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As one of the main appendages of skin, hair follicles play an important role in the process of
skin regeneration. Hair follicle is a tiny organ formed by the interaction between epidermis
and dermis, which has complex and fine structure and periodic growth characteristics. The
hair growth cycle is divided into three continuous stages, growth (anagen), apoptosis-
driven regression (catagen) and relative quiescence (telogen). And The Morphogenesis
and cycle of hair follicles are regulated by a variety of signal pathways. When the signal
molecules in the pathways are abnormal, it will affect the development and cycle of hair
follicles, which will lead to hair follicle-related diseases.This article will review the structure,
development, cycle and molecular regulation of hair follicles, in order to provide new ideas
for solving diseases and forming functional hair follicle.
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1 INTRODUCTION

As the first barrier against external environmental damage, the skin is composed of three layers.
The first is the outermost epidermis, consisting of cycling keratinocytes that pile up and
transitions into outer layers of dead, cornified keratinocytes that provide the protection
against environmental insult and loss of moisture. The second layer underlying the
epidermis is the dermis, which contains the skin appendages, including hair follicles,
sebaceous glands (SGs), eccrine glands, and apocrine sweat glands. Nails, which are
appendages found at the ends of digits, also arise from the dermis. Finally, the deepest layer
of the skin underlying the dermis is the subcutaneous tissue, which consists of insulating adipose
tissue and connective tissue that connects the skin to the tissue underneath the skin. Blood
vessels and nerves in the subcutaneous tissue provide the source of capillaries and nerve endings
that penetrate into the dermis and interact with the appendages (Stephens, 2022).

Hair follicles, as one of the important skin appendages, plays an irreplaceable role in skin
function and in the process of skin regeneration. The hair follicle is a unique skin structure
found in mammals, and is essentially a small organ formed by the interaction between
epidermis and dermis. Hair follicles contain many components and have complex, fine
structures. They have a high capacity of self-renewal, and display a periodic growth cycle
that takes place continually throughout the life span of mammalian organisms. The hair follicle
is rich in stem cell populations that contribute not only to hair growth and regeneration but
also contribute to skin regeneration after injury. Thus, hair follicles can serve as important
models for tissue regeneration and systems biology research (Ma et al., 2017). The growth of
hair follicles and activity of these stem cells is highly regulated by various signaling pathways.
Hair growth is affected by many factors such as age, climate, environment, and health status,
and these factors can influence the development of hair follicle tumors, alopecia areata, and
other related diseases.
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2 STRUCTURE OF HAIR FOLLICLES

As the largest organ of the human body, the skin is mainly
composed of epidermis and dermis (Souto et al., 2022)
(Figure 1A). The epidermis can be further divided into
sublayers consisting of, from external to basal, the stratum
corneum, stratum lucidum, stratum granulosum, stratum
spinosum, and the stratum basale. The dermis is located
immediately beneath the stratum basale and consists of
papillary layer and reticular layer. Subcutaneous tissue beneath
the dermis, also termed the hypodermis, mainly includes loose
connective tissue and adipose tissue. Although the shape and size
of hair follicles may vary considerably depending on their specific
location in the body, they all have the same basic structure
(Morita et al., 2021) (Figure 1B). The hair follicles run
obliquely in the skin. On the obtuse side of the skin surface,
there is a bundle of smooth muscle connecting the hair follicle
and the papillary layer of the dermis, called the arrector pili
muscle (APM). APM is innervated by the sympathetic nervous
system. When the APM contracts, it erects the hair and promotes
secretion from associated sebaceous gland (SG). The hair follicle
is divided into four regions from top to bottom: infundibulum,
isthmus, suprabulbar region, and the bulb. The region from the
opening of the hair follicle to the opening of the SG is called the
infundibulum, the region from the opening of the SG to the
attachment of the APM is called the isthmus. Beneath the
isthmus, starting at the attachment site of the APM, is the
suprabulbar region, which terminates in an enlarged, spherical
structure called the bulb (Carrasco et al., 2019).

