
RESEARCH ARTICLE

Integrated bioinformatics and statistical

approaches to explore molecular biomarkers

for breast cancer diagnosis, prognosis and

therapies

Md. Shahin Alam1*, Adiba Sultana1,2, Md. Selim Reza1, Md Amanullah1,3, Syed

Rashel Kabir4, Md. Nurul Haque MollahID
1*

1 Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh, 2 Center

for Systems Biology, Soochow University, Suzhou, China, 3 Department of Respiratory Medicine, Sir Run

Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine,

Hangzhou, Zhejiang, China, 4 Department of Biochemistry and Molecular Biology, Rajshahi University,

Rajshahi, Bangladesh

* mollah.stat.bio@ru.ac.bd (MNHM); shahin4824@gmail.com (MSA)

Abstract

Integrated bioinformatics and statistical approaches are now playing the vital role in identify-

ing potential molecular biomarkers more accurately in presence of huge number of alterna-

tives for disease diagnosis, prognosis and therapies by reducing time and cost compared to

the wet-lab based experimental procedures. Breast cancer (BC) is one of the leading

causes of cancer related deaths for women worldwide. Several dry-lab and wet-lab based

studies have identified different sets of molecular biomarkers for BC. But they did not com-

pare their results to each other so much either computationally or experimentally. In this

study, an attempt was made to propose a set of molecular biomarkers that might be more

effective for BC diagnosis, prognosis and therapies, by using the integrated bioinformatics

and statistical approaches. At first, we identified 190 differentially expressed genes (DEGs)

between BC and control samples by using the statistical LIMMA approach. Then we identi-

fied 13 DEGs (AKR1C1, IRF9, OAS1, OAS3, SLCO2A1, NT5E, NQO1, ANGPT1, FN1,

ATF6B, HPGD, BCL11A, and TP53INP1) as the key genes (KGs) by protein-protein interac-

tion (PPI) network analysis. Then we investigated the pathogenetic processes of DEGs

highlighting KGs by GO terms and KEGG pathway enrichment analysis. Moreover, we dis-

closed the transcriptional and post-transcriptional regulatory factors of KGs by their interac-

tion network analysis with the transcription factors (TFs) and micro-RNAs. Both supervised

and unsupervised learning’s including multivariate survival analysis results confirmed the

strong prognostic power of the proposed KGs. Finally, we suggested KGs-guided computa-

tionally more effective seven candidate drugs (NVP-BHG712, Nilotinib, GSK2126458,

YM201636, TG-02, CX-5461, AP-24534) compared to other published drugs by cross-vali-

dation with the state-of-the-art alternatives top-ranked independent receptor proteins. Thus,

our findings might be played a vital role in breast cancer diagnosis, prognosis and therapies.
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Introduction

Breast cancer (BC) is one of the most common types of invasive cancers among women

according to the World Health Organization (WHO), which affected around 2.3 million

women in 2020. It is also the cause of large number of cancer-related deaths among women

worldwide [1]. Symptoms of BC include a change in breast shape, dimpling of the skin, nipple

discharge, or a red scaly patch of skin, and a lump in the breast [2]. Based on the existing treat-

ment facilities, the average 5-year survival rate with BC is 86%, but BC with distant metastasis,

the average 5-year survival rate drops down to 28% [3]. Thus, the performance of existing ther-

apeutic treatments on BC is not yet reach to the satisfactory level. Therefore, in-depth molecu-

lar research is essential to explore BC causing more effective biomarkers and candidate drugs.

However, new drug discovery is a tremendous challenging, time consuming and expensive

task. The main challenges are to explore drug target proteins (receptors) responsible for dis-

eases and drug agents (small molecules) that can reduce the diseases by the interaction with

the target proteins. Genomic biomarkers induced proteins are considered as the key receptors.

Transcriptomics analysis is a widely used popular approach to explore genomic biomarkers

[4–8]. The repurposing of existing drugs for other diseases could reduce the time and cost

compared to de novo drug development. By this time, several authors suggested several sets of

genomic biomarkers to explore molecular mechanisms and pathogenetic processes of BC [9–

17]. Some of them also suggested candidate drugs for the treatment against BC [18, 19]. How-

ever, their published data did not display any common set of receptors and/or drugs, and so

far, none of them yet investigated the resistance of their suggested drugs against the indepen-

dent receptors proposed by others. Obviously, a question may be raised, how a drug can be

effective globally for all peoples around the world. Therefore, in this study, our main objectives

are (i) computational identification of genomic biomarkers (drug targets) for BC highlighting

their functions, pathways and regulatory factors, (ii) exploring genomic biomarker guided can-

didate drugs for the treatment against BC, and (iii) In-silico validation on the resistance per-

formance of the proposed candidate drugs against the state-of-the-art alternatives top-ranked

independent receptors associated with BC published by others.

Materials and methods

To reach the goal of this study, we considered both raw-data (gene expression profiles) and

meta-data associated with BC. Integrated bioinformatics and statistical approaches were used

to analyze the datasets to explore KGs highlighting their functions, pathways, regulatory fac-

tors, prognosis power and repurposable drugs. The pipeline of this study is given in Fig 1.

Data sources and descriptions

Collection of gene expression profiles for exploring KGs. The microarray gene expres-

sions profile dataset with accession number GSE53566 [20] was downloaded from the National

Center of Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database.

