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Abstract 

Coronaviruses have caused multiple epidemics in the past two decades, in addition to the 
current COVID-19 pandemic that is severely damaging global health and the 
economy. Coronaviruses employ between twenty and thirty proteins to carry out their viral 
replication cycle including infection, immune evasion, and replication. Among these, 
nonstructural protein 16 (Nsp16), a 2’-O-methyltransferase, plays an essential role in 
immune evasion. Nsp16 achieves this by mimicking its human homolog, CMTr1, which 
methylates mRNA to enhance translation efficiency and distinguish self from other. Unlike 
human CMTr1, Nsp16 requires a binding partner, Nsp10, to activate its enzymatic activity. 
The requirement of this binding partner presents two questions that we investigate in this 
manuscript. First, how does Nsp10 activate Nsp16? While experimentally-derived 
structures of the active Nsp16/Nsp10 complex exist, structures of inactive, monomeric 
Nsp16 have yet to be solved. Therefore, it is unclear how Nsp10 activates Nsp16. Using 
over one millisecond of molecular dynamics simulations of both Nsp16 and its complex 
with Nsp10, we investigate how the presence of Nsp10 shifts Nsp16’s conformational 
ensemble in order to activate it. Second, guided by this activation mechanism and Markov 
state models (MSMs), we investigate if Nsp16 adopts inactive structures with cryptic 
pockets that, if targeted with a small molecule, could inhibit Nsp16 by stabilizing its 
inactive state. After identifying such a pocket in SARS-CoV-2 Nsp16, we show that this 
cryptic pocket also opens in SARS-CoV-1 and MERS, but not in human CMTr1. 
Therefore, it may be possible to develop pan-coronavirus antivirals that target this cryptic 
pocket. 
 
 
Statement of Significance 

Coronaviruses are a major threat to human health. These viruses employ molecular 
machines, called proteins, to infect host cells and replicate. Characterizing the structure 
and dynamics of these proteins could provide a basis for designing small molecule 
antivirals. In this work, we use computer simulations to understand the moving parts of 
an essential SARS-CoV-2 protein, understand how a binding partner turns it on and off, 
and identify a novel pocket that antivirals could target to shut this protein off. The pocket 
is also present in other coronaviruses but not in the related human protein, so it could be 
a valuable target for pan-coronavirus antivirals. 
 
  
Introduction 

With the coronavirus 2019 (COVID-19) pandemic ravaging communities across the globe 
there is a massive ongoing effort to understand the molecular machinery of 
coronaviruses, which may provide insight into therapeutic opportunities (1–3). The severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV2) virus responsible for COVID-19 
disease has infected over sixty million and killed over 1.5 million people globally to date 
(4). Additionally, coronaviruses have caused several past epidemics including severe 
acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) which 
had fatality rates of ~10% and ~34%, respectively (5, 6). Therefore, there is likely to be 
evolution and outbreaks of additional zoonotic coronaviruses in the future (7). While 
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vaccine trials for COVID-19 are successfully wrapping up, there are still no approved 
antivirals that reduce mortality to coronavirus infections (8–10). Taken together, there is 
strong incentive to understand the fundamental mechanisms of how these coronaviruses 
operate in hopes of discovering effective therapeutics. Biophysical studies can provide 
these details, and a tremendous amount of biophysical work has already been done to 
understand the virus’ twenty-nine proteins. So far, the spike protein, positioned on the 
outside of the viral envelope, has proven to be a good vaccine candidate (11). Beyond 
the spike, the sixteen “nonstructural” (i.e. accessory) proteins carry out the majority of the 
virus’ essential processes, making them good targets for antiviral therapeutics (12, 13). 
  

Among the nonstructural proteins (Nsp’s), Nsp16 is particularly important to the 
viral replication cycle as it is essential to coronavirus’ immune evasion (14–16). Nsp16 is 
a 2’-O-Methyltransferase (2′-O-MTase) that forms part of the replication-transcription 
complex (17). It mimics the human protein Cap-specific mRNA (nucleoside-2'-O-)-
methyltransferase (CMTr1) to perform a crucial step in capping transcribed mRNA (18). 
Specifically, Nsp16 facilitates the transfer of a methyl group from its S-
adenosylmethionine (SAM) cofactor to the 2’ hydroxyl of ribose sugar of viral mRNA (18, 
19). This methylation both improves translation efficiency and camouflages the mRNA so 
that it is not recognized by intracellular pathogen recognition receptors, such as IFIT and 
RIG-I (15, 20). Importantly, inhibiting or knocking out 2′-O-MTase activity severely 
attenuates  viral replication and infectivity of coronaviruses (13, 20). Thus, developing 
small molecules inhibitors of Nsp16 is a promising therapeutic strategy.  
 