The composition of cells in the upper half of the hair follicle,
the infundibulum, and isthmus, is relatively constant. However,
the isthmus does contain a population of stem cells that can help
to re-populate the epidermis during wound healing. Studies have
identified a population of Gli1+Lgr6+ cells in the isthmus which
can contribute to formation of wound epithelium, and can

provide a source of long-lasting epithelial precursors in healed
epidermis (Snippert et al., 2010; Huang S. et al., 2021). The bulge
region is located at the junction of the APM and the ORS.
Cotsarelis et al. (1990) based on experiments labeling skin hair
follicle cells with 3H-TdR, were the first to propose that hair
follicle stem cells (HFSCs) are contained in the hair follicle bulge
region. HFSCs have typical stem cell characteristics, are highly
proliferative, and are critical for the maintenance of hair growth
and renewal. Studies by Hsu et al. (2011) show that the periodic
growth of hair follicles depends on the maintenance of HFSCs,
which can participate in the formation of hair follicles, the
maintenance of SGs, and the renewal of the epidermis. For
example, krt15+ HFSCs of the bulge can provide progeny to
help rapidly populate the wound epithelium and repair the
epidermis (Ito et al., 2005; Yu et al., 2020). Festa et al. (2011)
have found that the formation of fat in vivo is synchronized with
the activation of HFSCs, and the number of subcutaneous adipose
precursor cells reaches a peak during the activation of HFSCs.

Composition of the lower region of the hair follicle is much
more variable, including differentiated epithelial cells, hair
matrix, and dermal papilla (DP) (O’Sullivan et al., 2021). The
bulb is located at the lowest end of the hair follicle and is the active
growth center of the hair. Hair follicles are obliquely rooted in the
dermis, and the dermis plays a key role in supplying nutrients for
hair follicle growth and development (Lee et al., 2020). The
upwardly-directed indentation in the bottom of the bulb is the
DP, formed by an intrusion of connective tissue, which contains a
rich supply of capillaries and nerve endings (Park et al., 2018).
The DP supplies nutrition for hair growth andmaintenance of the
follicle. The DP is a multicellular tissue structure formed by the
aggregation of dermal cells, which plays an important role in
inducing hair growth (Ge et al., 2020). Dermal stem cells are a
kind of skin stem cells with self-renewal ability, dermal cup and
lower dermal sheath harbors dermal stem cells which regenerate a
new dermal sheath and repopulates cells into the DP during hair

FIGURE 1 | Structure of hair follicle. (A) A human scalp hair follicle (anagen VI): the permanent (infundibulum, isthmus) and anagen associated (suprabulbar and
bulbar area) components of the hair follicle. (B) Schematic diagram of the concentric layers of the hair follicle bulb, including hair shaft, IRS, outer root sheath, and
connective tissue sheath. IRS, inner root sheath.
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cycling (Rahmani et al., 2014). Injury of hair follicles was shown
to recruit more dermal stem cell progeny to become DP cells
(Sparks et al., 2019). Matsuzaki et al. showed that mouse dermal
papilla cells (DPCs) cultured in vitro still retain the ability to
induce hair follicle formation in vivo, which provides an
experimental basis for hair follicle reconstruction (Matsuzaki
and Yoshizato, 1998). Oliver’s study found that after removing
the lower third of the hair follicles of mouse vibrissa, the DP will
regenerate and produce vibrissa, but if more of the hair follicles
are removed, vibrissa will not regenerate (Oliver, 1966). If more
than one-third of the lower part of the hair root is removed from
the hair follicles, the vibrissa can be regenerated after the hair
papilla is implanted into the base of the hair follicles (Oliver,
1967).

The hair matrix cells are located in the upper part and lateral
side of the DP, and melanocytes are scattered between them.
DPCs can induce the formation of epithelial components such as
inner root sheath (IRS) and medulla of the shaft by interacting
with their surrounding hair matrix cells (Limbu and Higgins,
2020). From the upper section of the bulb to the upper part of the
hair follicle, it presents a concentric circle-shaped layer, which is
divided into three parts from inside to outside: hair shaft (HS),
IRS, outer root sheath (ORS). The HS is the part exposed to the
skin and is composed of keratinocytes. From inside to outside, the
layers of the shaft are the medulla, cortex, and hair cuticle
(Watanabe et al., 2021). The IRS consists of the IRS cuticle,
Huxley’s layer, Henle’s layer, and companion layer from inside to
outside (Watanabe et al., 2021). The ORS is produced by the
Malpighian layer of epidermis (Nilforoushzadeh et al., 2020). The
IRS and the ORS are collectively called the epithelial sheath,
which belongs to the epidermal component of the hair follicle.
The outermost layer of the hair follicle is called the connective
tissue sheath, and is also known as the dermal sheath. This layer is
derived from the mesenchymal hair follicle dermis component,
and is composed of three layers of collagen fibers arrayed in
different directions (Martino et al., 2021). The connective tissue
sheath is an important material basis for maintaining and
regenerating dermal papillae, and is a necessary structure for
hair follicle regeneration (Heitman et al., 2020). SGs are located in
the dermis of the skin, and their ducts open between the isthmus
and infundibulum of the hair follicle (Geueke and Niemann,
2021).