The dataset was generated based on two different BC cell lines (BT-20 and MDA-MB-231),

either overexpression (BT-20) or knock-down (MDA-MB-231). Untreated cell lines served as

controls. The whole genome expression profiles were consisted of 8 treated (case) and 8 con-

trol samples with 41078 probes. To investigate the prognostic performance of KGs unbiasedly,

we collected two independent microarray gene expression datasets with accession numbers

GSE119552 [21] and GSE152322 [22], respectively. More information about these datasets

were given in S1 Table in S1 File.

Collection of meta-drug agents for exploring candidate drugs. We collected meta-drug

agents (small molecules) from the online database GSCALite [23] by the significant correlation
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with our proposed target proteins (set-A) and published articles (set-B) to explore candidate

drugs (set-C) by molecular docking with our proposed target proteins (genomic biomarkers).

Both A and B sets of meta-drug agents were given in the supplementary file (S2 Table in S1

File).

Collection of independent meta-receptors for cross-validation with the proposed

drugs. To select the top-ranked hub-genes (meta-receptors) associated with BC; we reviewed

78 published articles and selected the top-ranked 13 target proteins as the meta-receptors (S3

Table in S1 File).

Identification of DEGs

To identify DEGs between BC and normal conditions, we considered the linear models for

microarray (LIMMA) data analysis suggested by Smyth (2004) [24], which can be written as

yg ¼ Xag þ 2g ð1Þ

Where yg = (yg1, yg2,. . .,ygn)/ is the vector of expressions (responses) for gth gene with

n = n1+n2 samples (g = 1, 2, . . ., m), X is an n×2 design matrix, αg = (αg1, αg2)/ is 2×1 vector

(2<n) of effects for two different groups of n samples and the error vector 2g � Nð0;Wgs
2
gÞ.

Here Wg is a positive definite weight matrix. We want to test the null hypothesis (H0): αg1 =

αg2 => γg = (αg1−αg2) = 0 (that is, gth gene is equally expressed gene (EEG) in both case and

control groups) against the alternative hypothesis (H1): αg16¼αg2 => γg 6¼0 (that is, gth gene is

differentially expressed gene (DEG) between case and control groups). To test H0 against H1,

Fig 1. The pipeline of this study.

https://doi.org/10.1371/journal.pone.0268967.g001
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the moderated t-statistic was formulated by hybridizing the classical and Bayesian approaches

in which the posterior variance is substituted into to the classical t-statistic in place of the clas-

sical sample variance. The moderated t-statistic was defined as,

~tg ¼
ĝg � gg

~sg
ffiffiffiffiffi
dg

q ð2Þ

which follows t-distribution with dg+d0 degrees of freedom under H0.

Adjusted P-value based on the moderated t-statistic and the average of log2 fold-change

(aLog2FC) values of treatment group with respect to the control group were used to select

DEGs or EEGs as follows

DEGg ¼

DEG ðUpregulatedÞ; if adj:p:value < 0:01 and aLog
2
FCg > þ1:0

EEG; if adj:p:value < 0:01 and � 1:0 < aLog
2
FCg < 1:0

DEG ðDownregulatedÞ; if adj:p:value < 0:01 and aLog
2
FCg < � 1:0

ð3Þ

8
><

>:

where

aLog
2
FCg ¼

1

n1

Xn1

i

log2ðy
T
giÞ �

1

n2

Xn2

j

log2ðy
C
gjÞ; if n1 6¼ n2

1

n

Xn

i

log2

yTgi
yCgi

 !

; if n1 ¼ n2 ¼ n:

8
>>>>><

>>>>>:

Here yTgi and yCgj are the expressions for the gth gene with the ith treatment and jth control

samples, respectively. We implemented the limma R-package [25] for calculating the P-values

and aLog2FC values to select the DEGs, significantly.

Construction of PPI network of DEGs

Protein-protein interaction (PPI) network was constructed to identify key-genes (KGs). The

online STRING-v11 database [26] was used to construct the PPI network of DEGs. The

STRING database provides critical assessment and integration of protein interactions, includ-

ing direct (physical) and indirect (functional) associations. To construct PPI network, the dis-

tance ‘D’ between pair of proteins (u,v) is calculated as

D u; vð Þ ¼
2jNu

T
Nvj

jNuj þ jNvj
ð4Þ

Where Nu is the neighbor set of u and Nv is the neighbor set of v. Cytoscape plug-in cyto-

Hubba is used to rank the nodes of PPI network for identifying KGs in the network [27, 28].

In the present study five topological methods including Degree [29], BottleNeck [30],

Betweenness [31], Stress [32], and Clustering Coefficient was utilized to identify KGs.

GO terms and KEGG pathway enrichment analysis of DEGs highlighting

KGs

The GO (Gene Ontology) functions and KEGG (Kyoto Encyclopedia of Genes and Genomes)

pathway enrichment analysis were performed to understand the pathogenetic processes and

pathways of DEGs highlighting KGs. The GO terms have three categories: Biological Process

(BP), Cellular Component (CC), and Molecular Function (MF). To explore the significantly
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enriched GO terms and KEGG pathways by DEGs including KGs, let Si is the annotated gene-

set corresponding to ith type of biological functions or pathways given in the database and Mi

is the number of genes in Si (i = 1, 2,. . .,r); N is the total number of annotated genes those con-

struct the entire combine set S ¼
Sr

i¼1

Si ¼ Si
S

Sci such that N �
Pr

i¼1
Mi; where Sci is the com-

plement set of Si. Again let n is the total number of DEGs of interest and ki is the number of

DEGs belonging to the annotated gene-set Si. This problem is summarized by the following

contingency table (Table 1).

