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Abstract

The high spatial resolution of 7T MRI enables us to identify subtle volume changes in brain

structures, providing potential biomarkers of mental disorders. Most volumetric approaches

require that similar intensity values represent similar tissue types across different persons.

By applying colour-coding to T1-weighted MP2RAGE images, we found that the high mea-

surement accuracy achieved by high-resolution imaging may be compromised by inter-indi-

vidual variations in the image intensity. To address this issue, we analysed the performance

of five intensity standardisation techniques in high-resolution T1-weighted MP2RAGE

images. Twenty images with extreme intensities in the GM and WM were standardised to a

representative reference image. We performed a multi-level evaluation with a focus on the

hypothalamic region—analysing the intensity histograms as well as the actual MR images,

and requiring that the correlation between the whole-brain tissue volumes and subject age

be preserved during standardisation. The results were compared with T1 maps. Linear stan-

dardisation using subcortical ROIs of GM and WM provided good results for all evaluation

criteria: it improved the histogram alignment within the ROIs and the average image inten-

sity within the ROIs and the whole-brain GM and WM areas. This method reduced the inter-

individual intensity variation of the hypothalamic boundary by more than half, outperforming

all other methods, and kept the original correlation between the GM volume and subject age

intact. Mixed results were obtained for the other four methods, which sometimes came at

the expense of unwarranted changes in the age-related pattern of the GM volume. The map-

ping of the T1 relaxation time with the MP2RAGE sequence is advertised as being espe-

cially robust to bias field inhomogeneity. We found little evidence that substantiated the T1

map’s theoretical superiority over the T1-weighted images regarding the inter-individual

image intensity homogeneity.
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Introduction

Background

Dr David Kupfer, leading the revision of the world-wide used diagnostic system for mental dis-

eases DSM IV [1], diagnosed “a failure of our neuroscience and biology to give us the level of

diagnostic criteria, a level of sensitivity and specificity that we would be able to introduce into

the diagnostic manual” [2]. The call for biological markers to replace self-report and explora-

tion could hardly be made clearer. To this end, sub-millimetre resolution achieved by 7T mag-

netic resonance imaging (MRI) holds great potential because it opens the window to small

volumes in candidate brain structures of psychiatric patients in vivo. To actually benefit from

the high resolution of 7T MRI, post-processing and subsequent analysis need to be equally pre-

cise. In this context we previously established colour-coding as an important tool to ensure

high reliability and reasonable time costs of computer-assisted segmentations of the hypothala-

mus on 7T T1-weighted MR images [3]. The hypothalamus is not only a relevant brain region

in various psychiatric disorders (e.g. anxiety, depression, schizophrenia, and paedophilia) but

it is also involved in neurodegenerative disorders (e.g. Huntington’s disease, Wernicke’s

encephalopathy) and other conditions like obesity, narcolepsy, and migraine [4]. An adequate

colour-coding enhances the visual contrast of its anatomical boundaries and helps the human

eye to distinguish between relevant and non-relevant details. Like many methods analysing

image intensities, however, colour-coding requires similar tissues to be displayed with similar

intensities throughout one image and across different images. A number of factors can corrupt

the image intensity causing intrascan intensity variation or interscan intensity variation [5, 6].

Most intrascan signal variations can be prevented by using modern MRI hardware and opti-

mal acquisition parameters, but, at higher field strengths, increased bias field artefacts have to

be addressed. There are a number of established post-processing algorithms for bias field cor-

rection (for reviews, see e.g. [7, 8]). Alternatively, the magnetisation-prepared 2 rapid acquisi-

tion gradient echoes sequence (MP2RAGE [9]) provides bias-field corrected images at high

field strengths. Nonetheless, residual interscan intensity variation in the T1-weighted images

of the MP2RAGE exists, as we will demonstrate by colour-coding. To correct such differences

and thereby reduce erroneous variance in the resulting segmentation, the unique intensity

scale of each image needs to be standardised.

Related intensity standardisation techniques

Transformation functions. The basic principle of intensity standardisation is to replace

the intensity values of a target image (input intensity) with new intensity values (output inten-

sity) that are assigned by a transformation function. A model of the intensity relationship

between the target and the reference image yields this transformation function. The simplest

reasonable transformation would be to introduce an offset value (e.g. the mean intensity differ-

ence between both images) that corrects over- or underexposure of the entire target image.

When the strength of over- or underexposure scales systematically with higher intensities, a

linear model will give a more accurate description of the relationship between target and refer-

ence image intensities [5, 6, 10]. If there is cause to assume tissue-specific over- or underexpo-

sure [11], we can introduce break points at certain intensity levels (e.g. at tissue boundaries)

and use a piecewise linear transformation function [12–15]. To correct more complex intensity

patterns, non-linear models are required. This usually involves higher computational complex-

ity and requires prior theoretical assumptions (e.g. the order of a fitted polynomial [16]), or

additional information like multi-modal [17–19] or longitudinal [20] scan data.

Performance of intensity standardisation techniques with high- resolution MRIs
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Information input—Intensity domain. The transformation function is modelled by

relating the target image intensities to those of the reference image. Either the image intensity

information is evaluated alone, or in combination with the images’ spatial information.

