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Cocaine- and amphetamine-regulated transcript (CART) peptides are neuropeptides
that are expressed in brain regions associated with reward, such as the nucleus
accumbens (NAc), and play a role in cocaine reward. Injection of CART into the NAc can
inhibit the behavioral effects of cocaine, and injecting CART into the ventral tegmental
area (VTA) reduces cocaine-seeking behavior. However, the exact mechanism of these
effects is not clear. Recent research has demonstrated that Ca2+/calmodulin-dependent
protein kinase II (CaMKII) and inhibitory G-protein coupled receptor (GPCR) signaling are
involved in the mechanism of the effect of CART on cocaine reward. Hence, we review
the role of CaMKII and inhibitory GPCR signaling in the effect of CART on cocaine reward
and provide a new insight into the mechanism of that effect. In this article, we will first
review the biological function of CART and discuss the role of CART in cocaine reward.
Then, we will focus on the role of CaMKII and inhibitory GPCR signaling in cocaine
reward. Furthermore, we will discuss how CaMKII and inhibitory GPCR signaling are
involved in the mechanistic action of CART in cocaine reward. Finally, we will provide our
opinions regarding the future directions of research on the role of CaMKII and inhibitory
GPCR signaling in the effect of CART on cocaine reward.
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INTRODUCTION

Cocaine is a strong psychostimulant drug that can inhibit the reuptake of serotonin, norepinephrine
and dopamine (DA). This results in greater concentrations of these three neurotransmitters in the
brain. The drug can easily cross the blood-brain barrier and cause the user to feel intense euphoria
(Pomara et al., 2012). In 2014, 18.3 million people were using cocaine worldwide. Cocaine can be
administered by smoking, intravenous injection or inhalation, all of which can produce intense
euphoric effects (United Nations Office on Drug and Crime (UNODC), 2016). Unfortunately,
this euphoria can lead to increased frequency of use and dosage to obtain the same effect and to
avoid the uncomfortable physiological and psychological effects linked to the cessation of drug use
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TABLE 1 | The evidence that cocaine- and amphetamine-regulated transcript (CART) plays an important role in cocaine reward.

Species Methods Results Mechanisms References

Rat Cocaine administration CART expression ↑ in brain
regions associated with reward

cAMP/PKA/CREB Lakatos et al. (2002) and
Cho et al. (2017)

Rat Intra-NAc CART Locomotor activity ↓ Inhibits the influx of Ca2+ Jaworski et al. (2003) and
Peng et al. (2014)

Rat Intra-NAc CART Self-administration ↓ Ca2+/CaMKII, D3R Jaworski et al. (2003) and
Jaworski et al. (2008)

Rat Intra-paraventricular
thalamus CART

Cocaine-seeking behavior ↓ Unclear James et al. (2010)

Monkey Cocaine administration CART expression ↑ in brain
regions associated with reward

cAMP/PKA/CREB Nader et al. (2002)

Human Genetic studies Contributed to the etiology of
cocaine dependence

Unclear Lohoff et al. (2008)

(Hou et al., 2014). Long-term and repeated cocaine use harms
human health and contributes to crime, which places a great
burden on families and society. However, the problem of cocaine
abuse continues to spread. Therefore, there is an urgent need for
new treatments to control and reduce the harm of cocaine abuse.

Cocaine- and amphetamine-regulated transcript (CART) is
a neuropeptide that is expressed in brain regions associated
with reward, such as the nucleus accumbens (NAc). During
the last two decades, increasing evidence has demonstrated that
CART plays a role in cocaine reward (Table 1). First, high
densities of CART-containing nerve terminals are localized in
brain regions associated with reward (Fagergren and Hurd,
2007). Second, injection of CART into the NAc can attenuate
the behavioral effects of DA and cocaine (Hubert et al., 2008).
Third, injection of CART into the paraventricular thalamus
(PVT) can suppress cocaine-seeking behavior in rats (James
et al., 2010). However, the mechanism by which CART inhibits
the behavioral effect of DA is still not clear. Recently, some
research has shown that Ca2+/calmodulin-dependent protein
kinase II (CaMKII) and inhibitory G-protein coupled receptor
(GPCR) signaling are involved in the mechanism of the effect
of CART on cocaine reward, which may explain how CART
inhibits the behavioral effect of DA and may help establish a
more comprehensive mechanistic model of the effect of CART
on cocaine reward. In the following sections, we will first review
the role of CART in cocaine reward and note the shortcomings
of the currently proposed mechanism for the effect of CART
on cocaine reward. Then, we will focus on the role of CaMKII
and inhibitory GPCR signaling in cocaine reward. In addition,
we will discuss how CaMKII and inhibitory GPCR signaling
are involved in the mechanism of the effect of CART on
cocaine reward. Finally, we will provide our opinions regarding
the future directions of research on the role of CaMKII and
inhibitory GPCR signaling in the effect of CART on cocaine
reward.

