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Since the herb pair Huang Lian-Gan Jiang (HL-GJ) was put forward as conventional compatibility for cold-heat regulation in the
middle energizer in the theory of Traditional Chinese Medicine (TCM), their therapeutic effects were observed on the prevention
and treatment of intestinal inflammation and tumors including colorectal cancer (CRC). However, the active compounds, crucial
targets, and related pathways of HL-GJ against CRC remained unclear. 4e purpose of this research was to establish a com-
prehensive and systemic approach that could identify the active compounds, excavate crucial targets, and reveal anti-CRC
mechanisms of HL-GJ against CRC based on network pharmacology. We used methods including chemical compound screening
based on absorption, distribution, metabolism, and excretion (ADME), compound target prediction, CRC target collection,
network construction and analysis, Gene Ontology (GO), and pathway analysis. In this study, eight main active compounds of
HL-GJ were identified, including Gingerenone C, Isogingerenone B, 5,8-dihydroxy-2-(2-phenylethyl) Chromone, 2,3,4-tri-
hydroxy-benzenepropanoic acid, 3,4-dihydroxyphenylethyl Alcohol Glucoside, 3-carboxy-4-hydroxy-phenoxy Glucoside,
Moupinamide, and Obaculactone. HRAS, KRAS, PIK3CA, PDE5A, PPARG, TGFBR1, and TGFBR2 were identified as crucial
targets of HL-GJ against CRC. 4ere were mainly 500 biological processes and 70 molecular functions regulated during HL-GJ
against CRC (P< 0.001). 4ere were mainly 162 signaling pathways contributing to therapeutic effects (P< 0.001), the top 10 of
which included DAP12 signaling, signaling by PDGF, signaling by EGFR, NGF signaling via TRKA from the plasma membrane,
signaling by NGF, downstream signal transduction, DAP12 interactions, signaling by VEGF, signaling by FGFR3, and signaling by
FGFR4. 4e study established a comprehensive and systematic paradigm to understand the pharmacological mechanisms of
multiherb compatibility such as an herb pair, which might accelerate the development and modernization of TCM.

1. Introduction

Colorectal cancer (CRC) is the third major malignant tumor
diagnosed globally and accounts for the fourth cancer
mortality worldwide [1]. Furthermore, the incidence is still
rising all over the world despite the major milestone in early
diagnosis and treatment of CRC [2]. Clearly, it has become a
powerful threat to public health due to high morbidity and
mortality [3]. Although the pathogenesis of CRC is complex
and still not fully illuminated, the interactions of risk factors

including the environmental, lifestyle, and genetic factors
play outstanding roles in initiation and ignition of CRC
[4, 5]. 4e therapeutic regimens for CRC include surgery,
chemotherapy, radiotherapy, immunotherapy, and targeted
therapy [6–8]. 4e development of therapies for CRC still
cannot cope with its high mortality owing to frequent re-
currence and metastasis. Given this, it is in desperate need of
more effective and less toxic treatment for CRC.

Traditional Chinese Medicine (TCM) has always played an
important part in treating diseases for Asian people and is more
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and more widely recognized in western countries [9]. TCM has
formed its own unique culture with differences in substance,
methodology, and philosophy from modern medicine [10].
Multiherb compatibility has been regarded as the essence of
TCM theories [11]. Herb pairs are the simplest and the
most fundamental form of multiherb therapy and Chinese
herb formulae often contain special herb pairs, which are
asserted to assemble and interpret single combinations of
traditionally classified herbal properties, connecting mu-
tual enhancement, assistance, restraint and suppression, or
antagonism [12]. Better pharmacological efficacy of herb
pairs is usually due to the synergy effects from ingredients
with special pharmacokinetic profile [13].