To find the significantly enriched GO terms and KEGG pathways by our proposed DEGs,

the P-value was calculated by the Fisher exact test statistic based on hypergeometric distribu-

tion. We used DAVID online tool (version 6.8) to perform Fisher exact test [33].

Regulatory network analysis of KGs

To identify key transcription factors (TFs) as the transcriptional regulators of KGs, the TFs-

KGs interaction network was constructed using the publicly available database JASPAR [34].

The interaction network was generated using NetworkAnalyst [35]. To identify key micro-

RNAs (miRNAs) as the post-transcriptional regulators of KGs, the KGs-miRNAs interaction

network was constructed by using the publicly available online tool miRNet 2.0 [36]. The top

degree miRNAs were selected from the network and considered them as key miRNAs.

Prognostic power analysis of KGs

To investigate the prognostic power of KGs, we performed cluster analysis, survival analysis

and developed two prediction models using random forest (RF) and support vector machine

(SVM) classifiers. The survival curve and ROC curve were used to assess the prognosis perfor-

mance. The online SurvExpress computational tool [37] was used to produce survival curve.

The R-packages ‘gplots’ and ‘ROCR’ were used to produce heatmap and ROC curve,

respectively.

Molecular docking simulation for exploring candidate drugs

To propose in-silico validated effective drugs for the treatment against BC, we employed

molecular docking simulation between the target receptor proteins and drug agents. We con-

sidered our proposed KGs based hub-proteins and associated TFs proteins as the drug target

receptor proteins and meta-drug agents collected from online databases and published articles

for docking analysis. The molecular docking simulation requires 3-Dimensional (3D) struc-

tures of both receptor proteins and candidate drugs. We downloaded 3D structure of all tar-

geted receptor proteins from Protein Data Bank (PDB) [38] and SWISS-MODEL [39]. The 3D

structures of drug agents were downloaded from PubChem and DrugBank database [40, 41].

The 3D structure of the target proteins was visualized using Discovery Studio Visualizer 2020

and the water molecules, co-crystal ligands which were bound to the protein were removed.

Further, the protein was prepared using USCF Chimera and Autodock vina 13651 in PyRx open

Table 1. Contingency table.

Annotated Gene-sets DEGs (proposed) EEGs (proposed) Marginal total (Annotated)

ith GO term/KEGG pathway (Si) ki Mi—ki Mi

Complement of Si (Sci ) n—ki N—Mi−n + ki N—Mi

Marginal total n N—n N (Grand total)

https://doi.org/10.1371/journal.pone.0268967.t001
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source software by adding charges and minimizing the energy of the protein and subsequently

converting it to pdbqt format [42–44]. The exhaustiveness parameter was set to 8. The Pro-

tein-Ligand Interaction Profiler (PLIP) web service [45] and PyMol was used to analyze the

docked complexes for surface complexes, types and distances of non-covalent bonds. Let Aij

denotes the binding affinity between ith target protein (i = 1, 2, . . ., m) and jth drug agent (j = 1,

2,. . ., n). Then target proteins are ordered according to the descending order of row means
Pn

j¼1
Aij==m, j = 1,2,. . .,m, and drug agents are ordered according to the descending order of

column means
Pm

i¼1
Aij=n, j = 1,2,. . .,n, to select the top ranking few drug agents as the candi-

date drugs. Then we validated the proposed candidate drugs by molecular docking simulation

with the top ordered independent receptors associated with BC published by others.

Results

Identification of DEGs

We identified 190 DEGs, including 138 downregulated and 52 upregulated genes (S1 Table in

S2 File) in BC tissue, using adj.P.Val < 0.01 and logFC > 1 as the threshold for upregulated

DEGs, and adj.P.Val< 0.01 and logFC < -1 for downregulated DEGs. The upregulated and

downregulated DEGs were displayed on the right and left sides respectively in the volcano plot

by the green color in Fig 2A. A heatmap was constructed to show the clustering performance

of case and control samples by the up and down regulated DEGs in Fig 2B. We observed that

both DEGs and samples separated each other between their contrast groups accurately.

Identification of key genes (KGs) from DEGs

To identify KGs, the PPI network of DEGs was constructed which includes 180 nodes and 218

edges, with an average node degree 2.42 and P-value< 1.0e-16. In the PPI network, pink color

Fig 2. (A) Volcano plot of–log10(P-value) against log2FC values to display significantly upregulated and downregulated DEGs. (B) Heatmap of significantly

upregulated and downregulated DEGs to observe the clustering performance of tumor and control groups by hierarchical clustering approach.

https://doi.org/10.1371/journal.pone.0268967.g002
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indicates up regulated and blue color indicates down regulated DEGs, big size and octagon

shape indicate KGs (see Fig 3). We used five topological measures (Degree, BottleNeck,

Betweenness, Stress and Clustering Coefficient) to select top-ranked 13 KGs that are AKR1C1,

IRF9, OAS1, OAS3, SLCO2A1, NT5E, NQO1, ANGPT1, FN1, ATF6B, HPGD, BCL11A, and

TP53INP1, where 4 KGs (SLCO2A1, NT5E, BCL11A and ANGPT1) were upregulated and the

rest 9 KGs were downregulated (Table 2). Further information of 13 kg is included in (S2

Table in S2 File).