ROLES OF CART IN COCAINE REWARD

The Biological Features of CART
Douglass et al. (1995) used differential display PCR to screen for
specific mRNAs that are transcriptionally regulated by cocaine
and amphetamine in specific brain regions in rats. The authors

identified a previously uncharacterizedmRNA that was extracted
from the hypothalamus by Spiess et al. (1981) and named it
CART (Zhang et al., 2012). In addition to the brain, CART
is also expressed in the pituitary gland, adrenal medulla and
pancreas in humans. The CART peptide contains 116 amino
acids encoded by the cart gene, which is located on the 5th
chromosome in humans (Robson et al., 2002). The cart gene
is approximately 2 kbp in length and contains two introns
and three exons. There is a cyclic adenosine monophosphate
(cAMP) response element (CRE) in the start codon of the
cart gene (Perry Barrett et al., 2002). Therefore, CART could
be upregulated by cocaine through the cAMP/protein kinase
A (PKA)/CRE binding protein (CREB) signaling pathway. In
addition to humans, the CART peptide has been found in
other species, such as goldfish and mouse (Volkoff and Peter,
2001; Zhang et al., 2012). However, compared with humans,
there are two alternatively spliced variants within exon 2 of
rlCART. In goldfish, there are also two CART peptides. These
two CART peptides originate not from alternative splicing but
from the expression of two CART genes (Volkoff and Peter,
2001). Meanwhile, the sequence of the rat CART gene shows
great homology with the human gene (Zhang et al., 2012).
Many studies have demonstrated that the CART peptide can
attenuate the behavioral effects of DA and cocaine and plays an
important role in reward and reinforcement. In addition, the
CART peptide is involved in feeding, stress and the regulation
of the endocrine system (Asakawa et al., 2001; Kong et al.,
2003; Larsen et al., 2003; Kuriyama et al., 2004; Koylu et al.,
2006).

CART Abnormalities in Cocaine
Administration
CART mRNA has been found to be upregulated by cocaine
or amphetamine in the rat striatum (Volkoff and Peter,
2001). However, this result has not been consistently replicated
(Vrang et al., 2002). Hunter et al. (2005) have demonstrated
that chronic and acute administration of cocaine failed to
upregulate the levels of CART mRNA or peptide, but binge
administration of cocaine resulted in increased CART mRNA
in the NAc. The involvement of corticosterone may account for
the abovementioned inconsistent results (Hunter et al., 2005).
Binge administration of cocaine could cause significant stress to
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the rats, and corticosteroids are involved in stress. Meanwhile,
Hunter et al. (2005) found that corticosterone administration
produced a significant increase in CART mRNA, which suggests
that CART mRNA may be regulated by cocaine under certain
conditions, such as binge administration, and this may at least
partly involve corticosterone. As estradiol may interact with the
DA system, there is also a sex difference in the effect of cocaine
on CART. Fagergren and Hurd (1999) found that CART levels
were elevated in the medial accumbens shell and the central
amygdala of male but not female rats after the administration
of cocaine (Rodrigues et al., 2011). Additionally, this research
showed that CART mRNA expression did not exhibit marked
alterations in specific regions of the rat brain during the early
phase of cocaine self-administration (Rodrigues et al., 2011).
Furthermore, CART expression levels were increased in the NAc

of human cocaine abusers (Albertson et al., 2004; Bannon et al.,
2005).

The Effect of CART on Cocaine Reward
Injection of CART peptide into the accumbens had no effect
on locomotion (Kuhar et al., 2005). However, intra-accumbal
CART attenuated the locomotor activity (LMA) produced by
systemic cocaine and amphetamine administration. As cocaine
induces LMA by potentiating dopaminergic transmission, the
effect of CART 55-102 on DA-induced LMA was examined to
explain the abovementioned phenomenon. As expected, CART
peptide dose-dependently attenuated locomotion produced by
intra-accumbal infusions of DA. These studies suggested that
CART attenuates cocaine-induced LMA by attenuating the
behavioral effect of DA. Meanwhile, intra-ventral tegmental

