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Ambipolar field role in formation of 
electron distribution function in gas 
discharge plasma
Chengxun Yuan1, E. A. Bogdanov2, A. A. Kudryavtsev1,2, K. M. Rabadanov2 & Zhongxiang Zhou1

It is shown that the local approximation for electron distribution function (EDF) determination at 
plasma periphery, where the ambipolar field is dominant, is not applicable even at high pressures when 
the characteristic plasma size exceeds the energy relaxation length of the electrons R > λε. Therefore, 
consistent results can be obtained only when solving the complete kinetic equation in both energy and 
spatial variables (i.e. it is necessary to solve nonlocal kinetic equation).

Gas-discharge plasma properties are substantially determined by electron gas, thus much attention is paid in 
literary sources to finding its distribution function. In order to calculate EDF in practice, local approximation is 
usually used when in Boltzmann kinetic equation for isotropic part of EDF the spatial diffusion is neglected in 
comparison with the electrons energy change in the field and due to collisions with gas atoms and molecules1–6. 
In this case, EDF f(w, r, t)

=f w r t n r t f w E p( , , ) ( , ) ( , / ) (1)e 0

is factorized as the electron density ne(r, t), depending on spatial coordinates and time, and EDF f0(w, E/p), 
depending on electron kinetic energy w, values of local field (E/p) and other parameters (gas temperature, density 
of excited particles, etc.) in the given point of space r.

Criteria of local approximation applicability in literature are obtained in a standard way based on comparison 
in kinetic equation (see below Eq. (5)) of terms with derivatives by coordinate with terms including derivatives 
by energy. It is determined by relation between characteristic plasma size L and the electron energy relaxation 
length λε

λ τ=ε εD2 , (2)r

where Dr = υλ/3 is the electron diffusion coefficient, and corresponding time of energy relaxation

τ δν ν= + ∗ε
− (3)1

is determined by energy losses in elastic and inelastic collisions (corresponding frequencies ν and ν*), δ ≪ 1 is the 
energy exchange factor during quasi-elastic collisions at small electron energy losses per collision (δ = m M2 /  
for elastic collisions).

Let us recall that at λε > L spatial diffusion occurs much faster than diffusion with respect to energy in electric 
field. In this case to use of local approximation for EDF is not physically justified and, as has been repeatedly 
demonstrated in literature, leads to errors (for example, see refs1–7). Such EDF is nonlocal, as it is determined 
by physical property values (primarily by fields) not at the given point, but in the region determined by energy 
relaxation length (2) λε ≫ λ - electron mean free path. Therefore, in order to find such EDF, it is necessary to solve 
a kinetic equation in variables of both energy and coordinates.

In the limiting case of “full” nonlocality λε ≫ L, the energy received by an electron is rapidly redistributed over 
entire region of space available to it. Since the whole discharge volume is available to the electrons, the ambipolar 
field of space charge exceeds the heating (external) field and the integral of motion of electrons is total energy 
(kinetic plus potential energy ε = w + eϕ(r)), ϕ(r) is the potential energy associated with the space charge field1. 
For this reason, the arguments of EDF are ε, r and kinetic equation takes easier form of two-dimensional diffusion 
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in space of coordinates and energy (see refs1–6 for details). For trapped electrons with energy φ<e e w-wall poten-
tial (potential differences between point (axis) of plasma density maximum and borders) after averaging over 
discharge volume kinetic equation depends only on ε, i.e. comes down to a form formally aligning with local one1. 
At the same time, for electrons with full energy ε > eϕw it is necessary to solve nonlocal kinetic equation in varia-
bles as ε and r.

In its turn, the fulfillment of condition L > λε gives occasion to the wide use of local approximation (1) for 
EDF in practical calculations1–6. Local approximation attraction and widespread occurrence are mainly related to 
computational procedure significant simplification when solving the Boltzmann kinetic equation for f0, which in 
this case depends only on one variable (velocity or w = mv2/2 kinetic energy) and has the form of2–6
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In Eq. (4), E is an electric field at the given space point, St(f0) and St*(f0) are the integrals of elastic and inelastic 
collisions, respectively.