In TCM herbs, Huang Lian (HL) is derived from dried
roots of Coptis chinensis Franch., Coptis teeta Wall., and
Coptis deltoidea C. Y. Cheng et Hsiao, which are, re-
spectively, called “Wei Lian,” “Yun Lian,” and “Ya Lian,”
according to China Pharmacopoeia. Under the guidance of
TCM theory, HL could alleviate heat, astringe extra fluids,
and resolve toxin in the body. Zingiberis rhizoma (“Gan
Jiang” in Chinese, GJ) is the dried root of Zingiber officinale
Rocs distributed in Southwest China. GJ has the effects of
warming the spleen and stomach for dispelling cold and
restoring venation in accordance with China Pharmaco-
poeia. HL and GJ seem to be cold and hot in terms of
medicinal properties and are not synergistic with each other.
Since the creation of the herb pair “HL-GJ” for treating
diseases of the spleen-stomach system by the ancient Chi-
nese book “Treatise on Febrile Diseases,” combination of
frigotherapy and pyretotherapy has become a conventional
compatibility of cold-heat regulation in the middle ener-
gizer. Recent studies have found that the compatibility of HL
with GJ could not only make their medicinal properties
milder but also have strong synergistic effects and could
increase pharmaceutical efficiency and reduce toxicity
compared with individual applications. HL is a common
medicine used to treat gastrointestinal diseases in the field of
TCM. Modern pharmacological studies have shown that HL
could inhibit invasion and metastasis of colorectal cancer
cells and has inhibitory and clinically therapeutic effects on
colon cancer [14, 15]. But HL often causes constipation,
anorexia, and a series of symptoms of cold of insufficiency
type due to its bitter and cold medicinal properties. Based on
the theoretical guidance of combination of frigotherapy and
pyretotherapy, compatibility of appropriate dose of GJ can
alleviate these side effects of HL clinically, so that HL can
take effect in expelling pathogenic factors and restoring the
balance of human body. Chinese researchers have also re-
ported that GJ can inhibit the proliferation and promote
apoptosis of tumor cells. Although some achievements have
been made in the pharmacological research studies of HL,
GJ, and their monomeric substances, the studies on the
molecular biology of the herb pair “HL-GJ” are relatively
deficient. Hence, this study is expected to provide a theo-
retical basis for herb compatibility and achieve a break-
through in the treatment of CRC.

Network pharmacology has been brought into focus in
recent years, which integrates pharmacodynamics, pharmaco-
kinetics, and system-level network analysis and can reveal the

multifaceted mechanisms of herbal formulae treating compli-
cated diseases from proteomics or at the systematic level
[16–18]. Particularly, it has become a novel strategy to elucidate
the interactive relationship between multicomponents and
multitargets of TCM and a research hotspot to investigate
multiple molecular mechanisms of multitarget compounds
affecting biological networks for herbal medicines [19–21].
4erefore, we employed the network pharmacology to probe
the pharmacological mechanisms of the herb pair “HL-GJ”
against CRC in this study. Meanwhile, the relationships among
herbs, compounds, and targets were also investigated. Finally,
the multicompound, multitarget, and multipathway mecha-
nisms were illuminated for HL-GJ against CRC based on
network analysis.

2. Materials and Methods

2.1. Chemical Compounds of HL-GJ. Chemical compounds
were obtained from the Traditional Chinese Medicine
Systems Pharmacology Database [22] (TCMSP, http://ibts.
hkbu.edu.hk/LSP/tcmsp.php) and the Traditional Chinese
Medicine Integrated Database [23] (TCMID, http://www.
megabionet.org/tcmid/). Compounds were screened
according to predicted oral bioavailability (OB) and drug-
likeness (DL) values and reserved if OB≥ 30% and DL≥ 0.18,
which was a recommended criterion by the TCMSP data-
base. 4e constituent compounds of HL-GJ were summa-
rized for further research after removing duplication.

2.2. Target Fishing forHL-GJ. Target fishing was executed to
investigate potential targets of constituent compounds of
HL-GJ. PharmMapper [24] (http://lilab.ecust.edu.cn/
pharmmapper/), an online server using the pharmaco-
phore mapping approach for potential drug target iden-
tification, was employed to predict the potential protein
targets based on 3D molecular structure. 4e 3D molecular
structure files (.SDF) were obtained from the PubChem
[25] (https://pubchem.ncbi.nlm.nih.gov/), a public re-
pository for providing information of chemical compounds
and their biological activities. Compounds without precise
structural information cannot be predicted targets and
were removed. Eventually, predicted protein targets were
harvested with normalized fit score >0.9. 4e final target
information was normalized via UniProt (https://www.
uniprot.org/) [21].

2.3. CRC Targets. Different target information associated
with CRC was collected from TTD (https://db.idrblab.org/
ttd/) [26] and OMIM (http://www.omim.org/) [27] data-
bases. CRC targets were retrieved after deleting duplicate
data. Common targets of both CRC and the chemical
compounds were considered potential targets.

