:

For double-stranded segments, we sum over both
positive and negative strands. If S is the whole genome,
the probability of insertion being in S is 1.

An equivalent way of describing USP is as follows. For
every insertion: (i) a 6mer is chosen using the observed
distribution of 6mer nick sites, then (ii) an actual nick
site is chosen uniformly at random among all locations
in the genome where that 6mer appears. Furthermore,
insertions are independent of each other. We refer to
USP as ‘uniform modulo nick site preferences’. For com-
parison, we also include tests of how well the completely
uniform distribution U, where every Alu is placed at a
location chosen uniformly at random, models Alu
insertions.

When n Alu insertions are observed, the number that
are inserted in S should follow the binomial distribution

Table 3. WGS versus Exome Capture

Region GS XS XS\GS
GS

XS\All�GS
XS

Coding exons 12 10 5/12=0.42 8/10=0.80
Exons 25 11 6/25=0.24 9/11=0.82
Probes 12 12 9/12=0.75 11/12=0.92
Coding exons, coverage � 10� 9 10 5/9=0.56 8/10=0.80
Exons, coverage � 10� 11 11 6/11=0.55 9/11=0.82
Probes, coverage � 10� 12 12 9/12=0.75 11/12=0.92

GS: calls from WGS HTS data, with CI � 100.
XS: calls from exome capture HTS data, with CI � 100. All-GS: calls
from WGS data, without the CI filter. These are proximal to the
genomic features but may not directly intersect them. XS \ GS/GS:
calls made with WGS data in the corresponding region that were also
found with exome capture data in that region, i.e. ‘recall’ of exome
capture relative to WGS. XS \ All-GS/XS: calls made with exome
capture data in that region that match some call made with WGS data,
i.e. ‘precision’ of exome capture relative to WGS. For Exons and Coding
Sequence, we include the full set of regions from our annotation,
regardless of whether they are captured by the kit. Bottom rows:
Genomic calls are restricted to regions where exome capture data have
coverage of at least 10�. Coverage was computed by tiling the genome
with 100bp windows. All regions are extended by 50bp.

Table 4. Site preferences

6mer s Use(s) Count(s) pðsÞ � 10�10

TTAAGA 66 2 288 139 299.8
TTAAAA 187 6 962 385 279.1
TTAGAA 31 2 649 151 121.6
ATAAGA 24 2 079 719 119.9
ATAAAA 64 6 336 702 104.9
GTAAGA 12 1 291 580 96.5
TTGAAA 27 3 520 814 79.7
TTAAAG 20 2 683 435 77.4
GTAAAA 17 2 572 529 68.6
AGAATT 17 3 081 468 57.3
CTAAAA 18 3 495 396 53.5
AGAAAT 21 4 618 715 47.2
TCAAAA 19 4 226 703 46.7
AGAAAA 30 7 090 365 43.9
AGAAAG 15 4 056 864 38.4
ACAAAA 20 5 675 151 36.6
ATGAAA 13 3 884 418 34.7
TTAAAT 11 4 192 065 27.2
TTTAAA 10 6 870 404 15.1

The probability that a new Alu insertion by TPRT will initially cut the
genome between positions x and x+1, as a function of the 6mer at
positions x� 1, . . . ,x+4. use(s): the number of times we observe the
kmer s used by an Alu insertion. count(s): the number of times s
appears in the (double stranded) genome.
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insertion in S½ �

� �
. We thus test for statistically

significant enrichment or depletion of Alu insertions
under USP and U in various segments S using a single-
sided binomial test. The set of regions tested included
exonic regions as well as regions in the vicinity of
existing Alus (see ‘Materials and Methods’ section
for boundary definitions). The results are presented in
Table 5.

The results for genic regions are as expected: we observe
a statistically significant depletion of Alu insertions in
both exons and introns, and no insertions at all in
coding sequence, likely due to functional constraint.
More interestingly, once we correct for nick site
preferences, we observe no statistically significant
enrichment of Alu insertions in various regions around
reference Alus. This suggests that EN nick sites that lead
to successful Alu integration are not influenced by factors
that would continue to exist in the genome following an
Alu insertion, for otherwise we would have observed an
enrichment of Alu insertions in the vicinity of other Alus.

Although there appears to be a slight depletion of Alu
insertions on the positive strand in the head region of
reference Alus (P ¼ 0:028), we believe this is an artefact
of the analysis methodology. The alu-detect is more
‘reluctant’ to call Alu insertions in on the positive strand
of reference Alus (see the ‘Filtering’ section under
‘Materials and Methods’ section). This likely results in
lower recall in those regions. To evaluate its extent, we
computed the simulated precision and recall (using the
faux-reference simulation) of our method both overall,
and for Alu insertions on the positive strand near
reference Alus. The ‘high-confidence’ calls used in the
enrichment analysis achieve 0.990 simulated precision
and 0.547 simulated recall throughout the genome, and
0.961 simulated precision and .470 simulated recall on
the positive strand near ‘clear’ Alus. Precision and recall
for Alu insertions on the negative strand of existing Alus is
similar to the genome overall. (The recall numbers are
lower than those shown earlier, e.g. Table 1, as here we
require both breakpoints to be detected for the call to be
made.) Thus, recall for insertions on the positive strand
near ‘clear’ Alus is �15% lower than recall in the genome
as a whole. If, to correct for this, we add 15% to the
number of observed calls in the rows of Table 5
corresponding to regions near ‘clear’ Alus on the
positive strand, the depletion observed near the head of
reference Alus is no longer significant (P ¼ 0:051).