FIGURE 1 | The effect of cocaine- and amphetamine-regulated transcript (CART) on cocaine reward. (A) Microinjecting the CART peptide into the ventral tegmental
area (VTA) causes an efflux of DA in the NAc and induces locomotor activity (LMA). (B) Pretreatment of the VTA with CART can decrease the efflux of DA in the NAc
and attenuate the locomotor effect induced by cocaine. (C) Microinjection of CART into the NAc had no effect. (D) Pretreatment with the CART peptide can reduce
the sensitization of neuron response to DA and attenuate the locomotor-inducing effects of cocaine in the NAc. NAc, nucleus accumbens; VTA, ventral tegmental
area; DA, dopamine.
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area (VTA) injection of CART induced LMA and promoted
conditioned place preference. The effect on LMA was dose
dependent and was blunted by a DA receptor antagonist
(Kimmel et al., 2000) However, pretreatment of the VTA with
CART attenuated the locomotor effect induced by cocaine
administration (Jaworski et al., 2007). Regarding the different
results in the NAc and VTA, the potential mechanism may
involve the cell bodies of the mesolimbic system that are located
in the VTA; CART can produce weak psychostimulant-like
effects and causes an efflux of DA in the NAc, which produces
weak LMA (Kuhar et al., 2005) and suggests that CART
can activate the DA system, but not in the same manner as
cocaine (Figure 1). Meanwhile, this inhibitory effect of CART
peptide also generalizes to other measures of dopaminergic
function such as reward/reinforcement. Jaworski et al. (2008)
found that injecting CART into the NAc could reduce cocaine
self-administration in rats. Furthermore, James et al. (2010)
reported that injection of CART into the PVT could suppress
cocaine-seeking behavior in rats (James et al., 2010). However,
the mechanisms through which CART influences the DA
system are still unclear. Therefore, in the following sections,
we provide a putative mechanism that involves CaMKII and
inhibitory GPCR signaling to explain this abovementioned
phenomenon.

ROLES OF CaMKII IN COCAINE REWARD

The Biological Features of CaMKII
CaMKII is a holoenzyme composed of subunits expressed
by four genes (α, β, γ and δ; Rosenberg et al., 2010). This
enzyme is abundant in brain cells, especially at the synapse.
In the rat forebrain, there are two isoforms of CaMKIIα and
CaMKIIβ. The functions and expression features of CaMKIIα
and CaMKIIβ are different; CaMKIIα is expressed specifically
in glutamatergic neurons (Liu and Murray, 2012), and the
activity of αCaMKII is vital for memory formation and synaptic
plasticity (Yamagata et al., 2009). CaMKIIβ is distributed
in inhibitory interneurons and glutamatergic neurons (Lamsa
et al., 2007). Activated CaMKII can phosphorylate its own
autophosphorylation site (T286 in the isoform). Thus, CaMKII
can convey information by diverse forms of Ca2+ transients
and serve as a dynamic regulator that converts activity-
dependent Ca2+ signals into different forms of plasticity and
synaptic activity (Hudmon and Schulman, 2002; Colbran and
Brown, 2004; Griffith, 2004). Recently, many studies have
demonstrated that Ca2+ and Ca2+-regulated second messenger
systems are involved in the behavioral response to cocaine in
animals, and CaMKII plays an important role in the behavioral
response to cocaine (Licata et al., 2004; Miller and Marshall,
2004).

CaMKII and Cocaine Behavioral
Sensitization
Cocaine can block the reuptake of DA and result in the
accumulation of DA in the synaptic cleft. The accumulated DA
can then promote glutamate release, which activates NMDA

receptors and causes Ca2+ influx through NMDA receptors
as well as L-type Ca2+ channels by activating D1 receptors
and desensitizing D3 receptors (Wakabayashi and Kiyatkin,
2012). The influx of Ca2+ causes the activation of CaMKII,
which promotes the phosphorylation of various targets and
produces different biological effects, such as promoting the
influx of Ca2+ and producing locomotion (Easton et al., 2014).
Previous studies have shown that injecting an L-type Ca2+

channel antagonist can inhibit the expression of a sensitized
behavioral response to amphetamine or cocaine (Park et al.,
2001; Mills et al., 2007). Meanwhile, a great deal of research has
shown that the overexpression of αCaMKII promotes behavioral
sensitization to cocaine. Furthermore, injection of a CaMKII
inhibitor (KN-93) into the VTA blunts the behavior sensitization
produced by cocaine; consistent with KN-93 findings, behavioral
sensitization to cocaine was attenuated in αCaMKII knockdown
mice (Licata et al., 2004; Zhen et al., 2007; Kadivar et al., 2014).
Together, these data demonstrate that CaMKII activity induced
by the influx of Ca2+ can regulate behavioral sensitization to
cocaine.