2.4. Protein-Protein Interaction Data. 4e data of protein-
protein interaction (PPI) were obtained from String [28]
(https://string–db.org, ver 10.5), with species limited to
“Homo sapiens” and the confidence score >0.9. String is a
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database of known and predicted protein-protein in-
teractions, which defines PPI with confidence score ranges
(low confidence: score< 0.4; medium: 0.4< score< 0.7; high:
0.7< score< 0.9; highest confidence: score> 0.9).

2.5. Network Construction. Network construction was vi-
sualized using Cytoscape [29] (version 3.2.1) as follows: (1)
herb-compound, compound-compound target, herb-com-
pound-compound target networks; (2) PPI network was
established by linking common targets between CRC and
chemical compounds and other human proteins that directly
or indirectly interacted with common targets; (3) herb-
compound-compound target-CRC target-PPI network. In
the network, three topological parameters were calculated by

NetworkAnalyzer [30], involving in Degree, Betweenness
Centrality, and Closeness Centrality. Just the nodes with
“Degree,” “Betweenness Centrality,” and “Closeness Cen-
trality” larger than the corresponding median values were
recognized as crucial nodes of HL-GJ against CRC.

2.6. Gene Ontology and Pathway Analysis. GO biological
process and molecular function were analyzed based on GO
database and carried out via the BINGO plug-in of Cyto-
scape. 4e pathway enrichment analysis was carried out via
the Reactome FI plug-in based on the Reactome database.
During these procedures, the threshold was set to 0.001, and
P< 0.001 suggested statistical significance of the enrichment
degree.
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Figure 1: Herb-compound network (yellow octagons represented chemical compounds with oral bioavailability (OB)≥30% and drug-
likeness (DL)≥0.18). Green arrow: herb; yellow octagon: chemical compound.

Evidence-Based Complementary and Alternative Medicine 3



3. Results and Discussion

3.1. Herb-Compound-Compound Target Network. As shown
in Figure 1, the herb-compound network was composed of
67 nodes (2 herb nodes and 65 chemical compound nodes)
and 65 edges. A total of 65 satisfactory chemical compounds
were gained from the herb pair “HL-GJ,” including 24 in HL
and 41 in GJ, which was consistent with the feature of
multiple components of TCM (Tables S1 and S2). Among
the 65 chemical compounds, one compound could not be
successfully predicted targets and two compound targets did
not confirm to the filter criterion. So, the compound-
compound target network contained 169 nodes (62 chemical
compound nodes and 107 target nodes) and 1189 edges as

shown in Figure 2 (Table S3). In this network, it was not hard
to find that each compound corresponded to multiple tar-
gets. For instance, Berberine in HL modulated PPIA, CA2,
TTR, BCHE, AR, CYP19A1, and ESR2. Gingerol in GJ
modulated 25 targets including PPIA, CA2, CCNA2, GSTP1,
BCHE, MAOB, and so on. Also, PPIA was regulated by a
number of compounds from HL and GJ. 4ese phenomena
were consistent with the feature of multiple targets of TCM
and the synergy effect of multiherb compatibility. Figure 3
integrated the herb-compound network and the compound-
compound target network, which was convenient for ob-
serving the relationship among herb, compound and
compound target, and the potential pharmacological effects
of the herb pair “HL-GJ.” Overlong names of compounds
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Figure 2: Compound-compound target network (blue triangles represented predicted protein targets with normalized fit score >0.9).
Yellow octagon: chemical compound; blue triangle: chemical target.

4 Evidence-Based Complementary and Alternative Medicine



were replaced with corresponding PubChem ID numbers in
figures, which were summarized in Tables S1 and S2.