3 MORPHOGENESIS OF HAIR FOLLICLES

Hair follicles are micro organs-formed by the interaction between
epidermis and dermis (Ji et al., 2021). Thus, these structures are
composed of cells that arise from two different embryonic tissue
sources, ectoderm and mesoderm (Ji et al., 2021). Epidermal stem
cells and neural crest stem cells are derived from ectoderm (Yang
et al., 2019; Soto et al., 2021), while mesenchymal stem cells arise
from mesoderm (Schaefer et al., 2020). Epidermal-derived cell
lines include SG cells and keratinocytes. Keratinocytes can further
differentiate into IRS cells, ORS cells, and hair cells (Morgan et al.,
2020). Mesenchymal-derived cell lines include fibroblasts and
connective tissue sheath cells (Wang et al., 2018; Hernaez-Estrada

et al., 2022). Neural crest cells can form melanocytes, which are
the source of hair pigment (Gacem et al., 2020).

The development of hair follicles is essentially a three-step
process: induction, organogenesis, and cytodifferentiation, and
these three steps include eight stages (Carbonnel et al., 2020;
Schmidt-Ullrich and Paus, 2005) (Figure 2). During embryonic
development, the morphogenesis of hair follicles depends on the
regulation of a series of signals between dermis and epidermis.
Theymediate the interaction between dermal and epidermal cells,
induce the orderly proliferation and differentiation of the two cell
populations, and guide the cells to finally form HS, root sheath,
and DP (Mapar et al., 2021). In the first stage, when signals
inducing hair follicle cell generation are emitted from dermal
cells, epithelial cells receiving dermal cell signals gradually
thicken and form hair follicle basal plates (Zhao et al., 2021).
The hair follicle basal plates will send out relevant signals to
induce a large number of dermal cells to aggregate under the hair
follicle basal plates, and a brand-new hair follicle will be generated
at this aggregation point. In the second stage, when a critical
density of dermal cells converge under the hair follicle basal
plates, the dermal cells will send a signal to induce the hair follicle
basal plate to expand downwards, so that the hair follicle
structure can enter the dermis and form hair buds. Hair buds
deep in the dermis gradually become columnar structures, and a
large number of dermal fibroblast cells accumulate at the end
(Paus et al., 1999). After entering the third stage, the hair buds are
deeply sunk in the dermis layer, and keratinocytes are arranged in
a columnar shape around the hair buds. In the fourth stage, the
hair buds continue to thicken, and dermal cells converge under
the basal plate of hair follicles to form dermal papillae. The
formation of a hair bulge occurs in the fifth stage. At the same
time, the DP induces the proliferation of hair matrix cells, which
further differentiate into HS and IRS (Houschyar et al., 2020). In
the sixth stage, hair follicle accessory organs and complete hair
follicle structures differentiated from epithelial cells have been
formed. In the seventh stage, the tip of the hair enters the hair
canal, and the SGs are fixed on the wall of the hair follicle. In the
eighth stage, the hair follicles have completed their development,
and the HSs pass through the surface of the epidermis (Lee et al.,
2018).

During the morphogenesis of mouse hair follicles, induction
includes the first stage, which occurs on the 14th day of
embryonic development. Organogenesis includes the second to
the fifth stage, the second stage occurs at day 15.5, and the third to
fifth stage occurs between days 16.5–17.5. Finally,
cytodifferentiation takes place from stage 6 to stage 8, which
occurs at 18.5 days of embryonic development (Schmidt-Ullrich
and Paus, 2005) (Figure 2).