CaMKII and Cocaine-Associated Memories
Individuals frequently encounter environmental cues previously
associated with drug use that can increase craving and the
likelihood of relapse (Fuchs et al., 2009; Kalivas, 2009).
The ability of drug-associated memories to induce relapse
is perhaps the greatest obstacle to the successful treatment
of addictive disorders. Previous work has revealed that a
single cocaine exposure can induce neuronal activation and
long-term potentiation (LTP) in the VTA (the phosphorylation
of CaMKII is very important for the induction of LTP; Ungless
et al., 2001). Meanwhile, cocaine administration can increase
the phosphorylation of CaMKII, and intra-VTA inhibition of
CaMKII before cocaine conditioning blocks the acquisition of
cocaine conditioned place preference (Liu et al., 2014; Schöpf
et al., 2015). Together, those results suggest that CaMKII plays an
important role in the formation of cocaine-associated memories.
Furthermore, Rich et al. (2016) found that intra-basolateral
amygdala inhibition of CaMKII promoted the extinction of
cocaine-associated memory and led to a reduction in subsequent
cue-induced reinstatement, which provides a novel target for
preventing relapse to cocaine use.

ROLES OF INHIBITORY G-PROTEIN
COUPLED RECEPTOR SIGNALING IN
COCAINE REWARD

The Biological Features of Inhibitory
G-Protein Coupled Receptor Signaling
GPCRs are seven-transmembrane-domain receptors, which
transduce ligand-binding events into intracellular responses.
Depending on the α subunit type, GPCRs can be Gαs, Gαi/o,
Gαq/11 or Gα12/13 (Wettschureck and Offermanns, 2005;
Oldham and Hamm, 2008). Gαi/o can interact with downstream
effectors and inhibit excitatory effectors, includingmost isoforms
of adenylyl cyclase (AC) and some types of voltage-gated
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FIGURE 2 | Injection of CART blunts the effect of cocaine on inhibitory G-protein coupled receptor (GPCR) signaling and Ca2+/calmodulin-dependent protein kinase
II (CaMKII). Cocaine can block the reuptake of DA and result in the accumulation of DA in the synaptic cleft. The accumulated DA can decrease the sensitivity of the
D3 DA autororeceptors located on dopaminergic cells and favor somatodendritic DA release. Conversely, DA activates D1 DA heteroreceptors, desensitizes the
D3 DA autoreceptors located on dopaminergic cells, and stimulates AC, resulting in increased intracellular cAMP levels. However, injecting CART into the NAc
decreases the phosphorylation of CaMKIIα and D3R, which inhibits the activity of AC and reduces cocaine-induced LMA. D1R, dopamine D1 receptor; D3R,
dopamine D3 receptor; PKA, protein kinase A; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; AC, adenylyl cyclase; DAT, dopamine
transporter; CREB, cAMP-response element binding protein.

Ca2+ channels. Metabotropic γ-aminobutyric acid receptors
(GABABRs) and D3 receptors couple to and activate the Gi/o
subclass of Gα subunits and produce inhibitory signaling (Filip
et al., 2007). Currently, increasing evidence has indicated that
inhibitory GPCR signaling mediated by the Gi/o class of
GPCRs for the neurotransmitters GABA (GABABR) and DA (D3
receptors) plays an important role in cocaine reward (Goldstein
and Volkow, 2002; Vlachou and Markou, 2010; Figure 2).
Many studies have shown that GABABR, D3R and CART are
co-expressed in some brain regions, such as the NAc (Liu et al.,
2009; Hubert et al., 2010; Fu et al., 2016). Meanwhile, some
research has demonstrated that GABABR and D3Rs can interact
with CART (Hubert et al., 2010; Peng et al., 2014; Fu et al., 2016).
Therefore, GABABRs and D3Rs, as representative inhibitory
GPCR signaling are chosen to illustrate the involvement of
inhibitory GPCR signaling in the role of CART in cocaine
reward.