Interestingly, while all other 2′-O-MTases (eukaryotic and viral) are active as 
monomers, Nsp16 requires a binding partner, Nsp10, to be active (16–18, 21–23). In fact, 
Nsp16 does not even bind its ligands (SAM and RNA) in the absence of Nsp10. In the 
experimentally-derived structures of the Nsp16/Nsp10 complex, Nsp10 does not form any 
direct interaction with either ligand (Fig. 1a), suggesting that Nsp10 may allosterically 
regulate Nsp16 to enable substrate binding (18, 19, 24–27). Given that there is significant 
structural variation in the RNA-binding loops of different crystal structures of Nsp16 (Fig. 
1b) and structures of monomeric Nsp16 have not been solved, we hypothesized that 
Nsp16 is highly dynamic in solution, and Nsp10 acts by stabilizing the active state. In 
contrast, we anticipate that human CMTr1 would be less dynamic as it doesn’t require a 
binding partner for substrate binding and has been crystalized in its monomeric state.  
Often, dynamics of proteins reveal allosteric pockets that remain hidden in their crystal 
structures (i.e., cryptic pockets). If monomeric Nsp16 is more dynamic than CMTr1, it may 
adopt inactive configurations that reveal allosteric cryptic pockets, which can be targeted 
by small-molecule inhibitors for its selective inhibition.  
 

Here, we use computer simulations to understand the activation mechanism of 
Nsp16 and identify cryptic pockets that may be valuable antiviral targets. Active site 
inhibitors, such as Sinefungin, have been shown to outcompete SAM binding and render 
Nsp16 catalytically inactive (28, 29). However, there are more than 200 human proteins 
with known or putative methyltransferase activity that use SAM as a cofactor (30). 
Therefore, it may be difficult to design antivirals that target the SAM (or RNA) binding 
sites of Nsp16 without eliciting off-target effects by also binding human 
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methyltransferases. For example, Sinefungin has been shown to occupy the SAM-binding 
pocket of human N7 methyltransferase in a crystal structure (PDB: 3epp). Targeting the 
Nsp16/Nsp10 interface could be an alternative means to selectively inhibit Nsp16 since 
CMTr1 lacks a homologous binding partner. Towards this, peptide-based inhibitors that 
mimic Nsp10 to compete for interactions at the Nsp10/Nsp16 interface have been shown 
to inhibit Nsp16 activity (31, 32). While this approach seems promising, peptide-based 
inhibitors face challenges including limited stability and shelf-life, the possibility of adverse 
immunogenic responses, and the high cost of production (33). To expand the therapeutic 
opportunities, we search for other ways to inactivate Nsp16. First, we compare the 
structure and dynamics of SARS-CoV2 Nsp16 in the presence and absence of Nsp10 to 
understand Nsp16’s activation. Specifically, we use over one millisecond of molecular 
dynamics simulation data (2) to characterize how Nsp10 binding shifts Nsp16’s 
conformational ensemble to activate Nsp16. After showing that the resulting model is 
consistent with a variety of experimental observations, we use it to hunt for cryptic pockets 
that may provide a means to inhibit Nsp16. Finally, we extend our simulations to SARS-
CoV-1, MERS, and human CMTr1 to determine if targeting such a pocket could provide 
an opportunity to develop pan-coronavirus antivirals.  
 

 
 
Figure 1. Substrate binding pockets and Nsp10 binding interface of Nsp16 observed in 
the crystal structure of the Nsp16/Nsp10 complex (PDB: 6wks). (A) Surface 
representation of Nsp16 showing the SAM-binding pocket (cyan), RNA-binding pocket 
(yellow) and Nsp10-binding interface (green). (B) Overlay of Nsp16 structures from 
structures of the Nsp16/Nsp10 complex with RNA (PDB: 6wks, shown in grey) and 
without RNA (PDB: 6w4h, shown in cyan), showing structural heterogeneity in the RNA-
binding site. Gate loop 1 and Gate loop 2 of the RNA-binding pocket, and SAM-binding 
loop 1 (SAMBL1) and SAM-binding loop 2 (SAMBL2) lining the SAM-binding pocket are 
highlighted. 
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Results and Discussion 
  
Nsp10 promotes opening of Nsp16’s SAM- and RNA-binding pockets 

While experimental studies have demonstrated that Nsp16 requires Nsp10 to be 
functionally active, the structural determinants of Nsp16’s activation remain unknown (17, 
18, 23). Chen et. al. proposed that Nsp10’s stimulatory effects are rooted in its ability to 
assist Nsp16 in binding SAM and RNA, which is supported by data showing that Nsp16 
alone cannot bind SAM or RNA (18). They also propose that Nsp10 manages this by 
stabilizing or changing the conformation of the SAM binding pocket based on the fact that 
Nsp10 contacts SAM binding loops in their crystal structure (and numerous other 
structures). However, without assessing Nsp10-Nsp16 complex’s dynamics and 
comparing it to monomeric Nsp16, this hypothesis is left wanting. It has also been 
proposed that Nsp10 assists in RNA binding by directly contacting RNA (34). However, a 
recent crystal structure with RNA bound (PDB: 7jyy) contains a stretch of nucleotides long 
enough to contact Nsp10, but the RNA curls off into solution instead of interacting with 
Nsp10. Another recent study compared an RNA and SAM bound Nsp10/16 complex 
structure to one with only SAM bound and found a major opening of RNA binding gate 
loops suggesting that the dynamics of these loops might be important for Nsp16 activation 
(25). However, it is not clear if Nsp10 plays a role in those dynamics. Altogether, there is 
strong evidence that Nsp10 modulates Nsp16’s structure and dynamics to assist it in 
binding SAM and RNA, but the mechanism of these structural changes is unclear. 
 