PharmMapper is widely employed for computational
target detection and can offer top 300 potential targets for
the query compound in default [31]. 4e predicted targets
with a normalized fit score >0.9 were adopted in this study
using PharmMapper. Several probable targets of active
compounds fromHL and GJ have been documented in other
studies. Berberine can suppress AR signaling and present a
promising mediator for the prevention or treatment of
prostate cancer [32]. Chlorogenic acid may serve as a
chemosensitizing mediator leading to tumor growth sup-
pression due to its ability of activating or inhibiting some

important pathways such as the EGFR/PI3K/mTOR path-
way [33]. Columbianadin induced apoptosis of colon cancer
(HCT116) cells, which was connected with the modulation
of caspase-3, caspase-9, Bim, Bcl-2, Bax, and Bid [34].
Obacunone and obacunone glucoside (OG) induced the
apoptosis of colon cancer (SW480) cells through reducing
ratio of bcl2/bax gene transcription, activating caspase-3,
and inducing fragmentation of DNA [35]. Quercetin might
be an attractive chemical scaffold, which could generate
novel derivatives such as PIM1, possessing various kinds of
antikinase activities [36]. In 10-gingerol-treated human
colon cancer (HCT116) cells, there was an increased ratio of
Bax/Bcl-2 with induction of apoptosis through the activation
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of caspase-9, caspase-3, and ploy-ADP-ribose polymerase in
a dose-dependent manner [37]. Active fractions including
quercetin and β-sitosterol had an apoptotic effect on breast
cancer (MCF-7 and MDA-MB-231) cells possibly through
the mitochondrial pathway due to the activation of caspase3/
7 [38]. 4e above description showed the precision of target
prediction for PharmMapper.

3.2. PPINetworkAnalysis. One hundred and eighty-six CRC
targets were collected from TTD and OMIM databases
(Table S4). Targets between CRC and chemical compounds
were mapped, and 6 common targets were found. Fifty-
seven other human proteins directly or indirectly interacted
with 6 common targets were achieved from String database.

4e PPI network of the common targets is shown in Figure 4,
including 63 nodes (6 common target nodes and 57 other
human protein nodes), which might represent the reaction
of HL-GJ response to CRC in vivo. NetworkAnalyzer was
employed to calculate topological parameters such as De-
gree, Betweenness Centrality, and Closeness Centrality of
the 63 targets in the PPI network (Table S5) in order to
identify key nodes in the network. 4e corresponding
median values of Degree, Betweenness Centrality, and
Closeness Centrality were 7.02, 0.04, and 0.63. 4us, the
nodes with “Degree >7.02,” “Betweenness Centrality >0.04,”
and “Closeness Centrality >0.63” were considered as key
targets of HL-GJ against CRC. As a result, HRAS, KRAS,
PIK3CA, PDE5A, PPARG, TGFBR1, and TGFBR2 were
identified as crucial targets of HL-GJ against CRC.
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RAS family members of proteins often appeared in
mutated and oncogenic forms in human tumors. Four di-
verse RAS proteins were encoded by 3 genes: KRAS (2 splice
variants), HRAS, and NRAS [39]. RAS protein mutations
could result in nonreversible reduction in GTPase activity or
inability of activating GTPase [40], and mutations in KRAS
held about 85% of overall RASmutations in human tumors;
NRAS about 15%; and HRAS less than 1% [41]. 4e prob-
ability of KRAS mutation was approximately 30–50% in
CRC [42], associated with advanced disease status, greater
ratio of right-sided colon tumors, poor tumor differentia-
tion, and more liver metastasis [43–45]. KRAS was also
reported to be associated with mucin component and
lymphovascular invasion [46]. KRAS was known to be an
alternative marker of anti-EGFR antibodies at present [47].
HRAS mutation could cause augmentation of phosphati-
dylinositide-3-kinase signaling [48] and also appeared in
bladder and oropharyngeal cancer [49, 50]. Nevertheless,
none of the mutations in the RAS gene family was a re-
markable prognostic factor in CRC [46]. 4e PI3K protein
encoded by PIK3CA was a lipid kinase that played a crucial
role in promoting and regulating signal pathways relevant to
cell proliferation, migration, apoptosis, and metabolism
[51, 52]. PIK3CA mutation occurred 15–20% in colorectal
cancer [53]. PIK3CA mutation contributed to the survival
and proliferation of CRC stem cells, which induced che-
motherapy resistance and poor prognosis [54], and reduced
the hazard of peritoneal metastases [55]. PI3K upregulation
was able to inhibit the apoptosis of CRC cells as well [56].
4e expression level of PDE5A was upregulated after
treatment with American ginseng and ginsenoside Rg3 in
human CRC cells [57]. Significant association was found
between PPARG variants and CRC [58]. PPARG might be
the target of miR-34a and the potential therapeutic target
of CRC [59]. Nonsteroidal anti-inflammatory drugs

