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The successful development of vaccines depends on the knowledge of the immunological
mechanisms associated with the elimination of the pathogen. In the case of schistosomes,
its complex life cycle and the mechanisms developed to evade host immune system, turns
the development of a vaccine against the disease into a very difficult task. Identifying
the immunological effector mechanisms involved in parasite attrition and the major tar-
gets for its response is a key step to formulate an effective vaccine. Recent studies have
described some promising antigens to compose a subunit vaccine and have pointed to
some immune factors that play a role in parasite elimination. Here, we review the immune
components and effector mechanisms associated with the protective immunity induced
by those vaccine candidates and the lessons we have learned from the studies of the
acquired resistance to infection in humans. We will also discuss the immune factors that
correlate with protection and therefore could help to evaluate those vaccine formulations
in clinical trials.
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INTRODUCTION
Vaccination is a great strategy to control and eradicate diseases (1)
and there is no doubt that the development of a vaccine against
schistosomiasis would have a massive impact on disease control
and would be useful as a complementary tool to the disease erad-
ication (2). Schistosomes in contrast to viruses and bacteria are
complex parasites that pass through different life stages in differ-
ent anatomic sites of its definitive host (3). The parasite has evolved
to live for decades in the host, developing interesting strategies to
evade host immune system [reviewed in Ref. (4)]. So developing
an effective vaccine against schistosomes is a difficult task. But
since the parasite does not replicate in its definitive host, even a
partial reduction in parasite burden is believed to have an impact
on disease control and eradication.

For decades, scientists have tried to develop an effective vaccine
formulation against schistosomes, and although two candidates
are under clinical trials, the search for new candidates and vaccine
formulations are far from ending. During all those years of stud-
ies on schistosome vaccine development, some immunological
mechanisms involved in parasite elimination have been proposed.
Complement activation has been suggested to be involved in par-
asite elimination, but from what we know so far, only recently
transformed schistosomes are killed by complement and 24 h
schistosomula became refractory to death induced by complement
activation (5). Since most of these studies on complement activa-
tion and parasite death were performed in vitro, the significance of
complement activation to parasite death in vivo can be questioned.
Schistosomes only get to host vessels 72 h after penetrating the host
and by this time the parasite is already resistant to death induced

by complement (6). Indeed, many evasion mechanisms developed
by the parasite have been described and give support to the idea
that the activation of the membrane attack complex might not be
the major mechanism involved in parasite elimination (7–10).

Antibody-dependent cellular cytotoxicity (ADCC) is another
immune mechanism that has been associated with parasite elimi-
nation. In individuals living in endemic areas for schistosomiasis,
ADCC involving IgE, IgG, eosinophils, monocytes, and platelets
was associated with the acquisition of resistance to reinfection
(11–13). In mice, ADCC has been highlighted as the immune
mechanism involved in parasite death in animals immunized with
Smp-80 and GST (14–16). However, eosinophils may not be the
major cell involved in ADCC in mice, since deficiency in this cell
did not result in any changes in worm and egg burden after infec-
tion, demonstrating that eosinophils do not play major roles in
parasite death (17).

Regardless of the mechanisms involved, antibodies are key play-
ers in the protective immunity induced by vaccines. Immuniza-
tion of mice deficient in B cells impaired the protective response
induced in wild-type animals by vaccination with irradiated cer-
cariae (18). Also, transference of sera from mice immunized with
schistosomula tegument (Smteg) or Smp-80 to a naïve recipi-
ent induce partial protection against challenge infection (19, 20).
Other evidence of the importance of antibodies in the protective
immune response induced by vaccination comes from the stud-
ies of Hewiston and coworkers (21). They demonstrated that the
protective immune response induced by attenuated cercariae was
abrogated in CD154-deficient mice. CD40–CD154 interaction is
involved in eliciting a humoral immune response dependent on
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T cells (22). The inoculation of IL-12 together with the vaccine
in these deficient mice restored all the cellular immune parame-
ters in mice lung but failed to restore protection and antibody
production (21).

Cellular immune responses are also important in parasite elim-
ination. Immunization of C57BL-6 mice deficient on IFN-γ, and
TNFRI impair or abrogate protection induced by vaccine (18, 23,
24). The role of IFN-γ and TNF-α in parasite killing seems to be
related to nitric oxide production by macrophage. Immunization
of mice deficient in the TNFRI with irradiated cercariae abrogates
protection and impairs nitric oxide synthase (iNOS) expression
in lung macrophages (24). Nevertheless, immunization of mice
deficient in iNOS result only in partial reduction on the protective
immunity induced by irradiated cercariae, indicating that nitric
oxide is not the major factor involved in parasite death (25).