To explore how Nsp10 activates Nsp16, we analyzed simulations of Nsp16 in the 
presence and absence of Nsp10 using DiffNets. Recently, our group combined the 
sampling powers of the FAST-pockets adaptive sampling algorithm (35) and the 
computational resources of Folding@home to accumulate more than one millisecond of 
simulation data between simulations of monomeric Nsp16 and the Nsp16/Nsp10 complex 
(see methods) (2). Here, we compare these simulations using a deep learning-based 
dimensionality reduction algorithm called DiffNets (36). DiffNets has been shown to 
accurately capture the structural determinants of biochemical differences between protein 
variants. While we are not considering protein variants, our problem is similar since Nsp16 
has different biochemical properties when in the presence/absence of Nsp10 (i.e. 
active/inactive). Therefore, we trained a DiffNet to learn the structural determinants of 
Nsp16 activation by learning differences between Nsp16’s ensemble when in the 
presence and absence of Nsp10. For each simulation frame, the DiffNet learns a low 
dimensional projection of the protein structure and classifies the structure with a label 
between 0 and 1 that indicates the likelihood that the structure is associated with Nsp16 
being active.  
  

Analysis of the DiffNet suggests that Nsp10 shifts Nsp16’s conformational 
ensemble to stabilize more open SAM- and RNA-binding pockets. Using the DiffNet 
classification labels, we identified ten structures that are representative of the progression 
from Nsp16 inactive states to active states (see methods and Fig. 2). We noticed that 
RNA gate loop 2 moves away from RNA gate loop 1, making for a more open RNA binding 
pocket in active states compared to inactive states (Fig. 2A). Additionally, the SAM-
binding pocket also opens up in the active states relative to the inactive states. RNA-
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binding gate loop 2 and SAM-binding loop 2 move away from each other in the active 
state, which widens the pocket creating space for SAM. (Fig. 2A). Strikingly, the structure 
associated with the highest label (i.e. most strongly associated with Nsp16 activation) 
matches well to a recently solved crystal structure that is bound to both RNA and SAM 
(Fig. 2B) (25). This DiffNet result is encouraging since the simulations were started from 
a markedly different crystal structure (no RNA bound) and had no a priori information 
about the RNA bound structure. This result implies that the DiffNet learned that Nsp10 
activates Nsp16, in part, by rearranging the RNA gate loop into an RNA binding 
competent pose. Though it is known that this RNA gate loop needs to open to bind RNA, 
this is the first evidence, to our knowledge, to suggest that Nsp10 may activate Nsp16 
through increasing its propensity to form a more open RNA-binding pocket. Altogether, 
these results suggest that Nsp10’s presence increases the propensity for both SAM- and 
RNA- binding pockets to be open. 

 
 

 
 
Figure 2. Nsp10 binding shifts Nsp16’s conformational ensemble increasing its 
propensity to adopt structural states that are ligand binding compatible. (A) Ten structures 
of Nsp16 that represent the DiffNet prediction changing from inactive to active (white to 
purple). (B) Comparison of the DiffNet predicted active state (purple) to the starting 
simulation state (yellow) and a known RNA bound structural state (orange). (C) 
Probability-weighted distance distribution between RNA-binding gate loops 1 and 2 
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comparing monomeric Nsp16 (black) to the Nsp10-Nsp16 complex (gray). (D) Probability-
weighted distance distribution between SAM-binding loop 2 and gate loop 2, comparing 
monomeric Nsp16 (black) to the Nsp10-Nsp16 complex (gray). For (C) and (D), the 
distance for a SAM and RNA bound crystal structure is also plotted (red dotted line). 
 
  
 

To quantify the effect of Nsp10 on the SAM- and RNA-binding pockets, we built 
MSMs for both the complex and monomeric Nsp16. MSMs are a statistical framework for 
analyzing molecular dynamics simulation data that provide (among other things) a 
discrete map of structural configurations, an equilibrium population value that 
corresponds to the proportion of time a protein spends in any given configuration, and the 
probability of transitioning between any pair of configurations (37). We constructed MSMs 
for Nsp16 simulations both in the presence and absence of Nsp10.  