Reducing the two images to their intensity information, namely, intensity histograms,

which are then aligned, is generally called histogram matching. Replicating our systematisation

above, we could simply start by correcting a global shift between the two histograms. By

assigning, for example, the mean intensity of the reference histogram �I R to the mean intensity

of the target histogram �I T , and assuming �I T ¼
�I R þ n, we can estimate the offset value n by

which the target image is over- or underexposed compared with the reference image. With

two or more definite assignments we can estimate a linear model with the scaling factor m by

which the target histogram is stretched or compressed as compared with the reference histo-

gram: �I T ¼
�I R �mþ n. Christensen [5] achieved reproducible corrections for T1-, T2-, and

density-weighted images using the origin of the coordinate system as the first assignment (i.e.

assuming a negligible offset value n = 0) and the white matter (WM) mode as the second

assignment. Alternatively, the scaling factor can be estimated by minimising the squared dif-

ferences between the two histograms [10].

For tissue-specific corrections, three or more assignments can be used to divide the inten-

sity range into compartments with separate linear scaling factors for each intensity compart-

ment, resulting in a piecewise linear transformation function: Nyúl and Udupa [12] initially

matched the histograms’ global mode plus low- and high- percentile points. The intensities of

the histogram modes of the reference image assigned to the intensities of the corresponding

target histogram modes constitute the anchor points of the transformation function. By piece-

wise linear interpolation between the anchor points, the intensity levels of the reference image

are assigned to those of the target image. As skull-stripped MP2RAGE images are consistently

multimodal with distinct peaks corresponding to WM, grey matter (GM), and cerebrospinal

fluid (CSF), additional percentile anchor points were dispensable in our variant of piecewise

linear histogram matching (PHM).

As stated above, non-linear functions can be developed by introducing additional assump-

tions or information. Hellier [16] assumed normal distributions for the major tissue classes

and approximated the image intensity histogram by modelling each tissue class with a Gauss-

ian probability density function. A curve was then fitted to the tissue-specific means of the tar-

get and the reference image by minimising a cost function. Since the crucial assumption

concerning the order of the fitted polynomial was not specified by the author, we developed an

alternative, non-linear variant using the histogram modes from the PHM.

Comparing several density-, T1-, and T2-weighted sequences, Nyúl and colleagues [13]

observed that the global mode of the intensity histogram might correspond to WM in one

image but to GM in another image. To avoid the resulting tissue mixing, they recommended

the sole use of histogram percentiles (median, quartiles, and deciles). However, even percentile

matching has later been reported to mix tissue types in T1-weighted images or relative cerebral

blood volume maps [15, 21]. This might be avoided by our third method—an extreme variant

that matches all possible percentiles by matching the cumulative histogram (CHM). Here, each
intensity level is interpreted as a separate compartment and is assigned (in this case we could

say “replaced by”) the intensity level of the reference image with the most similar relative

cumulative frequency [22–24]. The assumption underlying this non-linear standardisation is

that matched cumulative intensity frequencies correspond to matched image intensities.

Information input—Intensity and spatial domain. Estimating the transformation func-

tion using only the intensity histograms assumes that images with similar histograms look

more alike. If target and reference intensity distributions are likely divergent in truth

Performance of intensity standardisation techniques with high- resolution MRIs
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(i.e. different heights and spread of the tissue histogram modes due to atrophy, different con-

trast), they should not be matched without restrictions. Such a restriction is spatial correspon-

dence. It can be incorporated in intensity standardisation procedures by analysing intensity

information tissue-wise or voxelwise.

Leung et al. [6] performed k-means clustering of T1-weighted images to extract the three

major tissue types (WM, GM, and CSF) and applied linear regression between the correspond-

ing tissue cluster means of the target and reference images to estimate a global linear scaling

factor. Given our focus on the GM of the hypothalamus and surrounding WM, we opted for a

linear standardisation using two precise regions of interest (ROIs) instead of tissue class maps.

Cataldo et al. [15] argued for an atlas-driven tissue class segmentation prior to intensity stan-

dardisation. They applied Nyúl and Udupa’s decile variant separately to each tissue class to

prevent the mixing of the major tissue types. Meier and Guttmann [11] approximated the his-

tograms of automatically segmented tissues by Gaussian distributions. The estimated means

and standard deviations (SD) of each tissue were then used to correct the brightness (matching

the mean) and contrast (matching the SD) of each tissue by separate linear scaling factors. Put

together, the hypothetical transformation function for the entire image would be a non-con-

tinuous piecewise linear mapping function. Closely related to these approaches is our segmen-

tation-based piecewise linear standardisation (SPS).

Considerably more complex, but for the sake of completeness to be acknowledged here as

voxelwise approach, is the matching of joint histograms. Each point in a joint intensity histo-

gram represents by its colour or shading the probability of a certain intensity combination for

spatially corresponding voxels of two images. They can be obtained from images of different

subjects, modalities (e.g. T1 versus T2), or successive scans and have been successfully applied

in conjunction with prior tissue segmentation and non-rigid image registration [14, 17–20].

In sum, as the sources of the interscan intensity variation in our data were unknown, we

chose to compare very different approaches, ranging from global linear models to piecewise

linear models, up to non-linear models and T1 mapping, using either intensity information

alone or incorporating both intensity and spatial information. Methods with reasonable sim-

plicity and practicability were preferred.

Methods

Image acquisition and pre-processing

MRI was performed with a 7T whole-body scanner (MAGNETOM 7T, Siemens, Erlangen,

Germany) and a 24-channel NOVA coil (Nova Medical, Inc., Wilmington MA, USA). A 3D

MP2RAGE [9] was used with repetition time (TR) = 8250 ms; inversion times (TI1/TI2) =

1000/3300 ms; flip angles (FA1/FA2) = 7˚/5˚; echo time (TE) = 2.51 ms; bandwidth (BW) =

240 Hz/Px, 1 average. A field of view (FOV) of 224 mm x 224 mm x 168 mm and an imaging

matrix of 320 x 320 x 240 resulted in a nominal acquisition voxel size of 0.7 mm isotropic. Par-

allel imaging (GRAPPA [25]) was used with an acceleration factor of 2, achieving a scan time

of 18:02 min. The uniform MP2RAGE images, referred to as T1-weighted images in this text,

and the quantitative T1 maps were skull-stripped using Medical Image Processing and Visuali-

zation (MIPAV) software (version 7.0.1 [26]) with the CBS High-Res Brain Processing Tools

3.0 [27].