In BALC-c mice, deficiency in IL-4R expression abrogates pro-
tection induced by irradiated cercariae that can be restored by
wild-type serum transference (26). Recently, protective immunity-
associated Th2 profile was observed in outbred mice immunized
with glyceraldehyde 3-phosphate dehydrogenase (SG3PDH) and
peroxiredoxin (TPX) (27). IL-10 and IL-17 production seems to
correlate negatively with protection. Blocking IL-10 with neutral-
izing antibodies enables protection against challenge infection in
mice previously infected with Schistosoma mansoni and treated
with praziquantel (28). In S. japonicum infection, blocking IL-17
with neutralizing antibodies enhances antibody production and
protection in infected mice (29).

Although CD8+ cells are classically related to immune
responses against intracellular pathogens, its role in schistosome
elimination has been recently described (30). Immunization of
mice with the S. japonicum 22.6/26GST coupled to Sepharose 4B
bead induced a significant reduction in parasite burden that was
associated with an increase in the number of activated CD8+ cells
(30). These activated CD8+ cells were able to promote death of
parasite carrying host MHCI molecules in its surface (30).

Coulson and Wilson (31) suggested that the major mecha-
nism involved in parasite elimination after immunization with
the irradiated cercariae vaccine was in fact the generation of an
inflammatory focus in the lung of immunized mice that impairs
parasite migration and therefore its transformation into adult
worms (31). Evidence that support this hypothesis is given by
histological examination of mouse’s lungs which demonstrates
that the parasites in the inflammatory foci were alive and when
recovered from the lung and transferred to a naïve recipient they
developed into adult worms (31, 32).

Besides all the knowledge generated and described so far, the
majority of the studies on immune mechanisms involved in schis-
tosome elimination have been performed using the irradiated
cercariae strategy that for security reason are not used in human
trials. Currently, researchers are developing vaccine formulations
based on one or a cocktail of parasite antigens and although there
are many studies on different vaccine strategies, little is known
about the effective protective mechanisms. In this review, the
immune components and mechanisms elicited by different vac-
cine strategies using subunit formulations containing promising
parasite antigens will be described. We will evaluate whether there
is (are) immune factor(s) that correlates with protection. And this

information might be used to rationally design a vaccine formu-
lation and to suggest a strategy that better elicits these protective
responses. These correlates of protection can also help to evaluate
whether those vaccines are effective during clinical trials.

THE IMMUNE RESPONSE ELICITED BY PROMISING
SCHISTOSOME ANTIGENS
Some of the schistosome antigens tested in pre-clinical tri-
als emerged as promising candidates to compose an anti-
schistosomiasis vaccine due to their ability to consistently induce
protective immune responses in different animal models, under
different formulations and vaccine strategies.

Two schistosome antigens are under clinical trials, the fatty
acid-binding protein of 14 kDa from S. mansoni, Sm14 (33), and
the glutathione-S-transferase of 28 kDa from S. haematobium
(34). The S. mansoni tetraspanin 2, TSP-2, is now been produced
under good manufacture practices (GMP) to soon be evaluated in
Phase I clinical Trial (35).

GLUTATHIONE S -TRANSFERASE
The 28 kDa glutathione S-transferase of S. mansoni, Sm28GST, is
one of the most promising vaccine candidates. Recognized as the
enzyme glutathione S-transferase (36), Sm28GST was identified in
tegument, parenchyma, and genital organs of schistosomula and
adult worm (16, 37). In the vaccine protocol, Sm28GST purified
protein was able to significantly reduce the worm burden in rats
and mice (16). In vitro experiments suggested that this protection
was related to the cytotoxic response since in the presence of anti-
Sm28GST antibodies and mouse eosinophils, schistosomula can
be killed through ADCC (15, 16). The importance of antibodies in
worm elimination was evaluated by the passive transfer of specific
antibodies which were able to induce protection against challenge
infection (16). A study performed by Boulanger and colleagues
(38) reinforced the immunoprotective potential of Sm28GST pro-
tein, by demonstrating that immunization of baboons with the
recombinant protein together with aluminum hydroxide (Alum)
confers up to 80% of protection.