suppressed CRC stem cells via inhibiting PTGS2 and
NOTCH/HES1 and activating PPARG [60]. 4e rs1590
variant of TGFBR1 might possess a significant association
with CRC risk, and the hypomorphic variant TGFBR1∗ 6A
affected migration and invasion in CRC cells [61, 62]. 4e
miR-3191 promoted the migration and invasion by targeting
TGFBR2 in CRC cells, and the miR-371∼373/TGFBR2/ID1
signaling axis might regulate the self-renewal of tumor-
initiating cells and metastatic colonization as a novel
mechanism [63, 64]. In summary, literature review sup-
ported HRAS, KRAS, PIK3CA, PDE5A, PPARG, TGFBR1,
and TGFBR2 as crucial targets of HL-GJ against CRC and
confirmed the reliability of key target screening via calcu-
lating topological parameters.

3.3. PPI Network of Herb-Compound-Compound Target-CRC
Target-Other Human Proteins. 4e network traced the
compounds of HL-GJ acting on common targets between
CRC and chemical compounds as shown in Figure 5, which
covered 93 nodes (2 herb nodes, 28 compound nodes, 6
common target nodes, and 57 other human protein nodes)
and 292 edges. 4e network provided a straightforward
reflection of the relationship from herb to compound to
disease. In order to identify more important compounds, the
topological parameters of 28 compound nodes were cal-
culated by NetworkAnalyzer (Table S6). 4e median values
of Degree, Betweenness Centrality, and Closeness Centrality
were 2.54, 0.03, and 0.21, respectively. Nodes with “Degree
>2.54,” “Betweenness Centrality >0.03,” and “Closeness
Centrality >0.21” were regarded as major compounds of HL-
GJ against CRC. Compounds satisfying requirements con-
tained Gingerenone C, Isogingerenone B, 5,8-dihydroxy-2-
(2-phenylethyl) Chromone, 2,3,4-trihydroxy-benzenepro-
panoic acid, 3,4-dihydroxyphenylethyl Alcohol Glucoside,
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3-carboxy-4-hydroxy-phenoxy Glucoside, Moupinamide,
and Obaculactone.

4ere have been few reports on the biological activities of
diarylheptanoids containing Gingerenone C and Iso-
gingerenone B, most of which exerted the effects of anti-in-
flammation, antioxidation, superoxide scavenging, and
antihepatotoxicity [65, 66]. Gingerenone C has been reported
to possess anti-inflammatory activity by inhibiting LPS-in-
duced NO production in mouse RAW264.7 cells, which was
isolated from rhizomes of Curcuma kwangsiensis [67]. 3,4-
dihydroxyphenylethyl Alcohol Glucoside played antioxidant
roles as a DPPH scavenger, hydroxyl radical scavenger, and
superoxide anion radial scavenger by querying “Encyclopedia

of Traditional Chinese Medicines: Molecular Structures,
Pharmacological Activities, Natural Sources, and Applica-
tions.” Moupinamide showed anti-inflammatory activity via
inhibiting NO generation in BV-2 induced by lipopolysac-
charide with IC50 values of 8.17–18.73μM [68]. Obaculactone
was assessed for oxidative burst inhibitory activity and for
cytotoxicity against A549 lung carcinoma cells [69]. Obacu-
lactone possessed anthelmintic, antiulcerative, inhibiting in-
testinal movement and other effects, referring to “Encyclopedia
of Traditional Chinese Medicines-Molecular Structures,
Pharmacological Activities, Natural Sources, and Applica-
tions.” 4e biological activities of the remaining compounds
were rarely reported and needed to be further studied.
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3.4. Gene Ontology Analysis. To illuminate the complex
mechanisms of HL-GJ against CRC holistically, we conducted
GO biological process and molecular function analysis for
common targets and correlated other human protein targets.
4emain biological processes involved in HL-GJ against CRC
are shown in Figure 6. 4e top 10 significantly enriched GO
terms included signaling pathway, signaling, signal trans-
duction, signal transmission, signaling process, regulation of
phosphorylation, intracellular signaling pathway, cell surface
receptor linked signaling pathway, regulation of phosphate
metabolic process, and regulation of phosphorus metabolic
process. 4e main molecular functions involved in HL-GJ
against CRC are shown in Figure 7. 4e top 10 significantly
enriched GO terms included phosphorus-oxygen lyase ac-
tivity, cyclase activity, receptor signaling protein activity,
transforming growth factor beta receptor binding, adenylate
cyclase activity, receptor binding, purine nucleotide binding,
ribonucleotide binding, purine ribonucleotide binding, and
transforming growth factor beta binding. 4e yellow nodes
represented GO terms with significant enrichment.4e size of
the node was consistent with the number of enriched terms,
and the depth of the color was opposite of the P value.
Detailed GO terms were listed in Tables S7 and S8,
respectively.