4 HAIR FOLLICLE CYCLING

Hair follicles go through regular growth cycles throughout the
whole life process, and the changes that occur during the cycle are
mainly changes in the morphology and structure of dermal
papillae at the bottom of hair follicles, the formation of new
HS, and the shedding of old hair. This cycle is divided into three
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stages: anagen, catagen, and telogen (Shin et al., 2020). Under
typical conditions, the time scale of each cycle is relatively
constant and precise. For example, C57BL/6 mice have a
precise time scale for the occurrence of anagen, catagen, and
telogen of hair follicles. Newborn mice enter catagen in the
second week after birth, telogen in the third week, and the
anagen in the fourth week (Chen et al., 2019) (Figure 3A). On
the scalp of an adult, anagen lasts for approximately 3 years,
followed by a catagen of about 3 weeks, and then a telogen of
about 3 months (Grymowicz et al., 2020; Oh et al., 2016)
(Figure 3B). Of course, the progress and timing of the three
stages of the hair follicle growth cycle can also be affected by
many factors: genetic background, environmental factors, gender
factors, nutritional factors, and others (Muller-Rover et al., 2001).
The hair growth cycle of different strains of mice was different,
and the skin color of C57BL/6 mice changed with different hair
follicle growth periods. Temperature and light can also affect the
growth of hair follicles. Studies have shown that red light at
650 nm can promote the proliferation of human hair follicle cells
and significantly delay the transition of hair follicles from anagen

to telogen (Yang et al., 2021). The influence of gender factors on
hair growth cycle is mainly regulated by hormones, and androgen
has a high influence on hair growth and cycle (Grymowicz et al.,
2020). At the same time, the regular growth cycle of hair can not
be separated from the nutrition supply and regulation of
peripheral nerves of hair follicles (Zhang J. et al., 2021).

4.1 Anagen
The anagen stage is the most active period of hair follicle growth,
at which time the hair grows rapidly and forms a complete HS
(Suen et al., 2020). The proliferation of secondary hair bud cells
near the DP marks the beginning of anagen, and the hair follicles
penetrate into the subcutaneous tissue. The bulb cells proliferate
rapidly, the HS and IRS cells begin to differentiate, and the
morphology and volume of DPCs and bulbs become larger
(Vishlaghi and Lisse, 2020). Histologically, hair follicles during
anagen are slender and straight, and the follicles are oriented at an
angle so that the hair can be laid flat on the surface of the body.
The keratinocyte progenitor cells in the matrix migrate to the top
of the hair follicle and differentiate into HS and IRS cells. When

FIGURE 2 | Morphogenesis and timing of hair follicle during mouse embryonic development. The most important developmental stages of mouse pelage hair
follicles are divided into induction, organogenesis and cytodifferentiation.

FIGURE 3 | The growth cycle of hair. (A) The time-scale for the hair cycle in female C57BL/6 mice during the first 14 weeks after birth (the upper part); The time-
scale for the hair cycle in humans (the lower part). (B) The morphology of hair follicles at different stages of the hair cycle. Anagen: growth phase, catagen: regression
phase, telogen: resting phase.
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HS cells enter terminal differentiation, they will bind closely with
cysteine-rich hair keratin to form 10 nm bundle-like filaments.
This cross-linking gives the HS a characteristic tensile strength
and flexibility. The IRS can also be keratinized, which can support
and guide the growth of HS in the process of HS differentiation.
During anagen, the cell cycle of highly proliferative stromal cells
is about 18 h (Harland, 2018). The time of growth cycle
determines the length of hair and is related to the continuous
proliferation and differentiation of stromal cells at the base of hair
follicles (Morgun and Vorotelyak, 2020).