Sample selection procedure

Data from 84 subjects (51 women; 33 men; mean age ± SD: 39 years ± 13 years) without neuro-

logical diseases were available. All subjects had given written informed consent and the study

was approved by the Ethics Committee of the University of Leipzig. The native T1-weighted

Performance of intensity standardisation techniques with high- resolution MRIs
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images were segmented into the three major tissue classes (WM, GM, and CSF) with the

MIPAV module for the Fuzzy And Noise Tolerant Adaptive Segmentation Method (FAN-

TASM [28]). The resulting hard segmentation map was used to identify GM and WM voxels.

The median intensities of the GM voxels (sample mean = 1907 ± 76) and the WM voxels (sam-

ple mean = 3246 ± 58) were estimated, and a reference image was chosen with representative

GM and WM median intensities (female, 56 years). Twenty images with very dark or bright

GM and/or WM, that is, with median intensities within the outermost deciles of the sample,

were chosen as target images. They belonged to 9 women and 11 men with a mean age of 40

years ±12 years.

Intensity standardisation procedures

Piecewise Linear Histogram Matching (PHM). Intensity histograms of skull-stripped

MP2RAGE brain images are multimodal, with distinct peaks corresponding to the three major

tissue types. By estimating local peaks in defined intensity windows, we can ensure correct tis-

sue correspondence for each mode. The following procedure was implemented in MATLAB

R2015b (Mathworks, Inc, Natick, MA, USA). It used the packages SPLINEFIT [29] and spec

file reader [30] developed for MATLAB and produced accurate mode estimations even with

noisy data. First, the intensity histogram of each image was smoothed with robust locally

weighted regression (robust loess, [31]) using a quadratic fitting model and a of span of 1% of

all data points. After parameterisation via cubic spline fitting, the intensity values of the second

derivative’s zero-crossings were determined. The intensity value within the intensity range

(1000, 2500) corresponding to the GM mode and the intensity range (3000, 3500) correspond-

ing to the WM mode were selected.

A transformation function was calculated by piecewise linear interpolation between the

minimum intensity (IMin = 0), the intensity levels of the GM and WM modes, and the maxi-

mum intensity (IMax = 4095). The resulting transformation function bends at two anchor

points corresponding to the intensities of the target and reference histogram modes and line-

arly matches the intensity values in between.

Non-Linear Histogram Matching (NHM). PHM has the drawback that artificial contrast

is introduced at the intensity levels around each anchor point of the transformation function,

which affects, in our variant, the most frequent intensities in the MR image. To avoid this, we

tested a smoothed variant by fitting a non-linear transformation function to the anchor points.

To prevent overshoots and undershoots, the two anchor points of the PHM were comple-

mented by two additional points along the coordinate system’s diagonal at intensities 1 and

4094. Using the SPLINEFIT package for MATLAB, a cubic spline was fitted to these 4 anchor

points plus IMin = 0 and IMax = 4095 and used to remap the target image intensities.

Cumulative Histogram Matching (CHM). As explained in the introduction, the match-

ing of histogram percentiles can be carried to the extreme by matching the relative cumulative

frequencies of the target image and the reference image at each single intensity level. Starting

with the cumulative histograms of the target image and the reference image, a non-linear

transformation function is sought with the constraint that it is monotonically increasing,

thereby conserving the order from black to white in the grey scale. This function can be easily

obtained by assigning to each intensity level IT of the target image the intensity level of the ref-

erence image IR that satisfies the condition that the corresponding relative cumulative frequen-

cies P(IT) and P(IR) are equal or close to equal [22]. This algorithm is implemented in MIPAV.

It initially classifies the data according to Izenman [32], which resulted in fewer than 200 dif-

ferent intensity levels in the corrected target images. We refined the classification to 1024

intensity levels.

Performance of intensity standardisation techniques with high- resolution MRIs
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ROI-Based Linear Standardisation (RLS). To estimate a simple transformation function

that integrates both intensity and spatial information, we created individual ROIs for GM and

WM (Fig 1) for each image. Then, the intensity relationship between target and reference

ROIs was approximated with a linear model.

In detail, for the GM ROI a mask of the hypothalamus was created manually on the

T1-weighted reference image following established guidelines [3]. To create comparable tar-

get-specific masks, we non-linearly registered this mask onto each native T1-weighted target

image using the symmetric diffeomorphic image registration (SyN [33]) algorithm from the

Advanced Normalization Tools (ANTs [34]) through a plugin for MIPAV. CSF voxels and

WM voxels (e.g. fornix, vessels) were removed from the masks by using the tissue class maps

from the FANTASM segmentation that had been performed to select the study sample (see

chapter “Sample Selection Procedure”).

For the WM ROI, a spherical mask with a radius of 2 cm surrounding the hypothalamus

but excluding the corpus callosum, was defined on the WM tissue map of the T1-weighted ref-

erence image. This mask was also non-linearly registered onto each target image and corrected

for GM voxels and CSF voxels as defined by the tissue class maps from the FANTASM seg-

mentation. Vessel voxels erroneously included in the reference WM ROI were thus mostly

removed in the target WM ROIs. The WM ROI is dominated by voxels from the major WM

tracts running through the hypothalamus (e.g. fornix, optic tract, and mamillary fasciculus) as

well as WM surrounding the hypothalamus (e.g. anterior commissure, capsula interna, cere-

bral peduncle, thalamic WM, and high-intensity voxels of the basal ganglia).