Several studies demonstrated the importance of antibodies in
parasite elimination in animals immunized with Sm28GST. Mouse
immunization with one dose of rSm28GST plus bacillus Calmette-
Guérin (BCG) or Alum, as adjuvants, conferred protection against
S. mansoni infection, and induced significant production of spe-
cific IgG, IgA, and IgE (39). In another study, mice immunization
with Sm28GST produced in recombinant Mycobacterium bovis
BCG, regardless of the immunization route induced a vigorous
production of IgG1, IgG2a, and IgG2b levels, which was associated
with the neutralization of the Sm28GST enzymatic activity (40).
Intradermal immunization with a DNA encoding Sm28GST, also
induced a significant production of anti-Sm28GST IgG antibod-
ies, mainly IgG2a and IgG2b, with an ability to kill schistosomula
through ADCC mechanism (41). In addition to the antibodies, the
cellular immunity is also critical to Schistosoma elimination. Mice
immunized with the recombinant Sm28GST protein or with pep-
tide derived from C-terminal region showed reduction in worm
burden, in fibrosis, and in the number of eggs in the liver that were
associated with high levels of IFN-γ (42, 43). In a DNA vaccine
strategy, immunization of mice with Sm28GST co-delivered with
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an IL-18-encoding plasmid, also induced a strong IFN-γ produc-
tion and result in a significant reduction in egg and worm burden,
reinforcing the importance of the Th1 response to the protection
induced by Sm28GST (44).

One important feature of Sm28GST is the existence of cross-
reactivity with other Schistosoma species, including S. haema-
tobium, S. japonicum, and S. bovis (45). This property can be
explored in the context of vaccine development which can act
to eliminate different Schistosoma species at the same time. In
this sense, it was demonstrated that immunization of primates
with rSm28GST protect against heterologous infection with S.
haematobium (46). The Sh28GST (GST protein derived from S.
haematobium) has the ability to confer protection in monkeys
that showed a reduction in worm fecundity (47). The results
of the studies with schistosome GST as antigen in vaccine for-
mulations clearly demonstrate the importance of antibodies for
anti-fecundity effect and parasite elimination, through neutral-
ization and ADCC mechanisms, respectively. It is important to
note that this antigen can induce protection by reducing worm
burden or female fecundity and thus this vaccine formulation is
efficient to limit infection and pathology.

Sm14
Sm14 is a S. mansoni fatty acid-binding protein that might be
involved in lipid uptake from the host (48). Due to its predicted
function, Sm14 represent an interesting target for vaccines against
schistosomes. Schistosomes are unable to synthesize fatty acids and
sterols through de novo pathway and therefore require host lipids to
maintain its complex membrane system and physiological func-
tion (49, 50). Sm14 is expressed in the cercariae, schistosomula,
adult worm, and eggs and located in the parasite tegument and
gut, both tissue that represent the interface between parasite and
host (51).

The ability of rSm14 to protect against schistosomiasis was
first demonstrated by Tendler and coworkers (52). In their study,
immunization of mice with rSm14 alone or formulated with Fre-
und’s adjuvant (FA) induced protection levels ranging from 50
to 68% (52). In rabbits, rSm14 plus FA elicited 89% protection
against challenge infection (52). Interestingly, Sm14 was also able
to protect mice from Fasciola hepatica infection thus demonstrat-
ing its potential to be used in a vaccine formulation against both
parasites (52).

In the case of Sm14, the protective immune response is depen-
dent on IFN-γ and TNF-α production since in mice deficient
in those cytokines, immunization with the recombinant form of
Sm14 fails to induce protection (23). The importance of cellu-
lar components in the protective immune response elicited by
Sm14 is also shown by the ability of epitopes from Sm14 to induce
proliferative response in lymphocytes from resistant individuals
and to induce protection in mice (53, 54). Immunization of mice
with Sm14 gene also induced significant protection associated with
antibody production and increased production of IFN-γ by spleen
cells and lung lavage cells (55). In a DNA vaccine strategy, the use
of IL-12 as adjuvant induced a significant production of IL-10 and
nitric oxide and failed to induce antibody production and pro-
tection (55). The role of antibodies in the protective immunity
induced by Sm14 cannot be ruled out. Although so far no direct

role for antibodies in parasite elimination have been described, all
the successful vaccine formulation containing Sm14 induce sig-
nificant antibody production (23, 54, 55). Therefore, the role of
antibodies in the protective immunity induced by Sm14 is a key
question that has to be addressed if they are to be used as correlates
of protection in future clinical trials.