GABABR and Cocaine Reward
GABABRs are metabotropic receptors that belong to the GPCR
superfamily and are responsible for the neuromodulation of
GABA (Yamaguchi et al., 2002). The GABABRs are distributed
at pre- and post-synaptic sites. The activation of presynaptic
GABABRs can block calcium channels. The activation of

post-synaptic GABABRs activates potassium channels and
increases the flux of potassium from extracellular to intracellular
sites. Chronic cocaine administration decreases the functional
coupling of GABAB receptors in the rat brain (Kushner and
Unterwald, 2001; Jayaram and Steketee, 2004). Meanwhile,
the GABABR agonist baclofen attenuates cocaine-induced
hyperlocomotion, and intra-VTA application of baclofen blunts
cocaine self-administration (Brebner et al., 2000). Furthermore,
clinical research has shown that baclofen can attenuate
cue-associated cocaine craving and reduce cocaine use in a
double-blind placebo-controlled trial (Shoptaw et al., 2003).

D3R and Cocaine Reward
D3Rs are GPCRs and belong to the class of D2-like receptors,
which can inhibit AC and negatively modulate the activity
of PKA and its effectors (Rangel-Barajas et al., 2015). In
humans, D3Rs are expressed in the islands of Calleja, ventral
striatum/NAc, dentate gyrus and striate cortex (Heidbreder et al.,
2005). Compared with D2 receptors, D3Rs have a high affinity
for DA. Small changes in their number or function may lead
to dramatic effects on synaptic transmission, suggesting that
D3 receptors could be critical for modulating dopaminergic
function. Many studies found that a D3R agonist (BP897)
blunted cocaine-seeking behavior during the presentation of
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cocaine-associated cues in rats (Cervo et al., 2003; Gilbert et al.,
2005; Cortés et al., 2016). Furthermore, increasing evidence has
shown that selective D3 receptor agonists can attenuate cocaine
self-administration (Beardsley et al., 2001; Cheung et al., 2013).
Altogether, these studies indicate that D3Rs play a vital role
in cocaine addiction and may be a potential target for drug
treatments.

THE INTERACTION OF CART WITH CaMKII
AND D3R AFTER REPEATED COCAINE
ADMINISTRATION

Repeated cocaine administration decreases the sensitivity
of the D3 DA autororeceptors located on dopaminergic
cells and reduces G-protein-mediated K+ efflux, which
favors somatodendritic DA release (Licata and Pierce, 2003).
Conversely, DA activates D1 DA heteroreceptors, desensitizes
the D3 DA autoreceptors located on dopaminergic cells, and
stimulates AC, resulting in increased intracellular cAMP levels
(Licata and Pierce, 2003). The increased intracellular cAMP levels
can then activate PKA and ultimately upregulate the expression
of CART via the cAMP/PKA/CREB signaling pathway (Lakatos
et al., 2002). Meanwhile, the Ca2+ influx induced by cocaine
can activate CaMKII. Furthermore, the autophosphorylation of
CaMKIIα(T286) by Ca2+/CaM could enhance the binding of
CaMKIIα to D3Rs, which further stimulates the phosphorylation
of D3Rs and transiently inhibits the efficacy of those receptors
(Liu et al., 2009). Hence, the influx of Ca2+ induced by cocaine
can stimulate CaMKII, which inhibits the activation of D3R
(Avalos-Fuentes et al., 2015). Furthermore, previous studies
have shown that injection of CART into the NAc can decrease
the phosphorylation of CaMKIIα on threonine (T) 286 and
D3R (Peng et al., 2014; Fu et al., 2016), which demonstrates that
CART can inhibit the activation of CaMKII and further favor
the activation of D3R (Figure 2).

THE PUTATIVE MECHANISM BY WHICH
CART ATTENUATES THE BEHAVIORAL
EFFECT OF DOPAMINE

The influx of DA in the NAc activates the D1 DA heteroreceptors
and desensitizes the D3 DA autoreceptors, which activate
downstream targets, such as CREB expression and Ca2+

signaling, and produce LMA. Previous studies have shown
that CART attenuates the behavioral effect of cocaine by
inhibiting the behavioral effect of DA. However, the mechanisms
through which CART inhibits the behavioral effect of DA
are not clear. Some research has shown that injecting CART
into the NAc decreases the phosphorylation of CaMKIIα on
threonine (T) 286 and D3R and reduces cocaine-induced
LMA (Peng et al., 2014; Fu et al., 2016). Meanwhile,
research has demonstrated that injection of the CaMKIIα
inhibitor KN-93 into the NAc attenuates cocaine-enhanced
locomotion (Kadivar et al., 2014). Together, those results
suggest that CART inhibits Ca2+ signaling and attenuates
the behavioral effect of DA by reducing the phosphorylation

of CaMKII on threonine (T) 286. Specifically, activated
CaMKIIα can stimulate the phosphorylation of D3Rs and
transiently inhibit D3R efficacy (Liu et al., 2009). Meanwhile,
D3Rs could couple with Gi/o proteins and inhibit the
cAMP/PKA cascade (Avalos-Fuentes et al., 2015). Considered
together, the evidence suggests that CART can inhibit the
activation of CaMKIIα and further promote the activation
of D3Rs, which reduce the sensitization response to DA
and attenuate the behavioral effect of the neurotransmitter
(Figure 2).