 
 
Our MSMs reveal that Nsp10 binding stabilizes open structures of both the SAM- 

and RNA-binding pockets that are competent to bind their respective substrates. We first 
found that the presence of Nsp10 results in a substantial reduction of flexibility in 
important binding components including both SAM binding loops and RNA gate loops 
(see SI, Fig. S1). This result is somewhat surprising since gate loop 2, which contacts 
both SAM and RNA, is not in direct contact with Nsp10, suggesting strong allosteric 
communication. Next, we calculated the distribution of distances for opening and closing 
of the SAM and RNA binding pockets (Fig. 2C,D). From these histograms it is clear that 
both of these binding pockets have an increased propensity to open when Nsp10 is 
present. We considered pockets as SAM/RNA binding competent when the distance 
between loops in a pocket is at least as open as in the crystal structure that binds both 
ligands (PDB: 6wks). From this analysis, Nsp16 adopts binding competent states with 
higher probability when Nsp10 is present vs when Nsp10 is absent for both SAM (0.70 ± 
0.04 vs 0.46 ± 0.04) and RNA (0.48 ± 0.04 vs 0.27 ± 0.03). Altogether, our data suggest 
that Nsp10 aids SAM and RNA binding by preventing the collapse of SAM and RNA 
binding gate loops. Our analysis also provides structural snapshots of what inactive states 
look like, which may be useful in targeting Nsp16 with therapeutics. 
  
 
A cryptic pocket in Nsp16 is a potential therapeutic target 
  
A traditional approach to drug development involves molecules designed to target binding 
cavities observed in singular structural snapshots of a protein, but this approach often 
misses “cryptic” pockets that can form in proteins due to thermal fluctuations. Often times 
the active site of an enzyme is targeted for drug development to design an inhibitor that 
can outcompete substrate binding. However, active sites are often conserved among 
functional homologs. In the case of Nsp16, its human homolog (CMTr1) shares the same 
overall fold and binds the same substrates. Though there are significant sequence and 
structural differences in the active site, specificity may be more easily achieved by 
targeting a less functionally relevant region of the protein. Cryptic pockets can provide 
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both a new target for drug development and the potential to achieve specificity. For 
example, cryptic pockets that remain closed and invisible in the crystal structure, but open 
in solution due to thermal fluctuations (38), can present unique potential binding sites due 
to differences in the dynamics of subsets of homologs (e.g. open in coronavirus 
homologs, but closed in human CMTr1). Therefore, it may be easier to achieve specificity 
by targeting a cryptic pocket. Importantly, the cryptic pocket must communicate with 
functional sites in order for it to be an effective therapeutic target. Here, we explore if 
Nsp16 contains any cryptic pockets that, when open, would stabilize the inactive state 
identified with DiffNets. 
 
 
 
 
 

 
  
Figure 3.  Cryptic pocket opening in SARS-CoV-2 Nsp16. (A) Structural states with the 
cryptic pocket closed and open. The insets show surface views of the closed and open 
pocket. Residues exposed upon pocket opening are shown in cyan and the regions 
undergoing the opening motion are shown in blue. Collapse of the SAM-binding pocket 
is measured as the distance between SAMBL2 and gate loop 2, shown in yellow. (B) 
Equilibrium probability weighted 2D histograms of solvent-accessible surface area 
(SASA) of pocket residues (shown in cyan in A) and the distance between SAMBL2 and 
gate loop 2 in Nsp16 for monomeric Nsp16 (upper panel) and the Nsp16/Nsp10 complex 
(lower panel). The black dotted line separates the pocket closed and open states in 
Nsp16.  
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To find cryptic pockets, we applied “Exposons”, an algorithm (38) that identifies 

residues with cooperative changes in solvent exposure, to Nsp16 simulation data. Using 
this method, we found that residues in the β3 strand and ɑ3 helix transition between 
closed states and open states (i.e. low to high solvent accessible surface area) (Figure 
3A). Specifically, the β4 strand curls up to form an ɑ-helical structure, which results in 
surface exposure of β3 and residues from ɑ3 (Fig. 3A). The opening motion of β4 shifts 
the adjacent SAMBL2 against gate loop 2 to collapse the SAM binding pocket in a closed 
conformation (Fig. 3A,B). This agrees with the DiffNet prediction that the β4 strand moving 
away from β3 is associated with inactivation (see SI. Fig. S2). Further, several residues 
forming this cryptic pocket directly contact Nsp10 in crystal structures of the Nsp16/Nsp10 
complex (see SI. Fig. S3). The β3-β4 pocket opening displaces these Nsp10 binding 
residues, which could inhibit Nsp16’s association with Nsp10 (see SI. Fig. S3). Finally, 
we find that this open pocket structure is commonly visited as part of monomeric Nsp16’s 
conformational ensemble, as measured with MSM equilibrium populations (Fig. 3B). 
Taken together, we propose that targeting the β3-β4 pocket with a small molecule could 
inhibit Nsp16’s activity by preventing SAM binding or preventing association with Nsp10. 
 