It should be noted that the most common and popular fluid models of plasma and gas-discharges are based 
on the local approximation for EDF (1, 4) calculation. These models, due to their physical visualization and 
comparative usability, are widely used in practice (see, for example, refs3,4,8–10). Based on them currently, the 
prepared commercial software available for a wide range of researchers allowing to simulate various gas dis-
charge devices, became widely known (see, for example, refs11,12). Due to their common usage, these models are 
constantly improved by considering additional processes and effects. As a result, so far various modifications 
of fluid description are developed in detail in practice and wide experience of their use is accumulated both at 
one-dimensional (1D) and two-dimensional (2D) simulation of various gas discharges13–15.

Unfortunately, the “reverse side” of fluid models wide use is the fact that the scope is often not discussed at 
all or interpreted very widely (see, for example, refs8–15). Therefore, in practice, these models are often used for 
conditions where their applicability is doubtful, so it is difficult to assess the reliability of the results obtained.

Analysis shows that the most debating point is an electric field, which is included explicitly both in initial (see 
below Eq. (5)) and local kinetic equation (4). As an electron responds to total field which exists at the given space 
point, the full electric field at the given location is included in initial kinetic equation, and, consequently, also in 
Eq. (4). As a rule, for numeric simulations by various calculating codes15–17, that E total field, which is found from 
solution of Poisson’s equation, is substituted into kinetic equation.

By contrast to this, when analyzing the Boltzmann kinetic equation in refs1,2 (see also ref.4), it was noted that 
as ambipolar field is also determined by spatial gradients (Ea ≈ Te∇ne/ne). Then when using local approximation 
for EDF, ambipolar electric field Ea also should be ignored in the local kinetic equation (4). In other words, ambi-
polar field should be somehow removed (subtracted) from total field, i.e. instead of E, you should substitute E − Ea 
difference in local kinetic equation (4).

In its turn, outputs16–19 clearly indicate the influence of ambipolar field on EDF formation at plasma volume 
periphery, where it becomes dominant even when L > λε criterion is satisfied (i.e. literary sources1–6 predicate the 
local approximation applicability). Positive discharge column simulations performed both in atomic (argon)17–23] 
and molecular (nitrogen and oxygen)24 gases show that at plasma periphery, where Ea ambipolar field (soon or 
late) exceeds Eh heating field, excitation response increase is observed, due to additional heating of fast electrons 
exactly by ambipolar field.

Thus, the question of which field should be substituted into local kinetic equation (total E, determined from 
Poisson’s equation, or other than ambipolar E − Ea) is a debating, concerning which there is still no unequivocal 
opinion in literature.

The research in this paper has continued17,18. It is shown that the local approximation (4) for EDF and other 
characteristics of electron gas at plasma periphery determination, where ambipolar field is dominant, is not appli-
cable even when L > λε criterion is satisfied. In this case, the attempts to substitute both as total E and E − Ea 
difference (except ambipolar field) into local kinetic equation are prospectless. Therefore, consistant results at 
plasma periphery can be obtained only when solving the kinetic equation considering both energy and spatial 
variables.

Methods
As is shown in previous papers17–22,25, the subject of research was DC discharge positive column (PC). As is 
known, the heating field in PC is directed in longitudinal (axial) direction, while ambipolar field - in radial direc-
tion, i.e. they are perpendicular to each other. This allows dividing their contributions more clearly in EDF spatial 
profiles formation and other electron characteristics.

Argon was used in a wide range of pressures as power gas, when, according to known criteria (see (2, 3)), both 
non-local (λε > L) and local (λε < L) modes of EDF formation are implemented.

A set of plasmachemical reactions in argon includes direct ionization, excitation from the ground state, radi-
ative excitation, step ionization from the metastable state, and Penning ionization (see Table 1). Plasma contains 
argon atoms in Ar ground state, metastable atoms Ar*, radiating atoms Ar** and positive ions Ar+.

In order to conduct numerical experiments, a computation model which includes a number of related mod-
ules in COMSOL Multiphysics environment was developed:

(A) A new kinetic module25 was developed in order to calculate 2-dimensional (r, w) cylindrical symmetrical 
EDF in discharge positive column. This module includes the Boltzmann equation in coordinate and kinetic 
energy variables recorded for a one-dimensional positive column (in which the axial heating field is directed 
perpendicular to radius) in the following form:
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where divr is a radial divergence component.