4.2 Catagen
The typical characteristics of hair follicles entering catagen are that HS
stops growing, cell proliferation and differentiation ability begins to
decline, cells begin to undergo apoptosis, and hair follicles rapidly
degenerate. Apoptosis occurs in the epithelial cells of hair matrix and
ORS, and the volume of DP becomes smaller (Nicu et al., 2020). The
DPCs are resistant to apoptosis due to their expression of the anti-
apoptotic protein BCL-2 (Nan et al., 2020). During catagen, the
degeneration of hair follicles is highly regulated, and a large
number of keratinocytes in hair follicles begin to undergo
programmed death (Bak et al., 2020). At this stage, melanin
production in hair follicles stops and melanin cells in some hair
follicles also begin to undergo apoptosis (Bejaoui et al., 2020). By the
end of the catagen stage, the hair follicles have atrophied and theDPCs
have begun to condense and move upward to the lower part of the
bulge area. If the DPCs of a follicle fails to move to a position
underneath the bulge area during catagen, the hair follicle no longer
undergoes cyclic growth, and this ultimately results in hair loss, which
has been confirmed inhumans andmicewith hair loss genemutations
(Choi et al., 2021; Zhang Y. et al., 2021). The time for humans to first
enter catagen occurs in the uterus, while mice enter catagen about
17 days after birth (Paus and Foitzik, 2004).

4.3 Telogen
After the catagen stage, the hair follicle enters telogen, when the
biological activity of the hair follicle is the weakest and the HS falls
off. However, expression and activity of the relevant regulatory
factors in the hair follicle governing its cyclical growth will be
significantly enhanced to prepare for the beginning of the next
anagen. During telogen, the DPCs migrate to the lower part of the
bulge, so that the DPCs can interact directly with the stem cells in
the bulge. DPCs are essential for the activation of stem cells and
the initiation of new hair cycles. After activation, HFSCs
proliferate and the number of HFSCs reaches a critical value,
the next anagen stage of hair follicles begins (Kim et al., 2022). In
the hair cycle of mice, the first telogen is very short, lasting only
1–2 days; the second telogen lasts more than 2 weeks, starting
about the 42nd day after birth (Hwang et al., 2021) (Figure 3C).

5 THE MOLECULAR REGULATION OF HAIR
FOLLICLE MORPHOGENESIS AND
CYCLING
A variety of different molecular signaling pathways are involved
in governing hair follicle development and cycling, such as the

canonical WNT and BMP signaling pathways. Additionaly,
miRNAs can also contribute to the regulation of
morphogenesis and regeneration of hair follicles. Different
signal pathways and factors combine to form a complex
molecular regulatory network, the activity of which results in
the proper morphogenesis and regeneration of hair follicles.

5.1 Signaling Pathways in the
Morphogenesis and Cycle of Hair Follicles
Signaling pathways regulate hair follicle morphological
development and cycles strictly. And when disturbed, hair
follicle-related diseases will develop. WNT, BMP, EDAR, and
Sonic hedgehog (Shh) are considered the main pathways involved
in regulating follicle morphogenesis, while other pathways are
thought to influence morphogenesis as well (Rishikaysh et al.,
2014). When the ligand, receptor and signal transduction
molecules of these signal pathways are abnormal, the
development of animal hair follicles will be affected, leading to
changes in hair growth. Genes reported to promote the early
morphogenesis of hair follicles include WNT/β-catenin,
WNT10b, LEF1, and EDAR as expressed in the epidermis;
and WNT/β-catenin, WNT5a, LEF1, and Noggin as expressed
in the dermis. Genes believed to inhibit the early morphogenesis
of hair follicles include DKK4 and BMP2 as expressed in the
epidermis; and DKK1, BMP4, and BMP7 as expressed in the
dermis (Albrecht et al., 2021; Huang J. et al., 2021).

5.1.1 WNT Signaling Pathway
The WNT pathway is one of the most important signaling
pathways regulating hair follicle morphogenesis and cycle. It is
also the earliest known signaling pathway to initiate the induction
of hair follicle development by regulating the formation of the
basal plate (Zhao et al., 2022). Canonical WNT signaling pathway
mainly includes WNT protein, cell surface Frizzled receptor
family, Dishevelled (DSH) receptor family protein, β-catenin,
and axin/GSK-3/APC complex.