 
Conservation of the cryptic pocket in Nsp16 makes it a promising target for broad-
spectrum inhibitors 
 
To explore the possibility of targeting the cryptic pocket for broad-spectrum inhibition of 
coronaviruses, we evaluated the conservation of cryptic pocket opening in Nsp16 
homologs. Ideally, a therapeutic developed to treat SARS-CoV-2 would also work against 
other coronaviruses like MERS, SARS-CoV-1, and potentially future outbreaks. 
Additionally, the therapeutic target should be sufficiently dissimilar from human CMTr1 
such that it would not cause unwanted, off-target effects. While we identified a promising 
cryptic pocket in SARS-CoV-2, we wanted to investigate if this pocket is specific to SARS-
CoV-2, or specific to coronaviruses in general, or if it is common across homologs 
including CMTr1.   

 
First, we analyze cryptic pocket conservation by comparing sequence features and 

structural features based on the native, folded state. We find that the β3-β4 pocket 
residues are 100% conserved between SARS-CoV-2 and SARS-CoV-1 (Fig. 4B).  
Additionally, of the eleven residues that form the pocket, there are only two non-
conservative mutations between SARS-CoV-2 and MERS. Based on the sequence 
similarity, we expect that, if the cryptic pocket forms in all homologs, it may be possible 
to develop small-molecule therapeutics that targets all three. Further, we find substantial 
sequence differences between SARS-CoV-2 and CMTr1. Eight out of the eleven pocket 
residues are non-conservative mutations relative to SARS-CoV-2. Based on sequence 
differences alone, we reason that selective inhibition could be achieved even if the cryptic 
pocket is adopted by CMTr1. Moreover, the sequences and structure of SARS-CoV-2 
Nsp16 and human CMTr1 are sufficiently different in the β3-β4 pocket region that the 
human protein may not even have the cryptic pocket (SI, Fig. S4). Based on these 
sequence and structural differences, combined with the lack of requirement of a 
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stabilizing binding partner, we hypothesized that cryptic pocket opening is not likely to be 
conserved in CMTr1. 
 

To explore cryptic pocket opening across homologs, we performed FAST-pocket 
simulations of monomeric Nsp16 for SARS-CoV1 and MERS, as well as, for human 
CMTr1. Then, we built an MSM for each homolog and measured opening of the β3-β4 
pocket by measuring the equilibrium weighted solvent exposure of the pocket residues 
we previously used to define the pocket (i.e. Fig. 3). In these simulations, we find that the 
β3-β4 pocket opens with high probability in both SARS-CoV1 and MERS Nsp16 (Fig. 4). 
Interestingly, the pocket is most likely to open in SARS-CoV-1, followed by SARS-CoV-
2, then MERS. Encouragingly, we find that the β3-β4 pocket has a substantially lower 
probability of opening in CMTr1. Taken together, features of the β3-β4 cryptic pocket in 
coronavirus homologs of Nsp16 appear sufficiently similar to each other and dissimilar to 
CMTr1 to make for a promising target for pan-coronavirus inhibitors. 
 

 

 
Figure 4. Comparison of cryptic pocket opening in Nsp16 homologs and human CMTr1. 
(A) Equilibrium probability-weighted distribution of the solvent exposure of pocket forming 
residues for SARS-CoV2 (black), SARS-CoV1 (blue), MERS (red) and CMTr1 (cyan). 
Structures representing the open pocket are shown for each homolog with β3 colored in 
cyan, and other pocket forming residues from alpha3 colored in green. Black dotted line 
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depicts SASA of pocket residues in the crystal structure of Nsp16/Nsp10 complex (PDB: 
6wks). (B) Structure-based sequence alignment of Nsp16 homologs (SARS-
CoV2, SARS-CoV1 and MERS) and human CMTr1 is shown for the cryptic pocket 
forming regions. Residues of Beta3 are are marked inside the black colored box, and 
other pocket forming residues from alpha3 are by green colored stars. 
  
 
Conclusions 
  
Our work provides mechanistic insight into how Nsp16 is activated and reveals a new 
opportunity for inhibiting this essential viral component that could provide a target for pan-
coronavirus antivirals. First, we elucidate the activation mechanism of Nsp16 by 
comparing its dynamics in the presence and absence of its activator, Nsp10. Our results 
are consistent with previous experimental findings that Nsp16 cannot bind its substrates 
SAM or RNA in the absence of Nsp10 (18). We provide a structural rationale for this 
observation by elucidating the structural dynamics of Nsp16 in its monomeric state, which 
has remained inaccessible to experimental studies, and comparing it to the structural 
dynamics of the Nsp16/Nsp10 complex. Here, we find that Nsp10 activates Nsp16 by 
opening its SAM and RNA binding loops, allowing them to accommodate their respective 
ligands. Guided by this activation mechanism, we identify structural states of Nsp16 that 
are incompatible with substrate binding and also contain potential drug binding sites. 
Specifically, we find a pocket formed between β3 and β4 of Nsp16 that collapses the SAM 
binding pocket when open. The region of the pocket has overlap with where Nsp10 binds 
to Nsp16, so targeting this cryptic pocket could inhibit both substrate (SAM) and Nsp10 
binding. Therefore, this cryptic site is a promising target for small-molecule inhibitor 
development. Further, we find that this cryptic pocket is conserved in MERS and SARS-
CoV1 Nsp16, but not in the human homolog CMTr1, suggesting its potential for 
development of a pan-coronavirus, broad-spectrum inhibitor that may be efficacious 
against COVID19 and yet unseen coronavirus outbreaks. 
 