(B) A diffusion-drift module, which includes equations for: finding the densities of all neutral and charged parti-
cles; drift-diffusion module and Poisson’s equation for field and potential profiles calculation was used.

Balance equation for Ar+ ions in the form of:
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where ni - ions Ar+ density, Di = (biTi)/(e) - diffusion coefficient for ions, bi - ions mobility coefficient, Ti - ion 
temperature (room temperature is taken), Ri_d and Ri_s - direct and step ionization rate, Kp - Penning ionization 
constant.

Balance equation for metastable Ar* argon atoms is of the following form:
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where nm - density of metastable Ar* argon atoms, Dm - diffusion coefficient for Ar*, RAr1_exc - excitation reaction 
rate, ZAr1_deexc - de-excitation reaction rate, KQ - extinction reaction constant.

Balance equation for radiating Ar** argon atoms is of the following form:
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where nr - radiating argon atoms density, RAr2_exc - radiative excitation rate, Krad - radiative time constant 
(1*1061/s);

Poisson’s equation for Er =− ∂ϕ/∂r radial electric field (where ϕ is a radial potential) has the following form:

ρ ε∂
∂

=
r r

r E1 ( ) / , (9)r 0

where ε0 = 8.854 × 10−12 F/m is an electric constant and ρ = e(n+ − ne) is volume charge density.
(C) Longitudinal (heating) field in Eh PC can be found by means of iterative procedure as a field providing the 

given I0 current using the electron density and mobility, both derived from kinetic module.

Results and Discussion
By using the above self-consistent kinetic model of gas discharge positive column (with Boltzmann equation 
(5) solution for electrons in energy and radius variables), simulations of gas discharge positive column in argon 
in a tube of R = 1 cm radius at a wide pressure range (from 0.3 to 50 Torr) at discharging currents of 1 − 10 mA 
were given. Under investigated conditions, plasma ionization degree is low (<10−5) and contribution of 
electron-electron collisions to EDF formation could be ignored.

Simulation results show that at low pressures (less than 1 Torr), when electron energetic relaxation length (2) 
exceeds the tube radius (λε > R), ambipolar field dominates the longitudinal one across entire discharge positive 
column cross section (see Fig. 1a below). This mode of EDF formation “full” nonlocality was considered in detail 
in papers1,2,4 and to date is well studied both theoretically and experimentally6. Since simulations results show the 
conformity2,5,6, this case is notconsidered in this study.

At the same time, at medium and high pressures, when electron energy relaxation length (2) is small (R > λε) 
and according to criterion (2) and estimates from2,4, a local mode for EDF must be presented and the results of 
simulations indicate its inapplicability.

Reaction Comment

e + Ar → e + Ar momentum transfer26

e + Ar → e + Arm
* metastable state excitation26

e + Ar → e + Arr
* resonant state excitation26

e + Ar → 2e + Ar +  direct ionization26

e + Ar* → 2e + Ar +  stepwise ionization27

2Ar* → Ar + Ar+ + e penning ionization28

Table 1.  Argon chemistry.
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As an example, Fig. 2 shows the normalized EDFs at various radii for medium pressures of 12 Torr.
As axial heating field Eh in positive discharge column passes constantly across the cross section, then in local 

case it would be expected the coincidence of normalized EDFs at different radii. Nevertheless, it can be seen 
that EDF at different radius points do not coincide both in elastic (up to excitation threshold, (w < 11.5 eV)) and 
non-elastic (w > 11.5 eV) regions, i.e. they depend not only on energy, but also on the spatial variable. This means 
that in these cases the local approximation (4) for electron distribution function calculation at different radius 
points is not applicable, i.e. EDF is non-local (in the sense that during its calculation it is necessary to use com-
plete kinetic equation (5) in variables of both energy and coordinates).

As preliminary studies have shown (see also refs17,18), the main reason for EDF radial dependence occurrence 
when fulfilling λε > R locality condition is the influence of Ea ambipolar field. This field, as is known2–4, increases 
from the plasma center to periphery, and where it (soon or late) begins to exceed the heating field.

In order to illustrate this, according to the results of this simulation Fig. 1a shows the values of ambipolar and 
heating fields ratios at different pressures. For convenience to estimate by (2), Fig. 1b shows the values of energy 
relaxation lengths in elastic energy region (λ λ δ=ε / ) which are applied alongside.