WNT is a secretory glycoprotein with more than 20 related
family members. Its secretion is mediated by wntless (Wls), which
is a transmembrane transporter. Although the role of Wls in the
induction of hair follicle development is still unclear, it has been
found to exist in embryonic epithelium and hair follicles after hair
formation (Huang et al., 2012). Studies have found that the WNT
family can be divided into primary WNT and secondary WNT.
The primaryWNT includesWNT3,WNT4, andWNT6.WNT3a
is only expressed in bulge and decreased in expression during
catagen, and not is expressed at all during telogen (Li et al., 2021;
Xing et al., 2018). Guo et al. (2012) found that melanocytes in hair
follicles express both WNT3a and β-catenin proteins at the same
time. It is speculated that they play an important role in the
proliferation, differentiation, and pigment deposition of hair
follicle melanocytes. The secondary WNT includes WNT2,
WNT7b, WNT10a, and WNT10b. Primary WNT is necessary
for the induction of hair follicles, while secondary WNT mainly
plays a role in the development of hair follicles (Nicu et al., 2021;
Zhang W. et al., 2021). WNT10b mainly plays a role in the
mammalian hair follicle cycle and is highly expressed during
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anagen of the hair follicle, thus promoting epithelial
differentiation and early development of hair follicles (Bai
et al., 2021). During telogen, overexpression of WNT10b can
induce hair follicles to change from refractory phase to inductive
phase, thus entering anagen (Hawkshaw et al., 2019; Liu et al.,
2021). WNT3a is mainly expressed in root sheath progenitor
cells, bulbs, hair bulges, epidermis, melanocytes, and melanin
stem cells in hair follicles. Chen et al. (2015) found that the
expression of tumor necrosis factor α (TNF- α) increased after
hair removal, while TNF- α related peptides could significantly
stimulate keratinocytes to express WNT3, WNT10a and
WNT10b. TNF- α promotes hair regeneration by activating
the NF- κB signaling pathway and finally activating the WNT
signaling pathway. β-catenin is an important mediator of the

canonical WNT signaling pathway (Figure 4A). It is mainly
expressed in ORS, IRS, hair matrix, HS, and other structures
of hair follicles. DPCs, hair matrix cells, and ORS cells express β-
catenin at high levels (Zhao et al., 2022). β-catenin is the core
signal transduction factor in WNT signaling pathway. During
hair follicle regeneration, β-catenin expressed in HFSCs in the
hair germ and bulge activates the LEF/TCF complex, which
further initiates the transcription of downstream target genes
c-myc and cyclinD1 involved in cell cycle control and apoptosis,
thus promoting the activation, proliferation, and directional
differentiation of HFSCs (Lin et al., 2015). WNT signaling
protein is mainly expressed during hair follicle anagen,
decreased during catagen, and inactivated during telogen.Zhu
et al. shows that LncRNA H19 plays a role by directly down-

FIGURE 4 | The molecular regulation of hair follicle morphogenesis and cycling. (A) WNT signaling path mode diagram. Schematic drawing illustrating canonical
WNT signaling pathway mainly includes WNT protein, cell surface Frizzled receptor family, Dishevelled (DSH) receptor family protein, β-catenin, and axin/GSK-3/APC
complex. β-catenin plays a key role in the canonical WNT signaling pathway. (B) BMP signaling pathway mode diagram. The classical BMP signaling pathway is that
ligand BMP binds to phosphorylated serine and threonine receptors and is transported into cytoplasm. In cytoplasm, BMP combines with Smad1/5/8 and
phosphorylates the C terminal of Smad1/5/8. The phosphorylated Smad1/5/8 combines with Smad4 and transports to the nucleus. (C) EDAR signaling path mode
diagram. EDAR signaling pathway is mainly composed of EDA ligand, transmembrane receptor EDAR (including EDAA1 and EDAA2 subtypes), and intracellular binding
protein EDARARR. (D) SHH signaling path mode diagram. Ptch binds to Smo to inhibit Smo activity. In the presence of Hh, the binding of Ptch1 to Hh protein eliminates
the inhibitory effect on Smo, and Smo transmits signals to downstream Gli transcription factors through a complex transduction process.
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regulating the expression of WNT inhibitors DKK1, Kremen2
and SFRP2, and inducing miR-29a to activate WNT signal, thus
forming a new regulatory feedback loop between H19 and miR-
29a to maintain hair follicle induction potential. LncRNAH19
maintains the hair follicle induction ability of dermal papilla cells
by activating WNT pathway, which may be a target for the
treatment of androgenic alopecia (Zhu et al., 2020). Blimp1 is
both a target and a mediator of key dermal papilla inductive
signaling pathways including transforming growth factor-β and
WNT/β-catenin (Telerman et al., 2017).