GO terms and KEGG pathway enrichment analysis of DEGs highlighting

KGs

The GO functional enrichment analysis of DEGs showed that 46 GO-BP terms, 11 GO-CC

terms and 14 GO-MF terms are enriched by the downregulated genes, where KGs were

involved with 25 BPs, 8 CCs and 10 MFs. On the other hand, 15 BPs, 3 CCs and 4 MFs are

enriched by the upregulated genes, where KGs were directly involved with 5 BPs (S3 Table in

S2 File). Among the enriched GO functions including downregulated KGs, 5 GO-BP terms

(GO:0060337~type I interferon signaling pathway, GO:0051607~defense response to virus,

Fig 3. Protein-protein interaction (PPI) network of DEGs to select the key genes (KGs). Blue color indicates

downregulated and pink color indicates upregulated DEGs, big size and octagon shape indicate the KGs.

https://doi.org/10.1371/journal.pone.0268967.g003
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GO:0060333~interferon-gamma-mediated signaling pathway and GO:0055114~oxidation-

reduction process), 2 GO-CC terms (GO:0005737~cytoplasm and GO:0005578~proteinaceous

extracellular matrix), and 1 GO-MF terms (GO:0016491~oxidoreductase activity) were

reported by other researchers that association with BC (see Table 3 and discussion section for

more details). The upregulated KGs involving 2 GO-BP terms (GO:0045944~positive regula-

tion of transcription from RNA polymerase II promoter and GO:0000122~negative regulation

of transcription from RNA polymerase II promoter), 1 GO-CC terms (GO:0072559~NLRP3

inflammasome complex) and 1 GO-MF terms (GO:0097153~cysteine-type endopeptidase

activity involved in apoptotic process) were also reported by other researchers that association

with BC (see Table 3 and discussion section for more details as before). The KEGG pathway

enrichment analysis of DEGs showed that 8 and 2 pathways are enriched by the downregulated

and upregulated KGs, respectively. Among them, downregulated KGs involving hsa05168:

Herpes simplex infection pathway and upregulated KGs involving hsa04151:PI3K-Akt signal-

ing pathway were also reported by other researchers as the pathways of BC development

(Table 3).

Regulatory network analysis of KGs

We constructed KGs versus transcription factors (KGs-TFs) interaction network to identify

top ranking TFs as the key transcriptional regulators of KGs. We selected top 4 key TFs

(FOXC1, FOXL1, JUN, and GATA2) as the vital transcriptional regulators of KGs with

degree> 4, where large blue ellipses indicate top degree key TFs and pink octagons indicate

KGs in Fig 4A. To identify top ranking micro-RNA (miRNA) as the key post-transcriptional

regulators of KGs, we constructed KGs-miRNAs interaction network. We selected top 4 key

miRNAs (hsa-miR-27a-5p, hsa-miR-124-3p, hsa-miR-1-3p, and hsa-miR-210-3p) as the vital

regulators of KGs with degree> 7, where large blue ellipses indicate top degree key miRNAs

and pink octagons indicate KGs in Fig 4B.

Prognostic power analysis

We considered both supervised and unsupervised learning’s including multivariate survival

analysis to investigate the prognostic power of 13 KGs (Fig 5). The Fig 5A shows that KGs are

able to classify case and control samples accurately by the unsupervised hierarchical clustering

(HC). The multivariate survival curves based on the expressions of 13 KGs, separated the low

(control) and high (BC) risk groups significantly (see Fig 5B). In the case of supervised learn-

ing, we trained two popular classifiers (RF and SVM) by taking the expression profiles of 13

KGs from all samples (8 BC and 8 controls) of the study dataset with the NCBI accession

Table 2. Selection of KGs by taking the union of five-sets of top-ranked 8 genes produced by five topological measures with the PPI network.

Degree

(D)

BottleNeck

(E)

Betweenness

(F)

Stress (G) Clustering Coefficient

(H)

Key genes (D[E[F[G[H)

STAT1 FN1 EGR1 EGR1 SLCO2A1 OAS1, FN1, SLCO2A1, HPGD, IRF9, NQO1, AKR1C1, OAS3, NT5E, TP53INP1,

ANGPT1, ATF6B, BCL11AEGR1 EGR1 FN1 FN1 HPGD
OAS1 STAT1 STAT1 STAT1 TIMP3
OAS2 REC8 REC8 REC8 NQO1
IRF9 TRIP13 TRIP13 TRIP13 AKR1C1
OAS3 NT5E NT5E NR2F1 CENPN
RSAD2 NR2F1 NR2F1 ATF6B TP53INP1
IFIT3 RELB RELB BCL11A ANGPT1

https://doi.org/10.1371/journal.pone.0268967.t002
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number GSE53566. Then we investigated their prediction performance using both training

and independent test datasets. We investigated the training performance by taking all samples

(8 BC and 8 controls). To investigate their test performance unbiasedly, we considered the

expression profiles of 13 KGs from two independent GEO datasets with the NCBI accession

numbers GSE119552 and GSE152322, respectively. The dataset GSE119552 consisted of 12

tumors and 4 control samples, the other test dataset GSE152322 consisted of 11 tumors and 12

control samples. We classified all samples from each dataset by the prediction models. Fig 5C

showed the training performance (green color) and independent test performance (blue and

red color). We observed that both training and independent test performance are good and

reasonable (AUC>0.90) for each of training and independent test datasets.