With the median intensity values of the hypothalamic GM ROI and the surrounding WM

ROI, a linear transformation function of the form �I T ¼
�I R �mþ n was calculated and used to

standardise the target images.

Fig 1. Coronal view of the hypothalamic GM ROI (red) and surrounding WM ROI (light blue) used for

the RLS.

doi:10.1371/journal.pone.0173344.g001
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Segmentation-Based Piecewise Linear Standardisation (SPS). To meet the demands of

a potential tissue-specific scaling of image intensities we developed an intensity standardisa-

tion that evaluates both intensity and spatial information. The three major tissue classes—

obtained from the FANTASM segmentation during sample selection—were analysed. A com-

parison of the tissue mean and median values within our sample revealed that the mean esti-

mates were more homogeneous (SDGM ¼ 75:9; SDWM ¼ 58:5; SDCSF ¼ 130:9) than the

median estimates (SDGM ¼ 83:5; SDWM ¼ 68:2; SDCSF ¼ 188:0). To match the mean inten-

sities of each tissue class of the target image to those of the reference image, a continuous

piecewise linear transformation function was calculated between IMin = 0, the intensity levels

of the three tissue means, and IMax = 4095.

T1 mapping. In addition to the five intensity standardisation techniques for T1-

weighted images, we included the quantitative T1 maps in our comparisons. As an alterna-

tive to T1-weighting, which reflects a mixture of parameters (T1, proton density, T2�), the

MP2RAGE sequence provides quantitative measurements of the tissues’ variations in the T1

value. Being a reliable intrinsic parameter, its mapping on an absolute scale (time in millisec-

onds) should be comparable across subjects and scanners, that is, quantitative T1 maps

should not require intensity standardisation and should not be subjected to any kind of cor-

rection. However, biological variations due to development in general, ageing, or disease

[35–38] may pose problems for intensity-based analyses analogous to those experienced with

T1-weighted images.

Evaluation criteria and statistical procedures

Histogram comparison. After intensity standardisation, each target image was segmented

into the three major tissue types (WM, GM, and CSF) with the FANTASM module in MIPAV

(cf. chapter “Sample Selection Procedure”). Using the hard segmentation maps to identify GM

and WM voxels, separate intensity histograms were computed for the whole-brain WM and

GM areas of each intensity standardised target image. Standard error measures comparing the

tissue-specific intensity histograms of the target images with that of the reference image would

be biased against intensity standardisation techniques that produce histograms with empty

intensity levels or local voxel accumulations at certain intensities. Such a bias is reduced in the

cumulative probability distribution. The absolute error between the tissue-specific cumulative

probability distribution of each target image and the reference image of the same contrast

(T1-weighted; T1 map) was determined. The average of the absolute error within the shared

intensity range was analysed as a global similarity measure between both distributions. In

addition, the maximum absolute error was determined. Indicative of local histogram differ-

ences it can be considered an especially strict criterion.

Whole-brain measures can easily conceal local intensity variations. For a focused evalua-

tion, we repeated this analysis within the target-specific GM ROIs and WM ROIs from the

RLS. Though few, residual vessel voxels were manually removed from all GM and WM ROIs

to rule out unwarranted effects due to their high intensities.

The average and maximum absolute errors of the native T1-weighted images were com-

pared to those of the standardised T1-weighted images and the T1 maps, respectively, using

two-tailed Wilcoxon Signed-ranks tests from SPSS statistics 18.0.0 (SPSS Inc. Released 2009.

PASW Statistics for Windows. Chicago, USA). This test was chosen as a nonparametric alter-

native to the paired t-test to account for not normally distributed data (Shapiro-Wilk test,

p> 0.05) and negative correlations between some of the compared data series. Lacking a

global hypothesis that would be subject to alpha error accumulation, p-values below 0.05 were

considered significant. The effect size r was computed from the standard normal deviate Z. In

Performance of intensity standardisation techniques with high- resolution MRIs
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line with Cohen’s recommendations [39], values of r = 0.10, 0.30, and 0.50 were considered

“small”, “medium”, and “large” effects, respectively.

Average image intensity. Comparing histograms alone can be misleading, because spatial

correspondence between the image details contributing to the evaluated histogram characteris-

tics cannot be verified. To compare the image intensities of the native and standardised images

relative to their position in space, the target images (native and intensity standardised) were

non-linearly registered onto the reference image. For this, the registration of the reference

image to each target image, performed in the context of the RLS was inverted and applied to

the target images with nearest neighbour interpolation. By this procedure, optimal spatial cor-

respondence between each native and intensity standardised target image with the reference

image was obtained. Likewise, the tissue class maps from the FANTASM segmentation (hard

segmentation) of the native and intensity standardised images were co-registered onto the ref-

erence image. Then, the average voxelwise intensity difference between the reference image

and the co-registered target image was computed for all voxels defined as WM by the tissue

class maps of both the reference and the target image. Analogously, we computed the average

voxelwise intensity difference for the whole-brain GM areas.

In addition, we determined the average voxelwise intensity difference for the hypothalamic

GM ROI and surrounding WM ROI of the reference image from the RLS. Residual vessel vox-

els had already been removed from both ROIs during the histogram comparison.

Again, Wilcoxon Signed-ranks tests (two-tailed) were used to compare the differences of

the native and intensity standardised T1-weighted images, accounting for not normally dis-

tributed data and negative correlations between some data series.