5.1.2 BMP Signaling Pathway
The BMP pathways is another key signalling related to hair
follicle morphogenesis and cycle. Mou et al. (Telerman et al.,
2017) found that in skin tissue culture, treatment with BMP led to
the formation of hair follicle base plate, while treatment with the
BMP antagonist Noggin could increase the density of hair follicle
base plate, which further proved the inhibitory effect of BMP on
hair growth. Studies have found that the use of Noggin (a BMP
antagonist) in mouse skin can significantly shorten the refractory
period and promote hair regeneration, so BMP may play a role as
an inhibitory signal of hair growth (Plikus et al., 2008). BMP is a
family of secreted glycoproteins, belonging to the transforming
growth factor (TGF) superfamily, and are multifunctional growth
factors. It activates signal transduction by binding with BMP
receptors (Figure 4B) (Monsivais et al., 2021). A serine-threonine
kinase receptor, which form an active kinase heterotetrameric
receptor complex after combination with BMP. This activated
kinase complex phosphorylates the C-terminus of Smad1/5/8
(Infarinato et al., 2020), which subsequently binds to Smad4 and
is transported to the nucleus. With the cooperation of other
transcription factors, the transcription of target genes of Smad1/
5/8 is initiated to regulate the proliferation and differentiation of
HFSCs (Olsen et al., 2020). Smad6 and Smad7 are inhibitory
Smad proteins, which block BMP signal transduction by
competing with Smad4 to bind Smad1/5/8, and can also cause
ubiquitin degradation of Smad1/5/8 (Chen et al., 2021). The BMP
signaling pathway acts on the refractory period and regeneration
period in telogen, during which BMP has different signal activity
intensity. Moreover, Plikus et al. (2017) found that myofibroblasts
can reprogramming to adipocytes during wound healing by the
participation of new hair follicles. And this process triggers the
BMP signaling pathway, thus further activating the expression of
adipocyte transcription factors during development.The BMP
pathway has been reported to play a positive role in
determining the glandular fate during the induction stage of
eccrine sweat gland. additionaly, the eccrine sweat glands were
converted to hair follicle-like structures in Bmpr1a conditional
knockout mice (Lu et al., 2016).

5.1.3 EDAR Signaling Pathway
EDAR is also one key signalling pathway related to the
development and cycle hair follicle. It is mainly composed of
EDA ligand, transmembrane receptor EDAR (including EDAA1
and EDAA2 subtypes), and intracellular binding protein
EDARARR (Figure 4C) (Wang et al., 2020). EDAR and EDA
belong to the TNF superfamily. EDAR contains extracellular

ligand binding N-terminal, single transmembrane domain, and
intracellular death domain (Schuepbach-Mallepell et al., 2021).
Its death domain can specifically bind to the extracellular domain
of intracellular binding protein EDARARR, initiate signal
transduction, and regulate the transcription of downstream
target genes (Wohlfart and Schneider, 2019). In the hair
follicle cycle of wild-type mice, the expression of EDA, EDAR,
and EDARADD reaches the peak at the end of anagen, decreases
from the end of catagen to the middle stage, and was the lowest in
telogen (Fessing et al., 2006). At the end of anagen, Eda-A1 was
expressed in hair matrix, IRS, and ORS. In the middle stage of
catagen, the expression of Eda-A1 decreased sharply and was only
expressed in the hair buds of secondary hair follicles. EDAR was
expressed in the hair matrix and the IRS at the middle stage of the
anagen, but at the end of anagen, the expression of EDAR in the
IRS and the ORS increased rapidly. At the beginning of catagen,
EDAR was expressed only in the IRS and ORS, but at the end of
catagen, EDAR only appeared in the hair buds of secondary hair
follicles (Gomez et al., 2013).

5.1.4 Shh Signaling Pathway
Shh is a small secreted glycoprotein that is frequently involved
in inducing cell proliferation, cell fate determination, and
patterning in a number of developing tissues.
Transmembrane proteins Patched (Ptch) and Smoothened
(Smo) are two transmembrane proteins components of Shh
signaling (Figure 4D) (Morinaga et al., 2021). In the absence of
Shh protein, Ptch binds to Smo to inhibit Smo activity. In the
presence of Shh, the binding of Ptch1 to Shh protein eliminates
the inhibitory effect on Smo, and Smo transmits signals to
downstream Gli (glioma-associated oncogene homologue)
transcription factors through a complex transduction
process, activating Gli and allowing transport of Gli into
the nucleus (Sun et al., 2021). After activated Gli enters the
nucleus, it initiates the transcriptional expression of
downstream Cyclin D1 and N-myc genes (Sigafoos et al.,
2021).