Exploring candidate drugs by molecular docking analysis

To explore candidate drugs for breast cancer (BC), we considered 13 KGs based proteins

(AKR1C1, IRF9, OAS1, OAS3, SLCO2A1, NT5E, NQO1, ANGPT1, FN1, ATF6B, HPGD,

BCL11A, and TP53INP1) and its regulatory key 4 TFs proteins (FOXC1, GATA2, FOXL1 and

JUN) as the m = 17 drug target receptors. The 3-Dimension (3D) structure of NT5E, HPGD,

NQO1, OAS1, ANGPT1, IRF9, BCL11A, SLCO2A1, FN1, OAS3, AKR1C1, JUN and GATA2

were downloaded from Protein Data Bank (PDB) with the PDB codes 6S7F, 2GDZ, 5FU,

4RWP, 4JYO, 5OEN, 6KI6, 3MRR, 2HAZ, 4S3N, 3C3U, 1A02 and 5O9B and rest of them

Table 3. Significantly enriched GO functions and KEGG pathways by the DEGs involving KGs that were also supported by the literature review about their associa-

tion with BC and other cancers.

GO Terms/Functions DEGs (Counts) P-Value Associated KGs

Downregulated DEGs

GO Terms of Biological Processes (BPs)

GO:0060337~type I interferon signaling pathway [46] 12 8.41E-13 OAS1, OAS3, IRF9
GO:0051607~defense response to virus [47] 12 2.72E-08 OAS1, OAS3, IRF9
GO:0060333~interferon-gamma-mediated signaling pathway [47] 6 1.53E-04 OAS1,OAS3, IRF9, ATF6B
GO:0045071~negative regulation of viral genome replication [48] 5 1.86E-04 OAS1, OAS3
GO:0055114~oxidation-reduction process [49] 9 0.06191 NQO1, HPGD, AKR1C1

GO Terms of Cellular Components (CCs)

GO:0005737~cytoplasm [50] 57 4.91E-05 OAS1, OAS3, IRF9, HPGD, TP53INP1, NQO1
GO:0005578~proteinaceous extracellular matrix [8] 7 0.009721 FN1

GO Terms of Molecular Function (MF)

GO:0016491~oxidoreductase activity [51] 5 0.032918 HPGD, AKR1C1
Upregulated DEGs

GO Terms of BP

GO:0045944~positive regulation of transcription from RNA polymerase II promoter [52] 7 0.014821 BCL11A, SLCO2A1
GO:0000122~negative regulation of transcription from RNA polymerase II promoter [53] 6 0.015973 BCL11A, NT5E

GO Terms of CC

GO:0072559~NLRP3 inflammasome complex [54] 2 0.017428 FN1
GO Terms of MF

GO:0097153~cysteine-type endopeptidase activity involved in apoptotic process [55] 2 0.02663 FN1
KEGG pathways DEGs (Counts) P-Value Associated KGs

Downregulated DEGs

hsa05168:Herpes simplex infection [56] 6 0.012895 OAS1, OAS3, ATF6B, IRF9
Upregulated DEGs

hsa04151:PI3K-Akt signaling pathway [57] 4 0.030138 ANGPT1, SLCO2A1, BCL11A

https://doi.org/10.1371/journal.pone.0268967.t003
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such as ATF6B, TP53INP1, FOXC1, and FOXL1 targets were downloaded from SWISS-MO-

DEL using UniProt with IDs Q99941, Q96A56, Q12948 and Q12952 respectively. Then we

considered 82 meta-drug molecules from the GSCALite database and 47 meta-drugs from the

published articles as drug agents (see S1 File (Tables 2 and 3)). The 3D structures of drug

agents were downloaded from the PubChem database. Then we performed molecular docking

analysis between our proposed receptors and meta-drug agents. The binding affinity score

matrix between the ordered receptors and ordered drug-agents were displayed in Fig 6A. We

observed that top order four lead compounds/drugs (NVP-BHG712, Nilotinib, GSK2126458,

and YM201636) produce highly significant binding affinity scores with all m = 17 target pro-

teins, and their average binding affinity scores across all receptors were -8.65, -8.55, -8.50, and

-8.45 (kcal/mol), respectively. The next two top ordered drugs (TG-02 and CX-5461) produced

highly significant binding affinity scores with 16 target proteins, and their average binding

affinity scores across all m = 17 targets were -8.40 and -8.22, respectively. The 7th top ordered

drug AP-24534 produced significant binding affinity scores with 14 target proteins and the

average binding affinity score was -8.0. The other drugs (lead compounds) produced signifi-

cant binding affinity scores with less than 12 target proteins out of 17 and their average bind-

ing affinity scores were negatively smaller then -7.5. Therefore, we considered top ordered

seven drugs (NVP-BHG712, Nilotinib, GSK2126458, YM201636, TG-02, CX-5461 and AP-

24534) as the candidate drugs in our study and highlighted them in Fig 6B. We also examined

their complete interaction profile including hydrogen bonds, hydrophobic, halogen/ salt

Bridge and electrostatic interactions in Fig 7.