Voxels in quantitative T1 data sets reflect the tissue-specific longitudinal relaxation time in

seconds. Small biological differences in T1 appear as low contrast between tissue types. Due

to the lower contrast of the T1 maps, their absolute voxelwise intensity differences cannot

become as large as those of the high-contrast T1-weighted images (whose contrast is related to

the sequence parameter selection [40]). To ensure a correct comparison between both MR

contrasts, the intensity differences would need to be normalised with an estimate of the inten-

sity variation. Observing superiority or inferiority of the T1 maps over the T1-weighted

images, depending on whether the range or the interquartile range was chosen for such a nor-

malisation, we had to exclude the T1 maps from these analyses.

Local image intensity. For a detailed analysis of the image intensities, we examined the

intensity of the boundary between GM and WM in the region of the hypothalamus. For this,

the native and intensity standardised images were co-registered into a coordinate system com-

patible to the atlas by Mai et al. [41] using the Leipzig Image Processing and Statistical Infer-

ence Algorithms (LIPSIA [42]) with shifted linear interpolation [43]. By piecewise linear

mapping from the greyscale intensity range (0, 4000) to the RGB colour space (3 x 8-bit),

the T1-weighted images were colour-coded using three colours (cf. [3]). Red (255:0:0) was

assigned to IMin = 0% of the intensity range, blue (0:0:255) to IMax = 100%, and the intermedi-

ary colour white (255:255:255) was adjustable. With sufficient anatomical expertise, the

boundary between GM and WM and the corresponding intensity, respectively, can be easily

identified by manipulating the intermediary colour white until it highlights the desired ana-

tomical features. The imaging software ITK-SNAP [44] provides a graphical user interface for

this purpose.

For the T1-weighted reference image, the boundary between hypothalamic GM and sur-

rounding WM was found at 60% of the intensity range. For the reference’s T1 map the inten-

sity range had to be adjusted to ensure a correct comparison. A comparable contrast and

colour allocation was achieved by mapping intensities in the range (950, 3700) with the follow-

ing assignments: blue: IMin = 0%, white: I = 40%, and red: IMax = 100%. With the reference’s

Performance of intensity standardisation techniques with high- resolution MRIs
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intensity ranges as default, the rater had to determine the intensity of the boundary between

hypothalamic GM and surrounding WM for each target image. (After perfect intensity stan-

dardisation, the boundary would have the same intensity across all target images). An experi-

enced rater, who was blind to the intensity standardisation technique, performed two

estimation runs which were then averaged. The test-retest reliability of this procedure was esti-

mated with the intra-class correlation coefficient (ICC). It was very high for all standardisation

techniques (ICC >.95). The intensity values of the hypothalamic boundary were normally dis-

tributed for each standardisation technique, warranting parametric variance comparisons for

two correlated samples. The Pitman-Morgan test (two-tailed) was chosen to compare the

inter-individual intensity variation of the hypothalamic boundary in the native T1-weighted

images with the variation in the standardised T1-weighted images and the T1 maps,

respectively.

Maintenance of biological variation. When correcting the image intensity, we have to

make sure that only erroneous differences in the image intensity or T1-shifts are corrected, but

volume-related intensity differences are maintained. Without external or longitudinal data it is

difficult to disentangle these factors. We can approach this problem indirectly by proving that

during intensity standardisation the relevant biological variance in certain volume measure-

ments is preserved.

Effects for age have been described for T1 values in WM and GM [36, 38] as well as for tis-

sue volume estimates (for reviews, see e.g. [45, 46, 47]). Given that age patterns exist in our vol-

umetric data independently from T1-shifts and measurement errors, they should be preserved

during intensity standardisation. To test this, the volumes of the whole-brain WM, GM, and

CSF were calculated using the tissue class maps from the FANTASM segmentation of the

native and intensity standardised images. The Pearson correlations between the whole-brain

WM and GM volumes and age of the subjects were determined. Steiger’s equation [48] for

the comparison of two dependent correlations was used to test for changes (two-tailed) of the

correlation estimates following intensity standardisation. The magnitude of a correlation dif-

ference is given by Cohen’s effect size q; with q = 0.10, 0.30, and 0.50 considered “small”,

“medium”, and “large” effect sizes, respectively [39].

The T1 maps were of special interest for this evaluation criterion. The quantitative mapping

of the longitudinal relaxation time with the MP2RAGE sequence is advertised as being free of

reception bias field, and, to a large extent, transmit field inhomogeneity [9]. Volumetric esti-

mations based on quantitative T1 maps should therefore be free of technically induced differ-

ences in the T1 values. Inter-individual differences should be solely due to actual volume

differences or T1 shifts affecting the volume estimation. Thus, T1 maps provide a validation

for the correlation between tissue volumes and age within the native T1-weighted images.

Results

Histogram comparison

Both techniques that matched the histogram modes improved the homogeneity of the WM

histograms at the cost of the homogeneity of the GM histograms: PHM improved the align-

ment of the target distribution with the reference distribution for the whole-brain WM area as

indicated by significant reductions of the average absolute error and the maximum absolute

error (large effects; Table 1). In the WM ROI it improved the average absolute error alone

(medium effect). These improvements were accompanied by medium to strong increases in

both error measures in the whole-brain GM and in the GM ROI, outlining an overall worsen-

ing of the GM histogram homogeneity (Table 2). Similarly, NHM significantly improved the

Performance of intensity standardisation techniques with high- resolution MRIs
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histogram alignment for the whole-brain WM and the WM ROI but it increased the histogram

divergence for the whole-brain GM and the GM ROI (medium and large effects).