Shh participates in the morphogenesis of hair follicles during
embryonic development. The DPCs of Shh mutant mice were
reduced in number, and these mice lacked normal hair follicles so
they could not maintain normal hair morphology (Lim et al.,
2018). Dermal expression of Shh is critical for maturation of the
DP and maintaining expression of DP-specific genes during
morphogenesis (Woo et al., 2012). Shh continues to
participate in the regulation of follicle cycling in adults by
promoting the transition of hair follicles from telogen to
anagen (Gao et al., 2019; Zhang X. et al., 2021). Studies using
an anti-Shh monoclonal antibody that disrupts Shh activity show
destruction of hair follicles during anagen and subsequent hair
loss. This supports the idea that the Shh signaling pathway plays a
key role in the hair growth of mice (Choi, 2018; Zhang X. et al.,
2021). Shh secreted from perifollicular nerve endings is also
important for the maintenance of Gli1+Lgr6+ stem cells
present in the follicle that can contribute to epidermal healing
after wound formation (Brownell et al., 2011). The varied effects
of Shh in the touch dome to the ligand source, with locally
produced Shh acting as a morphogen essential for lineage
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specification during development and neural Shh regulating
postnatal touch dome stem cell maintenance (Xiao et al., 2016).

5.2 miRNAs Regulating Hair Follicle
Morphogenesis
MiRNA is expressed in the skin and hair follicles of mammals and
plays an important role in regulating the development and
regeneration of hair follicles (Andl and Botchkareva, 2015;
Hochfeld et al., 2017; Horsburgh et al., 2017). Mice lacking
dicer enzyme could not form normal miRNA, resulting in the
formation of hair bud-like cysts (Yi et al., 2006) in the epidermis.
The miR-24 can affect the differentiation of mouse HFSCs by
inhibiting Tcf-3 during the hair follicle anagen. The hair of mice
with ectopic expression of miR-24 becomes thinner and these
mice develop serious defects in hair follicle development (Amelio
et al., 2013). The expression of miR-22 during catagen and
telogen is higher than that in anagen. miR-22 regulates hair
follicle cyclical changes and affects the formation of IRS and HS
by inhibiting the expression of transcription factors DLX3,
FOXN1, and HOXC13 (Cai et al., 2020; Yuan et al., 2021).
MiR-125b can inhibit the expression of target genes Blimp1
and Vdr, resulting in the inhibition of the differentiation of
HFSCs and promoting stem cell renewal (Zhang et al., 2011).
BMP4 has an inhibitory effect on hair follicle development, and
the expression of miR-21 can weaken this effect (Xiong et al.,
2022).

6 PERSPECTIVES

The morphogenesis and grow cycling of hair follicles involve
many cells and molecules. These signaling molecules are not
independent, and various studies have shown that they are
formed into complex regulatory network. Therefore, the search
for key signaling molecules that control these processes has
become a major focus of hair research. Currently, treatment
with certain medications, over-expression or inhibition of
endogenous genes and increasing the secretion of extracellular
vesicles (EVs) are the main strategies to promote hair growth,

which involve a variety of signaling pathways and molecules. All
these findings provide new ideas for the clinical treatment of hair
follicle related diseases such as alopecia areata. Despite significant
advances in this field, what are the key activators that promote the
transformation of hair follicle telogen and anagen stages through
signaling pathways and what is the molecules mechanism of hair
growth promotion through HFSCs and dermal stem cells are still
unclear. Moreover, although the transplantation of potential cell
mixtures, hair follicle organoid construction in vitro,
reprogramming induction and the establishment of a drug
delivery system do contribute to the formation of hair follicles,
the construction of functional hair follicles with normal cycling
activity is still a great challenge for the hair research field.
Therefore, further studies are still needed to on the activation
and maintenance of hair cycling in the next phase.
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