Performance investigation of proposed drugs by cross-validation

To investigate the resistance performance of the proposed drugs against the state-of-the-art

alternative receptors for BC compared to the transcriptome-guided 47 published drugs, we

performed molecular docking analysis of our proposed drugs including all published drugs

Fig 4. KGs regulatory network analysis results (A) KGs-TFs interaction network to identify key transcriptional regulators of KGs, (B) KGs-miRNAs

interaction network to identify key post-transcriptional regulators of KGs. Here pink color octagon indicates the KGs in both A and B, blue color bigger size

ellipse indicates key TFs in A and key miRNAs in B.

https://doi.org/10.1371/journal.pone.0268967.g004
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with the top ranked independent receptors (KIF11, RRM2, BUB1, CDC20, FOS, FN1, BUB1B,

CCNB2, CCNA2, CDK1, TOP2A, CCNB1, and EGFR) published by others for BC in different

78 articles (see S1 File (Table 3)). The 3D structure of KIF11, RRM2, BUB1, CDC20, FOS,

FN1, BUB1B, CCNA2, CDK1, TOP2A, CCNB1, and EGFR were downloaded from PDB data-

base with the PDB codes 1Q0B, 3BS9, 4a1g, 1DUJ, 1FXL, 2HAZ, 2WVI, 1VIN, 6GU6, 1ZXM,

2B9R, and 3G5Z respectively and for another one CCNB2 downloaded from SWISS-MODEL

using UniProt with ID O95067. The Fig 6C showed the resistance performance of our pro-

posed drugs in a comparison of the publicly available drugs against the top ranked 13 indepen-

dent receptors. We observed that our proposed drugs showed better performance compare to

the published drugs in terms of negatively highest binding affinities with the independent

receptors. Therefore, we can strongly recommend that the proposed drugs might be more

effective candidate than the published drugs for the treatment against BC.

Discussion

In this study, we identified key genomic biomarkers highlighting their pathogenetic processes

for breast cancer (BC) diagnosis, prognosis and therapies. At first, we identified 190 DEGs

(138 downregulated and 52 upregulated) from the publicly available microarray gene-expres-

sion profiles. Then we detected 13 DEGs (AKR1C1, IRF9, OAS1, OAS3, SLCO2A1, NT5E,

NQO1, ANGPT1, FN1, ATF6B, HPGD, BCL11A, and TP53INP1) as the KGs that drive the pro-

gression of BC. Some literatures also suggested that these KGs are BC causing genes [9, 58–78]

Fig 5. The prognostic powers of KGs were displayed by (A) Heatmap of hierarchical clustering (B) Multivariate

survival curves with KGs and (C) ROC curves of prediction models with KGs.

https://doi.org/10.1371/journal.pone.0268967.g005
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(see Fig 8A). For example, the expression of two genes (AKR1C1 and AKR1C2) in carcinoma

cells and stromal fibroblasts and their positive correlation are favorable tumor characteristics

in primary BC patients [58]. Also these two genes appear to be an interesting target for new

hormone-based therapy strategies in primary BC. The IRF9 gene with overexpression has the

potential to be a surrogate marker of response and may be associated with drug resistance for

BC [59]. The expression of the OAS1 gene that was inversely associated with multiple MSGs in

the BC cell line [60]. The OAS3 gene plays a prognostic role in BC patients with potential

mechanical value [61]. The SLCO2A1 is ubiquitously expressed and marked as a prostaglandin

transporter due to its high affinity [62]. The Gene NT5E is regulated epigenetically in BC, the

epigenetic status of this gene influencing metastasis and clinical outcome, and suggests that

Fig 6. Molecular docking simulation results for exploring candidate drugs against BC. (A) Image of binding affinity scores of proposed ordered receptor

proteins with the top 97 ordered meta-drug agents, (B) Image of binding affinity scores of proposed ordered receptor proteins with the proposed ordered

candidate drugs only (C) Image of binding affinity scores of ordered proposed and already published candidate drugs against the top-ranked independent

receptors published by others.

https://doi.org/10.1371/journal.pone.0268967.g006
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NT5E CpG island methylation is a promising BC epigenetic biomarker [63]. The Pharmaco-

logical prohibition of NQO1 and GCLC is a new therapeutic strategy for overcoming tamoxi-

fen-resistance and also shows that the prediction of NQO1 as a biomarker has the significant

prognostic value of tumor recurrence in BC patients [64]. β-lapachone (bL) may be a therapeu-

tic targeting for BC stem-cells with appropriate NQO1 expression [65]. Germline Genetic Vari-

ants in ANGPT1, ANGPT2, TEK, MMP9, VEGFA and FGF2 are involved with Pathologic

complete reaction to Bevacizumab in BC Patients [66]. Several studies have suggested that the

gene FN1 is highly associated with BC [9, 67–72]. They suggested that genetic variants of the

ATF6B gene were associated with modified relationships between reproductive factors and BC

[73]. A new BC risk variant rs8752 in HPGD in Chinese women’s through a systematic case-

control study of microRNA binding site SNPs [74, 75]. The key gene BCL11A plays a crucial

role in BC tumorigenicity and stemness maintenance through activating Wnt/β-catenin

Fig 7. The 3D views of the selected strong binding interactions between drug targets and agents were displayed.