TETRASPANINS
Tetraspanins are members of membrane-spanning proteins con-
taining four transmembrane domains, three short intracellular
domains, and two extracellular loops (EC1 and EC2) (56). In
schistosomes, tetraspanins are located in the outer tegument,
thus in contact with host immune system (57). The EC2 loop
mediates protein–protein interactions (58) that are important to
tetraspanin role in the molecular organization of cell membranes.
Through interaction with many proteins, tetraspanins form a com-
plex termed as tetraspanin-enriched microdomains (TEM) (59).
The importance of tetraspanins to parasite survival was recently
demonstrated using interference RNA technique (RNAi). Silenc-
ing Tsp-1 and Tsp-2 transcription resulted in significant reduction
in the number of worm that reaches maturity in the mammalian
host. Also, schistosomula treated with Sm Tsp-2 double strand
RNA displayed vacuolated and thinner tegument, demonstrating
TSP-2 role in maintaining tegument integrity (60).

Immunization of mice with a recombinant form of TSP-1 and
TSP-2 resulted in 29–38 or 53–61% reduction in worm burden,
respectively. The protection was associated with an increased titer
for IgG1 and IgG2a antibody (61). Immunization of mice with a
vaccine formulation containing TSP-2, Alum, and CpG as adju-
vant elicited a protection level ranging from 25 to 27%. In this
vaccine formulation, although significant titers of IgG antibod-
ies were observed, there was no clear association between anti-
body levels and parasite burden and also there was no significant
increased production of cytokine specific for TSP-2 immunized
group. In contrast, an increased level of IFN-γ, IL-4,and IL-10 were
observed in mice immunized with a chimerical protein contain-
ing TSP-2 and the 5B region of the hookworm aspartic protease
Na-APR-1 (62). Besides the great result observed against S. man-
soni infection, TSP-2 orthologs in S. japonicum do not represent
a good vaccine candidate, since in this species TSP-2 is extremely
polymorphic (63).

Smp-80
Another promising antigen is the large subunit of calpain, Smp-
80. Schistosome calpain is composed of a smaller subunit of
28 kDa and a larger subunit of 78 kDa (64). The large subunit
was described to be localized in the parasite surface (64). This
subunit has proteolytic activity in the presence of Ca2+ (64) and
plays an important role in immune evasion. Smp-80 is involved
in the renewal/recycling of the parasite surface, an important eva-
sion mechanism used by the parasite to escape from host immune
system (65).

The large subunit of calpain has been evaluated in different
vaccine formulations and strategies and the immune components
produced in response to immunization have also been described.
This antigen induced significant protection in mice, baboon,
and hamster and protects against S. mansoni, S. japonicum, and
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S. haematobium (66–68). Immunization of mice with naked DNA
containing Smp-80 gene resulted in 39% of reduction in worm
burden, the use of IL-2 and IL-12 gene as adjuvant increased the
protection level to 57 and 45%, respectively. This increased protec-
tion was associated with an increased production of specific IgG2a
and IgG2b, increased proliferative response, and IFN-γ production
(69, 70). The use of GM-CSF and IL-4 gene as adjuvant resulted in
42 and 44% reduction in worm burden associated with increased
production of IL-4, IgG, IgG1, and IgG2b in GM-CSF immunized
animals and IL-4 and IgG3 in IL-4 immunized group (70, 71).
When the recombinant form of Smp-80 is used as antigen either
in its recombinant form or in a prime-boost regimen, higher titers
of antibodies and significant production of IL-2 and IFN-γ are
observed and this immune profile is associated with a reduction
of 51 and 49% in worm burden (66). Therefore, the protective
immune response induced by Smp-80 seems to correlate to a Th1
profile with increased IFN-γ and antibody production especially
IgG2a.

Indeed in mice immunized with Smp-80, antibodies play an
important role in the elimination of the parasite. Transference
of sera from Smp-80 immunized mice to a naïve recipient result
in 31–45% reduction in worm burden after a challenge infection
(20). Complement seems not to play a major role in the parasite
elimination once immunization of mice deficient in C3 factor with
Smp-80 did not result in significant reduction of the protection
level observed in wild-type mice (72). ADCC instead seems to
be the immune mechanism involved in parasite death, increased
number of dead schistosomula was observed in vitro when these
parasites were incubated with sera from Smp-80 plus CpG immu-
nized mice in the presence of lung lavage cells or lung cells (14). The
increased percentage of dead parasites was associated with produc-
tion of nitric oxide suggesting that the production of this molecule
might be involved in ADCC-induced parasite killing (14).