While CHM improved the histogram alignment in the whole-brain analyses RLS showed

best performance in the ROI analyses. The former significantly reduced both error measures

for the whole-brain WM and GM areas (large effects) but yielded no significant change at all

within the two ROIs. Conversely, RLS produced large-sized reductions for both error measures

within the WM ROI and the GM ROI and yielded no improvements of the whole-brain tissue-

specific histograms except for a medium-sized reduction of the maximum absolute error in

the WM.

SPS reduced the average absolute error and the maximum absolute error in both tissue clas-

ses, in the whole-brain analyses (large effects) as well as in the ROI analyses (medium to large

effects).

The quantitative T1 maps appeared not as homogeneous across subjects as expected. The

average absolute error between the target T1 map distributions and the reference T1 map dis-

tribution was significantly smaller than that of the T1-weighted images, both in the whole-

brain WM and in the WM ROI (medium and large effect). The maximum absolute error—an

indicator for local deviations and thus a stricter criterion—was not reduced though. In addi-

tion, in all GM histogram comparisons the T1 maps were statistically indistinguishable from

the T1-weighted images.

Average image intensity

Consistent results were obtained for the whole-brain analyses versus the ROI analyses of the

average image intensity but, again, a distinction between the two tissue classes GM and WM is

vital. The average voxelwise intensity difference between the T1-weighted reference image and

the native T1-weighted target images had a sample median (range) of 251.7 (226.2–292.9)

in the whole-brain WM and a median of 259.3 (192.7–343.9) in the WM ROI. These differ-

ences were significantly reduced after intensity standardisation with any of the five methods

(Table 3). The effect sizes were large except for a medium effect (r = .49) observed after SPS in

the WM ROI.

In the whole-brain GM the median of the average voxelwise intensity difference was 419.4

(408.4–443.6) and in the GM ROI the median was 440.0 (341.3–606.8). Continuing their pat-

tern from the histogram comparison, both mode-based histogram matchings (PHM and

NHM) increased the average voxelwise intensity difference in the GM, which became signifi-

cant in the whole-brain analysis. CHM did not improve the GM intensities in the whole-brain

image or in the ROI. In contrast, consistent improvements (medium to large effects) were

obtained after RLS and SPS.

Local image intensity

Fig 2 shows the colour-coded images before (column 1) and after intensity standardisation

(columns 2–6), as well as the T1 maps (column 7). The colour-mappings developed for the

reference T1-weighted image and the reference T1 map (see Methods chapter “Local image

intensity”) were applied. Intensity differences between the brains are prominent in local GM

regions (e.g. amygdala and hypothalamus; optimally in red) and also in the overall impression,

which is dominated by the WM (blue). In the native T1-weighted target images, the intensity

of the boundary (in % of the intensity range) between hypothalamic GM and surrounding

WM varied with a SD of 5.3, which corresponds to 211 intensity levels. The variation was sig-

nificantly reduced by PHM (SD = 3.3, t(18) = 3.89, p = 0.001) and NHM (SD = 2.6, t(18) =

4.97, p< 0.001, Fig 3). CHM failed to satisfy this criterion (SD = 4.0, t(18) = 1.55, p = 0.139).
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Fig 2. Inter-individual intensity variation revealed by colour-coding. Coronal view of all target images—

the two MP2RAGE contrasts (column 1 and 7) and the intensity standardisation results (columns 2–6).

Compare, e.g. #9 with overexposed GM and WM, and #10 with relatively dark GM and WM. CHM cumulative

histogram matching, NHM non-linear histogram matching, PHM piecewise linear histogram matching, RLS

ROI-based linear standardisation, SPS segmentation-based piecewise linear standardisation.

doi:10.1371/journal.pone.0173344.g002
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After RLS, we observed the smallest inter-individual intensity variation of the hypothalamic

boundary (SD = 2.5, t(18) = 7.18, p< 0.001). Considerably weaker changes, although still sig-

nificant, were achieved by SPS (SD = 4.2, t(18) = 3.66, p = 0.002). Remarkably, the intensity

variation of the hypothalamic boundary in the T1 maps was found to be of similar magnitude

compared to the T1-weighted images when the T1 maps were presented with a comparable

contrast to the rater (SD = 4.9, t(18) = 1.30, p = 0.221).

Maintenance of biological variation

Before intensity standardisation there was no significant correlation between the WM volume in

the native T1-weighted images and subject age, but the GM volume showed a medium negative

correlation with subject age (r = -0.66, p = 0.001). This correlation was replicated by the intensity

standardisation techniques and the T1 maps (Fig 4) except for CHM (Z = -2.17; p = 0.030) and

SPS (Z = -2.60; p = 0.009). Whereas the latter caused only a small-sized drop of this correlation

(Cohen’s q = 0.11), CHM introduced severe changes to the volumetric pattern (Cohen’s

q = 0.50, large effect size). Further analysis of this technique suggested that this drastic change

was a consequence of imposing the reference’s GM/WM volume ratio onto each target image.

Interpretation and conclusions

Intensity-based MR image analysis requires that similar image intensity values represent simi-

lar tissue types across different persons. By applying colour-coding to T1-weighted MP2RAGE

Fig 3. Inter-individual intensity variation of the hypothalamus boundary. The results of the Pitman-

Morgan tests comparing the variation of the native T1-weighted images with the standardised images and the

T1 maps, respectively, are shown. CHM cumulative histogram matching, NHM non-linear histogram

matching, n.s. not significant, PHM piecewise linear histogram matching, RLS ROI-based linear

standardisation, SD standard deviation, SPS segmentation-based piecewise linear standardisation,

** p < 0.01, *** p< 0.001.

doi:10.1371/journal.pone.0173344.g003
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images, we found that the high measurement accuracy achieved by high-resolution imaging

might be compromised by inter-individual image intensity variation. Because investigating the

source of this variance was beyond the scope of this study, we tested the performance of a vari-

ety of intensity correction procedures. We included histogram-based techniques as well as

methods that evaluate both intensity and spatial information. A mapping of the longitudinal

relaxation time was included as well, as, in theory, it should be free of artificial intensity varia-

tion. To test the performance with severe cases, the sample consisted of images with extreme

intensities in the GM and WM that were matched to a representative reference image.