The key interacting amino acids and their binding types with potential targets were also shown.

https://doi.org/10.1371/journal.pone.0268967.g007
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signaling pathway, and may become a potential target for the treatment of BC [76]. Moreover,

another study identified 4 hub genes (BCL11A, FOXC1, RGMA, and FAM171A1) that showed

a highly positive correlation with the triple-negative BC subtype [77]. Low expression of

TP53INP1 is an independent factor of poor prognosis in BC patients, especially ERα-positive

patients and may become a potential therapeutic target in ERα-positive BC patients [78].

The GO functional and KEGG pathway enrichment analyses of DEGs significantly revealed

some GO terms of BPs, MFs and CCs, and KEGG pathways by involving KGs that are highly

Fig 8. Validation of the proposed KGs (receptors) and candidate drugs in favor of BC by the literature review (A)

Validation of the proposed KGs: circles with blue color indicate downregulated KGs and pink color indicates

upregulated KGs, and each connected network with a circle indicates the reference in which the KG is associated with

BC, (B) Validation of the proposed candidate drugs: circles with red color indicate FDA approved and investigational

drugs, green color indicate investigational drugs and ash color indicate unapproved drugs, and each connected

network with a circle indicates the references in which our suggested drugs might be effective against BC treatment.

https://doi.org/10.1371/journal.pone.0268967.g008
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linked with BC patients (see Table 3). Our literature review also supported their link with BC.

As for examples with the enriched BPs, the cell growth inhibition of MCF-7 (the BC cell line)

significantly increases after treatment of BC with XN by influencing the type I interferon signal-
ing pathway [46] that is associated with three KGs (OAS1, OAS3 and IRF9). Two GO terms

defense response to virus (associated with 3 KGs: OAS1, OAS3 and IRF9) and interferon-
gamma-mediated signaling pathway (associated with 4 KGs: OAS1, OAS3, IRF9 and ATF6B)

were reported as two important BPs for BC progression [47]. Two KGs (OAS1, OAS3) involv-

ing negative regulation of viral genome replication process influence the BC enriched dysregu-

lated subnetworks and play a potential role in cardiotoxicity [48]. The oxidation-reduction
process associated 3 KGs (NQO1, HPGD and AKR1C1) is functionally enriched with multiple

cancer type-specific metastasis over-expression signatures [49]. Biological process analysis has

shown that positive regulation of transcription from RNA polymerase II promoter (associated

with BCL11A and SLCO2A1) and negative regulation of transcription from RNA polymerase II
promoter (associated BCL11A and NT5E) are functionally enriched for DEGs of BC [52, 53].

Among the enriched CCs, The cytoplasm (associated with 6 KGs: OAS1, OAS3, IRF9, HPGD,

TP53INP1 and NQO1) has been found to be associated with most proteins that are highly

expressed for cancer [50]. Upregulated DEGs for BC are functionally enriched in the proteina-
ceous extracellular matrix (associated KGs: FN1) pathway [79]. It was suggested that activation

of the NLRP3 inflammasome complex (associated KGs: FN1) would be an innovative therapeu-

tic pathway to control tumor growth [54]. Inhibition of NADH: ubiquinone oxidoreductase
activity (associated KGs: HPGD and AKR1C1) blocks multiple signal transduction pathways in

MCF-7 human BC cells through rotenoids drug [51]. The 320 differential expressed micro-

RNAs targeted genes for BC were functionally enriched in negative regulation of cysteine-type
endopeptidase activity involved in apoptotic process (Associated KGs: FN1) [55]. After treat-

ment of a metastatic BC patient with herpes simplex infection pathway (associated KGs: OAS1,

OAS3, ATF6B, IRF9), there has created a case of Sweet Syndrome[56]. Among the enriched

KEGG pathways, Paclitaxel inhibits the proliferation and invasion of the MCF-7 cell in

PI3K-AKT signaling pathway (Associated KGs: ANGPT1, SLCO2A1 and BCL11A) to prevent

BC [57].

The KGs-TFs interaction network analysis indicated that 4 TFs proteins (FOXC1, FOXL1,

GATA2, and JUN) are the key transcriptional regulatory factors of Kgs (see Fig 4A). Among

them FOXC1 (a regulator of NT5E, IRF9, AKR1C1, HPGD, FN1 and OAS1) is connected with

lymphatic vessel formation, arterial cell specification, and cardiovascular development [80].

The expression of TF-protein FOXL1 (a regulator of NT5E, TP53INP1, HPGD, FN1, OAS1
and NQO1) is connected with numerous cancer [81]. The TF-protein GATA2 (a regulator of

NT5E, SLCO2A1, OAS1 and NQO1) is connected with Hematopoietic and immune defects

[82]. The TF-protein JUN (a regulator of ANGPT1, HPGD, ATF6B and OAS3) is associated

with bladder cancer disease [83]. We also constructed the proteins-disease interaction network

to detect other diseases that are also connected with the proposed KGs. Total 8 KGs out of 11

were associated with others 156 diseases that can be considered as the non-causal risk factors

of BC. Especially, two diseases "Autosomal recessive predisposition" and "Schizophrenia" were

mostly related with our target proteins.

To investigate the prognostic power of KGs, we performed multivariate survival analysis

and developed two prediction models through two classifiers (SVM and RF) in Fig 5. Our

developed two prediction models showed good performance with both training and test data-

sets generated from the main data collected from NCBI with accession number GSE53566.