FUTURE STUDIES

Since CART was first found to be upregulated by cocaine
administration, increasing attention has been paid to the role
of CART in cocaine reward (Zhang et al., 2012). Subsequently,
other studies have shown that injecting CART into the NAc
can attenuate cocaine-induced LMA (Jaworski et al., 2003).
By way of explaining this phenomenon further, injecting DA
into the NAc results in an increase in LMA, and injecting
both DA and CART into the NAc reduces the effect of
DA (Kuhar et al., 2005). These findings suggest that CART
opposes the actions of cocaine by influencing DA in the NAc.
Our previous research has shown that injecting CART into
the NAc reduces cocaine-induced LMA by decreasing the
phosphorylation of D3R and the expression of pCaMKIIα (Fu
et al., 2016). This result further demonstrates that cocaine-
induced LMA also involves CaMKII and D3R. Furthermore,
increasing studies show that GABABR may also involve in
the mechanistic action of CART in cocaine reward. Previous
studies have shown that CART peptides are present in a subset
of GABAergic projection neurons that express dynorphin,
which inhibits the effect of DA by activating the κ-receptor in
the NAc (Dallvechia-Adams et al., 2002; Hubert and Kuhar,
2006). Moreover, CART-containing axons and nerve terminals
activate dopaminergic neurons, with some CART peptide-
positive terminals forming inhibitory synapses onto GABAergic
interneurons in the VTA and substantia nigra (SN; Dallvechia-
Adams et al., 2001, 2002). Coincidentally, a previous report
(Hubert et al., 2010) has shown that CART-containing terminals
that originate in the NAc form symmetric synapses onto
inhibitory GABAergic synapses and inhibit cocaine-induced
locomotion in the ventral pallidum. These studies suggest
that there are functional associations between CART and
the GABAergic system (Bäckberg et al., 2003). Meanwhile,
some studies have shown that GABABR and CART are highly
expressed in NAc (Filip and Frankowska, 2008; Hubert et al.,
2010; Fu et al., 2016). Furthermore, injecting CART into the NAc
increases GABABR expression (data not shown). In addition,
baclofen (GABAB receptor agonist) antagonizes cocaine-
induced DA release in the NAc and blocks cocaine-induced
hyperlocomotion (Filip et al., 2015). Considered together,
the evidence suggests that CART may attenuate cocaine-
induced locomotion by influencing the expression of GABABR.
However, further investigations are needed to determine the
mechanism by which CART exerts its effect on cocaine-induced
locomotion.
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Compulsive drug-taking behavior and high rates of relapse
are the two main characteristics of drug addiction. Relapse is
a difficult problem to solve in drug addiction treatment and
occurs when the drug-seeking habit is reactivated by drug-related
cues. Initially, the addict may retrieve from memory strongly
compelling drug-related experiences, which then lead to further
drug-seeking and drug-taking behavior. Currently, research on
the effect of CART on cocaine reward mainly focuses on
LMA. There are only a few studies on the effect of CART on
relapse. James et al. (2010) found that injecting CART into
the PVT attenuates cocaine-seeking behavior in rats. However,
the mechanism underlying the inhibitory effect of CART on
cocaine-seeking behavior remains unclear.Meanwhile, decreased
cocaine-seeking behavior induced by CART may involve D3R
and GABABR. D3R agonists and GABABR agonists can inhibit
cocaine-seeking behavior (Beardsley et al., 2001; Cheung et al.,
2013; Blacktop et al., 2016). Furthermore, injecting CART into
the NAc decreases the phosphorylation of D3R (Fu et al.,
2016) and increases GABABR expression (data not shown).

The totality of the evidence suggests that CART not only
reduces the rewarding effects of cocaine by inhibiting cocaine
self-administration patterns but also prevents relapse to cocaine
use; therefore, it represents an important potential target for drug
treatments.
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