Sm29
Sm29, other promising vaccine antigen, was identified by Cardoso
and coworkers (73) using in silico analysis to identify in the S. man-
soni transcriptome putative expressed proteins localized in the
parasite tegument. The characterization of Sm29 demonstrated
that this protein is expressed in the tegument of schistosomula
and adult worm (74). The ability of Sm29 to induce protective
immunity was assessed in mice with a vaccine formulation con-
taining FA which resulted in a significant reduction of 51% in
worm burden, 60% in intestinal eggs, and 50% in liver granu-
loma area, associated with a significant production of IgG, IgG1-
and IgG2a-specific antibody, IFN-γ, TNF-α, and IL-10 cytokine
production (74).

IMMUNE RESPONSE INDUCED BY MULTIVALENT
FORMULATIONS
Schistosomes are complex parasites and thus the design of a multi-
valent vaccine against the parasite might enhance subunit vaccine
efficacy. Recently, these multivalent vaccine formulations contain-
ing promising antigens have been tested. Sm29 was tested together
with the SmTSP-2 in a multivalent chimeric recombinant vaccine
in mice, aiming to enhance the single antigen vaccination efficacy.
The vaccine formulation with a chimeric protein containing TSP-2

and the C-terminal part of Sm29 resulted in a small increase in
the protection level induced by rSm29 alone from 20.36 to 34.83%
(75), or by rTSP-2 alone from 27 to 34.83% (62, 75) when formu-
lated with CpG-ODN plus alum. The chimeric protein induced a
significant production of IgG and IgG2a-specific antibodies and a
Th1 immune profile (75).

Another chimeric formulation combining Sm29 and Sm14
recombinant proteins was tested in vaccine protocol associated
or not with poly (I:C)-adjuvant. Although immunization of Swiss
mice with a subunit vaccine containing rSm14 or rSm29 alone did
not induce significant reduction in adult worm, the vaccine for-
mulation containing both rSm14 and rSm29 elicited 31 or 40%
protection when it was formulated without adjuvant or with Poly
(I:C), respectively (76).

The results observed in these multivalent formulations demon-
strate that it is a promising strategy, but the choice of antigens
that induce similar protective immune profile is a key step for the
success of the vaccine formulation.

WHAT CAN WE LEARN FROM THE STUDIES IN HUMANS?
In endemic areas, the existence of naturally resistant individuals
(77) that present persistently negative stool examination even if
they are in constant contact with contaminated water enable the
search for immune factors and biomarkers involved in resistance
to Schistosoma infection.

Studies on human immune responses to Sm14, demonstrate
that CD4+ T cells from naturally resistant individuals mounted
a Th1-type of immune response to rSm14, based on IFN-γ and
TNF-α production (78). Moreover, T-cell proliferative responses
to rSm14 from these individuals were totally abrogated after treat-
ment with anti-IFN-γ antibodies. These individuals also produce
significant levels of IgG1 and IgG3 antibodies against Sm14, sub-
classes associated with parasite killing (79). Significant production
of IgG1 and IgG3 specific for Sm29 and TSP-2 were also observed
in individuals naturally resistant to S. mansoni infection (61, 80).

Human antibody responses to the large subunit of schistoso-
mal calpain have also been associated with resistance. In humans
infected with S. japonicum-presenting light infections, a strong
reactivity to calpain was observed whereas in individuals with
stronger infection, low reactivity to calpain was observed (81). In
a study in an endemic area for schistosomiasis in Egypt, IFN-γ
production in response to Sm14 and IgE and IgA antibodies
against Sm28GST correlated with resistance to infection (82).

Grzych and colleagues (83) reinforce the pivotal role of the
antibodies in protection. They show that IgA specific to Sm28GST
were present in the sera from infected individuals before and after
treatment with praziquantel and that these immunoglobulins have
a key role in neutralizing the GST enzyme activity which resulted
in impaired female fecundity.