 
Methods 
 
System Preparation 

The systems were prepared starting from crystal structures 6w4h, 3r24, 5ynf and 4n49, 
for SARS-CoV-2, SARS-CoV-1, MERS, and CMTr1, respectively. All ligands, solutes, and 
water molecules from the crystal structures were removed. For monomeric Nsp16 
simulations, Nsp10 was also removed. In the coronavirus homologs, two zinc ions were 
retained, and the coordinating residues were modified accordingly (CYS->CYM and HIS-
>HID). Missing residues in the crystal structure of CMTr1 were modeled using the 
Modeller package (39). All systems were solvated in TIP3P water (40) in a rhombic 
dodecahedral box with periodic boundary conditions and Na+ and Cl- ions added to 
neutralize the system. Then, systems were energy minimized with a steepest descent 
algorithm until the maximum force fell below 100 kJ/mol/nm using a step size of 0.01 nm 
and a cutoff distance of 1.2 nm for the neighbor list, Coulomb interactions, and van der 
Waals interactions.  
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Systems were equilibrated for 1.0 ns in NPT simulations, with all bonds 

constrained using the LINCS algorithm (41) and virtual sites were used to allow a 4 s time 
step. Cutoffs of 1.1 nm were used for the neighbor list with 0.9 for Coulomb and van der 
Waals interactions. The particle mesh Ewald method (42) was employed for treatment of 
long-range interactions with a Fourier spacing of 0.12 nm. The Verlet cutoff scheme was 
used for the neighbor list. Berendsen barostat was used to control the pressure during 
the equilibration.(43) The stochastic velocity rescaling (v-rescale) thermostat was used to 
control the temperature at 300 K (44). 
 
Adaptive sampling simulations 
 
The FAST algorithm (35, 45) was employed for all four homologs for a total of five FAST 
simulations (SARS-CoV-2 FAST simulations were performed on both monomeric Nsp16 
and the Nsp10/Nsp16 complex). FAST was used here to generally enhance 
conformational sampling and also to quickly explore cryptic pockets. The procedure for 
FAST simulations is as follows: 1) run initial simulations, 2) build MSM, 3) rank states 
based on FAST ranking, 4) restart simulations from the top ranked states, 5) repeat steps 
2-4 until ranking is optimized. For each system, MSMs were generated after each round 
of sampling using a k-centers clustering algorithm based on the RMSD between select 
atoms. Clustering continued until the maximum distance of a frame to a cluster center fell 
within a predefined cutoff. In addition to the FAST ranking, a similarity penalty was added 
to promote conformational diversity in starting structures, as has been described 
previously (46).  
 
 For SARS-CoV-2 monomeric Nsp16 and Nsp16/Nsp10, the simulation data was 
generated in a previous manuscript published by our group. Briefly, FAST-pocket 
simulations were run at 300 K for 6 rounds, with 10 simulations per round, where each 
simulation was 40 ns in length (2.4 μs aggregate simulation for each system). The FAST-
pocket ranking function favored restarting simulations from states with large pocket 
openings. Pocket volumes were calculated using the LIGSITE algorithm (47). From these 
simulations, a conformationally diverse set of structures was selected to be run on 
Folding@home based on the k-centers clustering algorithm mentioned above. A total of 
283 microseconds and 770 microseconds of aggregate simulation time was collected for 
the Nsp10/Nsp16 complex and monomeric Nsp16, respectively.  
 
 FAST-distance simulations were used for SARS-CoV-1 Nsp16, MERS Nsp16, and 
CMTr1 to sample the β3-β4 pocket identified from SARS-CoV-2 simulations. FAST-
distance simulations were run at 300 K for 15 rounds, with 10 simulations per round, 
where each simulation was 40 ns in length (6.0 μs aggregate simulation for each system). 
The FAST-distance ranking favored stated with greater distances between the alpha 
carbons of β3 and β4. 
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DiffNets 
 