Pathway enrichment analysis was executed based on
Reactome database (Table S9). 4ere were mainly 162
pathways participating in HL-GJ against CRC. 4e top 10
significantly enriched pathways included DAP12 sig-
naling, signaling by PDGF, signaling by EGFR, NGF
signaling via TRKA from the plasma membrane, sig-
naling by NGF, downstream signal transduction, DAP12
interactions, signaling by VEGF, signaling by FGFR3, and
signaling by FGFR4. It was well to be reminded that the

crucial targets calculated previously were contained in
the hit genes of these pathways, which were highly
correlated to CRC. DAP12 was an immunoreceptor ty-
rosine-based activation motif, bearing adapter molecules
that transduced activation signals in NK and myeloid
cells. DAP12-bound SYK autophosphorylated and
phosphorylated the scaffolding molecule LAT, recruiting
PI3K, PLC-gamma, GADS, SLP76, GRB2:SOS, and VAV,
all of which resulted in the recruitment and activation of
kinases AKT, CBL, and ERK, and rearrangement of the
actin cytoskeleton finally leading to cellular activation
[70]. As an immune antigen, DAP12 was expressed by
tumor cells’ “immune resistance” and avoided immune
surveillance in CRC [71]. As important growth factors for
normal tissue growth, division and blood vessel forma-
tion, PDGFs were correlated with invasion and metastasis
and involved in angiogenesis mainly by targeting peri-
cytes and vascular smooth muscle cells in CRC [72]. Anti-
EGFR and anti-VEGF agents were now routinely in-
corporated into treating metastatic CRC, and the im-
portance of signaling by EGFR and VEGF was self-
evident [73]. For treating TrkA-overactive tumors, such
as CRC and NGF, was praised as a “star” therapeutic
target for decades to come [74]. NGF was demonstrated
to strengthen the antiproliferation action of 5-FU on
human CRC (HCT-116) cells and might reduce the
dosage of 5-FU for CRC treatment [75]. It was reported
that deregulation of signal transduction pathways played
a critical role in oncogenesis of CRC and directly affected
sensitivity to targeted therapies [76]. FGRFs were ac-
knowledged oncogenes associated with a variety of
cancers including CRC and were therefore attractive
therapeutic targets [77]. Due to FGFR3-mediated
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essential survival signals in CRC, it might cause intrinsic
resistance to Irinotecan, and the strong synergy was seen
between the FGFR3 inhibitor and IRI [78]. 4e first
specific inhibitor of FGFR4 was verified to restrain the
proliferation of CRC cells, augment apoptosis rate, dis-
pute cell cycle, and inhibit EMT, and might be a new
targeted drug [79]. 4ese results suggested that these
main pathways might interact to produce the therapeutic
efficacy of HL-GJ against CRC.

4. Conclusion

In this study, a systematical pharmacological approach was
established to expound the active compounds, therapeutic
targets, and pharmacological mechanisms of HL-GJ
against CRC. Sixty-five constituent compounds of HL-GJ
were summarized from TCMSP and TCMID, and their
targets were predicted based on PharmMapper. One
hundred and eighty-six CRC targets were collected from
TTD and OMIM databases. Targets of CRC and chemical
compounds were mapped to identify 6 common targets,
and fifty-seven other human proteins directly or indirectly
interacted with common targets were achieved from the
String database. By network construction and topological
parameter calculation, eight active compounds and seven
crucial targets of HL-GJ against CRC were identified.
Moreover, the biological processes, molecular functions
and pathways regulated by HL-GJ treating CRC were
systematically interpreted. 4is study provided a scientific
and powerful mean to view the multiscale pharmacological
mechanisms of HL-GJ against CRC from a systematical
perspective.
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