DISCUSSION

Nick site preferences

The breakpoint detection ability of alu-detect enabled
us to study the ‘preferences’ of EN nick sites that lead to
successful Alu integration using novel Alu insertion calls
from seven samples. Nick site ‘usage’ was analysed by (29)
(linearly related to preference), but using Alus insertions
obtained by comparing the NCBI and Celera genomes.
Our results are overall similar, but there are differences.
In this study, we find that the top two preferred sites are

TT/AAAA and TT/AAGA. They are comparable with each
other, and the preference for any other site is smaller by a
factor of two. In contrast, (29) find that GT/AAGA and
AT/AAGA have larger preferences. This discrepancy may
be explained by the fact that among all relevant 6mers,
these two have the lowest absolute counts in the genome
(see Table 4), therefore possibly the largest variance of
observed site preference between individuals.

Parameter selection

Our proposed faux-reference simulation works to
eliminate two biases: First, each Alu ‘target’ that we
remove from the real reference (creating a ‘fake’ reference)
was inserted at some point during evolution. Second, we
do not simulate HTS data, instead, using real HTS data to
detect the Alu targets.
For alu-detect, the simulation was an integral part

of the runs on WGS data, as it is used to set filtering
parameters for Alu insertion calls. The central assumption
in this process is that precision and recall achieved in
detecting Alu targets against the faux reference is closely
related to precision in detecting novel Alus against the real
reference. Our results show that this assumption holds for
our data sets, and our method for setting parameters
should generalize to other data.
Even though two common major biases were elimi-

nated, some biases remain. First, during the simulation,
an Alu detected on the faux reference that matches a
known novel Alu is removed from consideration. In
doing that, we are assuming they are more likely real
novel Alus in the donor. This can introduce a bias
because if the Alu is not present in the donor, the call
should be considered a false positive of the simulation.
This bias should be small because the fraction of locations
where false positives can be missed in this way is small.

Table 5. Alu insertions in the exome and in other Alus

Region Obs U USP

exp P-value exp P-value

Coding sequence 0 11.0 #0.000 5.4 #0.011
Exons (untranslated) 9 21.8 #0.004 19.6 #0.011
Introns 472 463.3 "0.297 499.0 #0.044
Inner introns 469 458.6 "0.262 493.9 #0.057
Genes 479 496.0 #0.144 524.0 #0.002
Upstream 200bp 1 2.1 #0.302 1.4 #0.499
Alu head region (+) 6 10.3 #0.117 13.5 #0.028
Alu head region (�) 9 10.3 #0.403 8.9 "0.557
Alu middle region (+) 10 13.9 #0.177 10.0 "0.559
Alu middle region (�) 1 13.9 #0.000 1.6 #0.427
Alu tail region (+) 20 10.3 "0.002 17.2 "0.288
Alu tail region (�) 8 10.3 #0.287 8.4 #0.519
Alu overall (+) 36 34.5 "0.430 40.7 #0.250
Alu overall (�) 18 34.5 #0.003 18.9 #0.465

There were 961 trials in total. For exome-related regions, we consider
insertions in either strand together. For Alu-related regions, we
consider insertions in the same (+) and opposite (–) strands separately.
For precise region definitions see ‘Materials and Methods’ section. U:
Alu insertions are completely uniform over the genome. USP: Alu
insertions are uniform modulo EN nick site preferences. Up/Down
arrows: observation is larger/smaller than expectation.
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Second, true novel Alus in the donor that are not
previously known might appear as false positives of the
simulation, leading to slight under-estimate of precision,
though the effect should be small. Finally, young Alus
have longer and cleaner poly-A tails, and more generally,
reference Alu targets are close enough to their respective
Alu consensus sequence to permit annotation, whereas
true novel Alus do not have this restriction.

Future directions

One notable feature not currently implemented in alu-
detect is the ability to differentiate between
homozygous and heterozygous calls. Conceptually, to
make this distinction, one must re-inspect the reference
mappings after producing Alu insertion calls to look for
evidence supporting the reference allele at the locations of
those calls.
Furthermore, alu-detect enables other analyses.

One possible direction would be to locate, for each Alu
insertion, its potential origin (the reference Alu that it was
copy-pasted from), in the hope of identifying active Alu
elements.

CONCLUSION

The alu-detect software tool detects novel Alu
insertions directly from HTS reads, with flexible tradeoffs
between precision and recall. Although all data sets
analysed consisted of (state-of-the-art) 100 bp paired
reads, the tool itself is designed to work with other types
of base-space HTS data: paired or unpaired, and shorter
or longer in length. Our method improves on previous
work in several ways:

Identifying Alu breakpoints and TSDs

The alu-detect attempts to identify the precise
breakpoints of each Alu insertion and identify the full
length of the TSD; a confidence range is only reported
when the breakpoints could not be confidently mapped.

Identifying Alus from exome capture HTS

The exome capture kit affects the distribution of reads
across the sequenced regions. To our knowledge, alu-
detect is the first method for novel Alu identification
that works with exome data.

Alus in the vicinity of other Alus

The alu-detect can identify Alu insertions in
immediate proximity of other Alus, whereas most
previous methods make no calls in such regions.

Distribution of Alus across the genome

We use observed nick site preferences to identify areas of
increased or reduced Alu activity across genes and other
Alus in the reference. We demonstrate that although there
appear to be statistically significant enrichments and
depletions of Alus in regions proximal to other Alus,
this can be explained by nick site preferences, and thus
the DNA content of Alus. This argues against Alu

insertions being affected by a factor that would continue
to exist in the genome following an Alu insertion, e.g. an
upstream (or downstream) motif that remains after an Alu
insertion.
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