We used DiffNets, a deep learning-based dimensionality reduction algorithm developed 
by our group, to highlight biochemically relevant differences between datasets. (36) We 
trained a DiffNet to compare and contrast structure ensembles of monomeric Nsp16 and 
the Nsp16/Nsp10 complex to find features that discriminate them, highlighting the 
structural determinants of Nsp16 activation. First, we subsampled the data by a factor of 
25 and 68 for the Nsp16/Nsp10 complex and monomeric Nsp16 data, respectively to have 
an equal amount of data. Then, we converted simulation data to DiffNet input following 
the data normalization procedure from the original manuscript. Briefly, XYZ atom 
coordinates from simulations were mean-shifted to zero, and then multiplied by the 
inverse of the square root of a covariance matrix, which was calculated from simulations. 
For all DiffNet training and analysis, we used a split architecture (as described previously) 
where the classification task was focused on all atoms within 1nm of SAM or RNA-cap 
based on 6wks crystal structure. This atom selection was chosen to guide DiffNets to find 
differences in the active site region of Nsp16, which is inherently linked to its activation. 
For training, simulation frames are classified as “Nsp16 inactive” or “Nsp16 active” based 
on initial classification labels of 0 (i.e. Nsp16 inactive) for all monomeric Nsp16 frames, 
and labels of 1 (i.e. Nsp16 active) for all frames from the Nsp10/Nsp16 complex. These 
labels were iteratively updated in a self-supervised manner described in the original 
manuscript where we choose expectation maximization bounds of [0.1-0.4] for 
monomeric Nsp16 and [0.6-0.9] for the Nsp10/Nsp16 complex. This allows for more 
coherent classification labels as monomeric Nsp16 may sometimes adopt structural 
poses associated with Nsp16 activation and vice-versa for the Nsp10-Nsp16 complex.  
Additionally, we used 30 latent variables, 10 training epochs where we subsampled the 
data by a factor of 10 in each epoch, a batch size of 32, and a learning rate of 0.0001. 

 
To analyze the DiffNet output, we calculated 10 representative structures that span 

from “Nsp16 inactive” states to “Nsp16 active” states (i.e. structures with classification 
labels spanning 0 to 1). After training, the DiffNet learns a low-dimensional representation 
of each simulation frame (i.e. a latent vector) and outputs a classification label for every 
simulation frame. We binned the structures into 10 equally spaced bins based on their 
classification labels, which span from 0-1. The, we calculated the mean latent vector for 
each bin and used the DiffNet to reconstruct a structure based on each latent vector. 
These structures were used as representative structures for each bin. All training and 
analysis were performed using the open-source package https://github.com/bowman-
lab/diffnets. 
 
Markov State Models 

A Markov State Model (MSM) is a statistical framework for analyzing molecular dynamics 
simulations that provides a network representation of a free energy landscape. (37, 48, 
49) To quantify cryptic pocket opening across the homologs and changes between 
monomeric Nsp16 and the Nsp10/Nsp16 complex, we performed several measurements 
that rely on MSMs built based on the simulation data. We built a separate MSM for each 
system using all simulation data available for that system. All MSMs were constructed 
with the Enspara python package (50). First, the solvent accessible surface area (SASA) 
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of each residue side-chain was calculated using the Shrake-Rupley algorithm (51) 
implemented in MDTraj (52) using a drug-sized probe (2.8 Å sphere). 
 

Then, we clustered the data using a hybrid clustering algorithm. First, we used a 
k-centers algorithm (53) to cluster the data (5000 clusters for SARS-CoV-2 data, 1500 
clusters for each other homolog). Next, we applied sweeps of k-medoids update steps (3 
for SARS-CoV-2 data, 2 for other homologs) which refined the cluster centers to be in the 
densest regions of conformational space (54). A Markov time of 5 ns was selected for 
based on the implied timescales to build a Markov state model (MSM) for each homolog. 
To build the MSMs, transition probability matrices were produced by counting transitions 

between states (i.e. clusters), adding a prior count of 
1

𝑁𝑠𝑡𝑎𝑡𝑒𝑠
 and row-normalizing, as is 

described previously (55). Equilibrium populations were calculated as the eigenvector of 
the transition probability matrix with an eigenvalue of one. For all histograms shown, we 
calculated the order parameter of distance (e.g. distance between β3-β4) using cluster 
centers (i.e. representative structure of the cluster) and weighted the order parameter by 
the corresponding equilibrium population calculated with the MSM. We also resampled 
the equilibrium populations 100 times by bootstrapping the MSM, which provided error 
bars for computing the fraction of SAM and RNA compatible states adopted by 
monomeric Nsp16 and the Nsp16/10 complex. 
 
Distance and SASA calculations 
 
Figures 2, 3, and 4 include distance and SASA measurements that are explained in more 
detail here. In Figure 2 we measure the distance between gate loop 1 and gate loop 2 as 
the distance between Gln28 and Lys141 since these residues are known to undergo 
significant changes for RNA binding. We measure the distance between SAM binding 
loop 2 and gate loop 2 as the average distance between (Met131, Tyr132, Asp133, 
Pro134) and (Asp99, Leu100, Asn101, Asp102) as these are key residues that cradle 
SAM in the bound state. All SASA measurements are performed using Ala79, Thr82, 
Ala83, Leu86, Thr93, Leu94, Leu95, Val96, Asp97, Ala98 and Asp99 as this is the main 
component that gets exposed during cryptic pocket opening. 
 