A multi-level evaluation was performed with a focus on the hypothalamic region. We

assessed the alignment of the cumulative probability distributions under the assumption that

images with similar intensity histograms look more alike than images with divergent intensity

histograms. This was done separately for the whole-brain GM and WM areas, as well as for a

GM ROI of the hypothalamus and a ROI of WM surrounding the hypothalamus. Additionally,

the average voxelwise intensity difference between the reference image and the co-registered

target images was evaluated in the ROIs and the whole-brain tissues. We semi-automatically

determined the intensity of a selected anatomical detail—the hypothalamic boundary—and

analysed its variability before versus after intensity standardisation. Finally, we required that

the original biological information within the native T1-weighted images be preserved during

intensity standardisation. This was measured by the correlation between whole-brain tissue

volumes and subject age. Comparable correlations observed in the quantitative values of the

T1 maps confirmed the legitimacy of this demand.

Standardisations evaluating intensity domain and spatial domain

ROI-based linear standardisation. A global linear scaling factor estimated from precise

subcortical GM and WM ROIs performed best among the tested methods: it improved the his-

togram alignment within both ROIs which was indicated by significantly reduced average

absolute errors and maximum absolute errors (large effects). The whole-brain histograms of

GM and WM tissue areas remained mostly untouched, though. Nonetheless, and possibly

more important for its applicability, the average voxelwise intensity differences between refer-

ence image and target images were significantly reduced, both in the ROIs and in the whole-

brain tissues (large effect sizes). Furthermore, RLS reduced (SD = 2.5) the original inter-indi-

vidual intensity variation (SD = 5.3) of the hypothalamus boundary by more than half. This

Fig 4. Correlations (r) between subject (#) age and whole-brain GM volumes. CHM (4th column from

right) drastically reduced the correlation between age and GM volume originally observed in the native

T1-weighted images (1st column). L linear, NL non-linear, PWL piecewise linear, ** p < 0.01, *** p < 0.001.

doi:10.1371/journal.pone.0173344.g004
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means, after standardisation with RLS, the hypothalamic boundary can be detected at the

same intensity across different subjects. The increased inter-individual homogeneity of the

intensity of the hypothalamic boundary facilitates the development of automated segmentation

methods greatly as they can rely more strongly on the image intensities. The computationally

expensive creation of an atlas (e.g. probability map) is unnecessary. Finally, RLS preserved the

original biological information within the images, as indicated by a stable correlation between

the whole-brain GM volume and subject age.

Segmentation-based piecewise linear standardisation. With SPS, we aimed at integrat-

ing spatial and intensity information to obtain a tissue-specific scaling of the image intensities.

In the histogram comparisons, we achieved consistent improvements of both error measures

for the two whole-brain tissues (large effects) as well as for the two ROIs (medium to large

effects). These were accompanied by medium- to strong-sized improvements of the average

image intensity for all four analysed regions. The reductions in the intensity variation of the

hypothalamic boundary were considerably less pronounced (SD = 4.2) than with RLS and they

came at the cost of a small-sized, significant reduction of the correlation between the whole-

brain GM volume and subject age.

Standardisation techniques evaluating only the intensity domain

Piecewise linear histogram matching and non-linear histogram matching. MP2RAGE

histograms show distinct modes corresponding to the most frequent GM and WM intensities.

Matching these modes by piecewise linear interpolation (PHM) or with a non-linear correc-

tion function (NHM) mostly improved the alignment of the whole-brain WM histograms and

the histograms of the WM ROI. However, for the whole-brain GM and the GM ROI, signifi-

cant, consistent increases of the histogram divergence became evident. We observed the same

pattern at the analysis level of the actual images. Strong reductions were obtained for the

voxelwise average intensity differences in the WM while the differences were unchanged or

increased in the GM. When looking at the agreement of both criteria, we conclude that the

GM mode is a suboptimal histogram characteristic for T1-weighted MP2RAGE images. This is

possibly due to the wide spread of the GM histogram mode. Nonetheless, substantial reduc-

tions of the intensity variation of the hypothalamic boundary were obtained with PHM and

NHM (SD = 3.3, SD = 2.6, respectively), suggesting that this criterion is related to an effective

intensity correction in the WM. The original age-related pattern in the whole-brain GM vol-

ume was preserved by both techniques.

Cumulative histogram matching. CHM provided by the MIPAV software was strong in

the histogram comparisons of the whole-brain tissues (large effects) but failed to affect the his-

tograms of the subcortical ROIs (p> 0.05). Remarkably unrelated, the algorithm improved

the average voxelwise intensity of the WM in the whole-brain image as well as in the ROI

(large effect sizes), but the GM remained unchanged in both analysed regions. The variance

reduction of the intensity of the hypothalamic boundary (SD = 4.0) did not reach significance

level. There is no obvious reason as to why our evaluation criteria diverge after CHM. It might

be a side effect of the drastic modifications forced onto the images by this method. CHM is

closely related to methods that match histogram percentiles or the histogram median, respec-

tively. It assumes that, up to a certain intensity level, the target image has accumulated the

same relative number of voxels as the reference image. This is illustrated by the fact that the

reference’s GM/WM volume ratio was imposed onto each target image. This might be appro-

priate for selected purposes like matching histological images to MR images of the same sub-

ject [24], but it certainly is not suited for inter-subject intensity matching when structural

differences are of interest. Our fourth criterion substantiates this. The correlation between the
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whole-brain GM volume and subject age was strongly reduced, proving that relevant biological

variance was lost. We conclude that CHM, like the matching of percentiles, will enforce simi-

larity irrespective of tissue membership.