Since 1998, Sh28GST recombinant protein plus aluminum
hydroxide adjuvant has been tested in the human population. Par-
tial results of the phase I clinical trials were published by Riveau
and colleagues (34), in their study, no relevant side effects or tox-
icity following vaccine administration was observed. Humoral
immune responses generated by the vaccine were characterized
by high levels of IgG1 and IgG3 production and low levels of
IgG2 and IgA. The cellular response profile was characterized

Frontiers in Immunology | Immunotherapies and Vaccines March 2015 | Volume 6 | Article 95 | 4

http://www.frontiersin.org/Immunotherapies_and_Vaccines
http://www.frontiersin.org/Immunotherapies_and_Vaccines/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonseca et al. Protective immunity against schistosomes

Table 1 | Summary of the protection levels and immune components elicited by immunization.

Antigen Immunization

strategy

Adjuvant Protection

level (%)

Humoral response Cellular response Reference

DNA vaccine None 39 Prolif. IFN-γ, IL-4 (67–69)

IL-2 57 ↑ IgG, IgG2a and b ↑ Prolif. ↑ IFN-γ ↓ IL-4

IL-12 45 ↑ IgG, IgG2a and b ↑ Prolif. ↑ IFN-γ ↓ IL-4

IL-4 44 ↑ IgG3 Prolif. IFN-γ ↑ IL-4

GM-CSF 42 ↑ IgG, IgG1 Prolif. IFN-γ ↑ IL-4

Smp-80 Prime E boost Resiquimod

(R848)

49 ↑ IgG, IgG1, IgG2a

and b, IgG3, IgA, IgM

IL-2 and IFN-γ (70)

Recombinant protein Resiquimod

(R848)

51 ↑ IgG, IgG1, IgG2a

and b, IgG3, IgA, IgM

IL-2 and IFN-γ

CpG-ODN 52.86 IgG, IgG1, IgG2b,

IgG3, IgM

ADCC AND NO production (14, 71)

Recombinant protein None 25 (22)

FA 25 ↑ IgG2a

Sm14 rIL-12 42.2 ↑ IgG2a Protection is dependent on

IFN-γ and TNF-α production

DNA vaccine None 40.5 IgG IFN-γ by SC and BAL cells (53)

Synthetic peptides FA + Padre 26–36.7 IgG1, IgG2a IFN-γ IL-10 (52)

Sm29 Recombinant protein FA 51 IgG1, IgG2a IFN-γ, TNF-α, IL-10 (73)

CpG-Alum 20 IgG, IgG1, IgG2a IFN-γ (74)

TSP-1 Recombinant protein FA 29–38 IgG1, IgG2a Not reported (59)

TSP-2 Recombinant protein FA 53–61 IgG1, IgG2a Not reported (59)

Alum + CpG 25–27 IgG, IgG1a IL-4, IFN-γ, and IL-10b (60)

Purified protein FA 40–68.3 Not reported Eosinophils (ADCC) (16)

Sm28GST Recombinant protein Alum 46 Not significant IL-2 and IFN-γ (41)

DNA vaccine IL-18 23 Not significant IFN-γ (42)

Sh28GST Recombinant protein FA 77 (fecundity) IgG and IgA Not reported (45)

BCG 60 IgG

aNo association with protection;
bproduction in response to infection and not to immunization; SC, spleen cells; BAL, broncho alveolar lavage; ↑ compared to vaccine formulation without adjuvant.

by significant production of IL-5 and IL-13, resulting in a Th2
predominant response. The ability of antibodies to inhibit the
enzymatic Sh28GST activity was also observed, corroborating with
experimental studies (34).

CONCLUSION AND FUTURE PERSPECTIVE
Understanding the immunological mechanisms involved in para-
site elimination during an infection is a key step toward the devel-
opment of an effective vaccine. Here, we reviewed the immune
components activated under different formulations containing
antigens described as promising candidates to compose an anti-
schistosomiasis vaccine (summarized in Table 1). Although for
some of the antigens the immune mechanism involved in para-
site death have been demonstrated, for others they are still to be
identified. The biological role the target antigen plays in the sur-
vival of the parasite and the immunological components elicited
by a protective formulation gives us an indication of what immune
mechanisms might be involved in parasite death. Yet determining

their involvement in protective immunity is still necessary. To
address this question, the use of animals deficient in components
of the immune system represents an interesting tool that should
be further explored. Once those immune factors that correlate
with protection are identified, they can be used as a biomarker of
resistance in clinical trials.
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