It is seen that at low pressures (less than 1 Torr), when λε > R, the ambipolar field dominates throughout dis-
charge volume. As noted above, these conditions correspond to “full” nonlocality mode, which was considered 
in detail earlier in works2,6. With increasing pressure (at pressure full length), when R > λε opposite inequation 
is satisfied (when electron energy relaxation length is small) (see Fig. 1b), the boundary of ambipolar field dom-
ination over the heating one is shifted to periphery. However, even at high pressures, sooner or later ambipolar 
field begins to exceed longitudinal field (see also refs17,18). According to the results of simulations, roughly from 
these values of spatial coordinates, radial (spatial) EDF dependences are also observed (see Fig. 2). As can be 
seen from the local kinetic equation (4), only ambipolar field can give radial dependence (in PC the axial field is 
homogeneous in radius). This fact argues for substitution in (4) of complete field at the given space point, which 
was recommended earlier in ref.24 for ambipolar field contribution to EDF formation approximate consideration.

It should also be noted that since the losses dominate (play a major role) due to elastic collisions at increased 
pressures in electrons energy balance, EDF form is sensitive to corresponding collision cross sections behavior 
related to energy. In particular, in refs17,23 it was shown that excitation rate spatial profiles and EDF quick part 
form are significantly different, depending on whether cross section of electrons elastic scattering increases or 
decreases: for cross section raising with energy (by the example of argon), the excitation rate was maximum on 
discharge periphery, while for dropping the cross sections - sharply declined.

Figure 1.  (a) Longitudinal (heating) and ambipolar fields in argon at different pressure ratings. (b) Values of 
energy relaxation lengths in elastic energy region.

Figure 2.  Comparison of EDF at different values of radius for argon at the pressure of 12 Torr (a) in elastic 
region and (b) inelastic region. The current is 3 mA.
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Figure 3.  Simulation results comparison (non-local EDF) with local approximation for argon at the pressure of 
12 Torr. At the values of radius (a) r = 0 R and 0.5 R, (b) r = 0.7 R and (c) r = 0.8 R. The current is 3 mA.

Figure 4.  EDF comparison at nonlocal and local approximation for σ ~ 1/w cross section dependence 
p = 12 Torr. At the values of radius (a) r = 0 R and 0.5 R, (b) r = 0.7 R and (c) r = 0.8 R. The current is 3 mA.
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In order to determine the influence of these factors, the calculations of Boltzmann local equation (4) were per-
formed, with substitution of either longitudinal (Eh) or resultant (E) field. Figure 3a–c show the results for argon, 
in which elastic collision cross sections rise from Ramsauer minimum to excitation threshold. Figure 4a–c show 
the results when σ ~ 1/w cross sections are dropping.

It can be seen that in near-axial zones where Ea ambipolar field is small in comparison with longitudinal Eh 
(see Fig. 1a), the results of EDF local calculation correspond closely (coincide) to complete kinetic equation solu-
tion. At the same time, regardless of elastic scattering cross sections behavior (rising or dropping with energy) 
at discharge periphery, where the ambipolar field dominates, a complete kinetic equation solution (5) does not 
correspond to local calculations in accordance with (4) substitution of both complete field (E2 = Ea

2 + Eh
2) and 

one longitudinal Eh
2.

Conclusion
Thus, at plasma periphery, where ambipolar field exceeds the heating one, even when R > λε condition is satisfied, 
local approximation (4) cannot be used. The reason for this is the fact that non-homogeneous plasma in kinetic 
equation includes not one, as in local (4), but 3 terms containing electric field (see Eq. (5)). Therefore, depending 
on conditions (primarily elastic collisions cross sections behavior), various terms of kinetic equation with field 
can dominate. In such situation the attempts to use local approximation for EDF finding are prospectless and at 
plasma periphery it is necessary to solve complete (nonlocal) kinetic equation in variables of both energy and 
coordinates.

Because, the role of the ambipolar field increases near the boundaries of the plasma volume, the strongest 
effect should be expected in situations where the plasma is supported not by a local field (as discussed above in 
the positive column of a discharge), but by an external ionizer from the near-electrode layers of the space charge 
(CCP and ICP discharges, and also a negative-glow plasma with a flat or hollow cathode).
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