Cryptic pocket detection 

Cryptic pockets in SARS-CoV2 Nsp16 were identified using our previously established 
approach called Exposons analysis (38). This analysis was performed using the cluster 
centers and the equilibrium probabilities derived from the MSMs built on the residue level 
SASA described above. The center of each cluster was taken as an exemplar of that 
conformational state, and residues were classified as exposed if their SASA exceeded 
2.0 Å2 and buried otherwise. The mutual information between the exposure/burial of each 
residue-pair was calculated based on the MSM, by treating the SASA values in the cluster 
centers as samples and weighting them by the equilibrium probability of the 
representative state. The mutual information was computed using the following equation: 
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𝑀𝐼(𝑋,𝑌) = ∑∑𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦∈𝑌𝑥∈𝑋

 

 

Finally, cryptic pockets (Exposons) were identified as groups of residues undergoing 
cooperative change in SASA, by clustering the matrix of pairwise mutual information using 
affinity propagation. 

The β3-β4 cryptic pocket identified in SARS-CoV2 Nsp16 consists of residues 
Ala79, Thr82, Ala83, Leu86, Thr93, Leu94, Leu95, Val96, Asp97, Ala98 and Asp99. Total 
SASA of these residues/homologous residues was measured for detecting cryptic pocket 
opening in all homologs of Nsp16 (SARS-CoV2, SARS-CoV1 and MERS). For measuring 
equivalent cryptic pocket in CMTR1, total SASA of structurally homologous residues 
(Gly141, Ser144, Glu145, Val148, Ala155, Lys156, Gly157, His158, Gly159, Met160, 
Thr161) was calculated.  

 
Sequence Conservation 
 
Protein sequences of Nsp16 from SARS-CoV2 (YP_009725311.1), SARS-CoV1 (Uniprot 
ID: P0C6X7), MERS (Uniprot ID: K0BWD0), NL63 (AFD64750.1), HKU1 (YP_460023.1), 
Turkey CoV (YP_001941189.1), Bat CoV (YP_008439226.1), Murine hepatitis virus 
(YP_209243.1) were used for multiple sequence alignment. Sequences alignment was 
performed on Clustal Omega server (56). Sequence alignment was visualized, and the 
sequence conservation score was generated using Jalview 2 software (57).  
 

For sequence comparison of SARS-CoV2, SARS-CoV1, MERS and human 
CMTr1 shown in Fig. 4, structure-based sequence alignment was performed using UCSF 
Chimera package (58). For the structure-based sequence alignment, we first aligned the 
structures of these homologs (PDB: 6wks (SARS-CoV2), 3r24 (SARS-CoV2), 5ynf 
(MERS) and 4n49 (CMTr1). Then, the sequences were aligned based on the structural 
alignment of the backbone atoms.     
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Figure S1.  Change in root mean square fluctuation (rmsf) of Nsp16 upon Nsp10 
association. (A) Probability weighted Δrmsf of Nsp16’ residues upon Nsp10 binding is 
plotted. Negative values represent a decrease in rmsf upon Nsp10 binding. RNA binding 
loops (gate loop 1 and 2) and SAM binding loops (SAMBL1 and 2) are highlighted by the 
blue colored boxes. (B)  Probability weighted Δrmsf of Nsp16 is mapped on its structure, 
with negative values shown in blue and positive values in red.  
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Figure S2. DiffNets predict that β4 peels away from β3 in Nsp16 inactive structural states. 
(Left) Structural states changing from inactive to active (white to purple) as predicted by 
the DiffNet. (Right) The loop connecting β3 and β4 peels away from β3 into solution in 
predicted inactive states. 
 
 
 
 

 
 
Figure S3. Displacement of Nsp10 binding residues by cryptic pocket opening. (A) 
Structure of Nsp16 in cryptic pocket closed state is shown in grey. Cryptic pocket forming 
residues and the residues undergoing opening motion are shown in cyan and blue, 
respectively. Cryptic pocket residues that contact Nsp10 are depicted in spheres. (B) 
Opening motion of the cryptic pocket shows the displacement of Nsp10 binding residues.  
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Figure S4. Structural comparison of β3-β4 cryptic pocket in SARS-CoV2 Nsp16 and 
human CMTr1. (A) β3 and residues lining the cryptic pocket in SARS-CoV2 are shown in 
cyan and blue, respectively. (B) Regions of human CMTr1, structurally equivalent to β3 
and the pocket lining regions are depicted in cyan and blue, respectively. 
 
 
 

 
Figure S5. Multiple sequence alignment of Nsp16 homologs from coronaviruses. The 
color ranges from white to orange for the sequence conservation score ranging from 0 to 

10, where 10 denotes 100% sequence identity. Residues of ꞵ3 are enclosed in the black 
box. Uniprot ids of the sequences used for the alignment are given in the Methods section. 
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