T1 mapping. Finally, our comparison included quantitative T1 maps. Reflecting the tis-

sues’ variations in the T1 relaxation time, which is a reliable intrinsic parameter, on an absolute

scale (time in seconds), they should not require intensity standardisation. In the histogram

comparisons, only the average absolute error substantiated the T1 maps’ theoretical superiority

over the T1-weighted images; and only for the WM (medium to large effects) but not for the

GM. The maximum absolute error, indicative of local deviations and thus considered a stricter

criterion, was not reduced in any of the analysed regions. Due to the lower contrast of the

T1 maps, a conclusive comparison of the voxelwise intensity difference with that of the

T1-weighted images was not possible. However, when the images were presented with a

comparable contrast to the rater, the T1 maps evinced nearly the same colour allocation

and intensity variation of the hypothalamus boundary, respectively (SD = 4.9), as the native

T1-weighted images. The correlations of the whole-brain GM volumes with subject age were

of the same height as those of the native T1-weighted images, suggesting that both MRI con-

trasts provide comparably good insights into volumetric patterns of this tissue class.

The inter-individual intensity differences of the hypothalamic boundary in the T1 maps

were unexpected. Their magnitude was large enough to hinder manual segmentation of the

hypothalamus. The images analysed in this study were acquired in the years 2010–2014

according to Marques et al. [9]. In 2013, Marques and Gruetter reported that transmit field

(B1
+) inhomogeneity correction improves the T1 estimation with the MP2RAGE sequence

[40]. They quantified the error on the T1 estimation for a protocol that is similar to ours

regarding flip angles and resolution, that is, sensitivity to B1
+ inhomogeneity (protocol iia).

The estimated error was less than 2.5% for the T1 value of WM (1.2s [49]) when the B1
+ field

varies by ±40%–the typical range of B1
+ in the human brain at 7T. This corresponds to a maxi-

mum error on the T1 values of WM of approximately 30 ms. It is not possible to estimate the

transmit field post hoc. Any corrections that we could do now, without knowledge of the exact

distribution of the B1
+ field, would change the T1-values in such a way that they would lose

their meaning as a physical parameter (longitudinal relaxation time). To answer the question

in how far a B1
+ correction might have helped reducing the intensity variation in the T1 maps,

we determined the location of the WM peak in the T1 map histograms of our sample. The T1

values of the peaks ranged from 1344 to 1499. The difference (155ms) is considerably larger

than the B1
+-related errors on the T1 estimation of WM observed by Marques and Gruetter.

B1 inhomogeneity correction might have reduced the inter-individual intensity differences

observed in the T1 maps of our study but a large portion would have remained.

Limitations

We expect our results to be valid for the following conditions: firstly, the tested intensity stan-

dardisations followed the assumption that similar intensities represent similar tissue types

across different images, that is, GM in one brain image should be as bright as GM in another

brain image. In line with this, intensity variations were removed irrespective of their potential

sources—be they technical in nature or biological like T1 tissue signal shifts. Secondly, the ini-

tial intensity differences between the 7T T1-weighted MP2RAGE images were moderate com-

pared with standard MR sequences. We mitigated this possible limitation by selecting target

images with extreme intensities in the GM and WM at the expense of generalisation to random

image samples. Thirdly, the sequence parameters selected for the MP2RAGE provided opti-

mum contrast-to-noise ratio between GM, WM, and CSF. The total acquisition time of 18:02

Performance of intensity standardisation techniques with high- resolution MRIs
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min was rather long for clinical practice and can easily be reduced, however, likely at the

expense of CNR, SNR, or the field of view (cf. [9]). Moreover, the histograms of the T1-

weighted images show distinct modes for GM and WM. With other sequences or lower field

strengths, appropriate adaptations of our standardisation techniques may yield different

results. For example, piecewise linear matching of histogram modes has been shown to be

effective with unimodal intensity histograms [12] but failed with our multimodal histograms.

Nonetheless, we expect the winning algorithm RLS to be robust with other sequences and field

strengths if the ROIs are carefully chosen: a strong contrast between them will ensure a reliable

transformation function, but intensities at the very ends of the intensity spectrum (e.g. CSF

and vessel voxels) might contain little valid information. Bright WM and dark GM will there-

fore be optimal. Either regions are chosen whose MRI intensities are stable in age and disease,

or further preprocessing steps ensure that abnormal tissue constitutes only a negligible portion

that will not affect the median estimates of the ROIs. In the T1-weighted MP2RAGE images,

we sometimes observed idiopathic hypointensities of the globus pallidum. With the help of the

FANTASM tissue class maps, they were effectively removed from our WM ROI. Naturally, the

two ROIs need to be large enough to provide a reliable median intensity estimate each, even

after co-registration and cleansing. With roughly 2000 voxels our GM ROI should be consid-

ered the lower limit.

Summary

RLS showed the best results for standardising intensities in T1-weighted MRI data sets. It ful-

filled all evaluation criteria except for a weak performance with the whole-brain histograms.

The algorithm is easily implemented and the ROI definition is facilitated by freely available

registration and segmentation software.
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