The AUC values were 0.992 and 0.986 for SVM and RF based models for the training dataset,

respectively. To investigate their performance unbiasedly, we also considered two independent

test datasets from other NCBI sources with accession numbers GSE119552 and GSE152322,
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respectively. We observed that both predictors show good performance with both independent

test datasets. The values of AUC were 0.917 and 0.979 for independent test dataset-1 and 0.985

and 0.947 for the independent test dataset-2 based on SVM and RF models, respectively. These

results indicate the good prediction performance for the identified KGs, so we suggested the

prognostic model for the two classifiers (SVM and RF).

To explore our proposed KGs-guided new and repurposable candidate drugs for the treat-

ment against BC, we considered the proposed KGs based 13 key proteins (AKR1C1, IRF9,

OAS1, OAS3, SLCO2A1, NT5E, NQO1, ANGPT1, FN1, ATF6B, HPGD, BCL11A, and

TP53INP1) and their regulatory 4 TFs proteins (FOXC1, FOXL1, GATA2, and JUN) as the

drug target receptors and performed their docking simulation with 129 drug molecules col-

lected from the GSCALite database and published articles (see Fig 6A). Then we selected top-

ranked 7 drugs (NVP-BHG712, Nilotinib, GSK2126458, YM201636, TG-02, CX-5461, and

AP-24534) as the most probable repurposable candidate drugs for BC patients based on their

strong binding affinity scores (less than -7.0 kcal/mol) with all the target proteins (see Fig 6A

and 6B). Then we investigated the resistance performance of both the proposed and already

published candidate drugs against the state-of-the-art alternatives top-ranked 13 independent

receptors suggested by others for BC and observed that our proposed candidate drugs are

more effective compared to the already published drugs against the independent receptors also

(see Fig 6C). We also validated our proposed drugs in favor of BC by the literature review (see

Fig 8B).

Among the identified candidate drugs NVP-BHG712 had the knack to inhibit EphB4 kinase

activity and EphA2 with an IC50 of 3 nM in HEK293 T cells. Besides, NVP-BHG712 had a good

binding score for other Eph targets as well, with IC50s ranging from 0.3 nM to 303 nM for

EphA3 and EphA1 respectively. Overall the isomers had a low binding score with IC50 ranging

from 163 to 1660 nM for EphA2 and EphB4, respectively, which revealed that small changes

could be made a significant effect on Eph target binding [84]. NVP-BHG712 had the ability to

inhibit VEGFR2 as well, but the compound has a 200 times higher binding score for EphB4 [85].

Preclinical studies showed that nilotinib had a growth inhibitory effect on LTED (long-term

estrogen deprived) MCF-7 BC cells via ER [86]. Also the nilotinib and sorafenib were considered

as potential new treatment options for tamoxifen-resistant BC [87]. GSK2126458 had been con-

sidered as potential therapies for BC and were highly selective and effective small compounds

inhibitors that receptor both multiple class I PI3K isoforms and mTOR kinase activity [88, 89].

YM201636 was exposed with validate through vivo analysis that YM201636 have an inhibitory

effect on tumour cell growth without any side effects for both liver cancer and non-small cell

lung cancer [90, 91]. TG-02 (Zotiraciclib) is used as enzyme inhibitor of CDKs to treat cancer dis-

ease and also approved as an orphan drug by FDA to treat glioma disease [92, 93]. AP-24534

(Ponatinib) was proposed as an inhibitor of multi-target drugs to treat chronic myeloid leukemia

disease and approved by the FDA in December 2012 as a candidate drug [94, 95]. CX-5461 is an

inhibited drug for colorectal cancer (CRC) development in Znf545Δ/ΔApcMin/+ mice [96].

Among the proposed seven candidate drugs, Nilotinib and AP-25534 are approved by the FDA

in 2007 and 2012 respectively, TG-02 and GSK2126458 are investigational drugs and three other

drugs (NVP-BHG712, YM201636 and CX-5461) are not yet approved. The unapproved drugs

should be further assessed in molecular level by the wet-lab experiments in prior to clinical inves-

tigation in the treatment of BC.

Conclusion

The main purpose of this study was to identify potential KGs highlighting their function, path-

ways, and regulatory factors for breast cancer (BC) diagnosis, prognosis and therapies by using
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the integrated bioinformatics and statistical approaches. We identified BC causing 13 DEGs

(AKR1C1, IRF9, OAS1, OAS3, SLCO2A1, NT5E, NQO1, ANGPT1, FN1, ATF6B, HPGD,

BCL11A, and TP53INP1) as the KGs by using the five topological measures in the PPI net-

working results. Their association with BC was also reported by several other studies directly

or indirectly that we mentioned in the discussion section. We detected four TFs proteins

(FOXC1, FOXL1, JUN, and GATA2) and four microRNAs (hsa-miR-27a-5p, hsa-miR-124-3p,

hsa-miR-1-3p, and hsa-miR-210-3p) as the key transcriptional and post-transcriptional regula-

tors of KGs. These regulatory factors play the vital role for the regulation of KGs. The GO

terms (BPs, MFs and CCs) and KEGG pathway enrichment analysis revealed some vital GO

terms from each of BPs, MFs and CCs that are significantly enriched by DEGs including KGs.

The enriched GO terms and KEGG pathways were considered as the key pathogenetic pro-

cesses of BC progression. These findings were also supported by the literature review directly

or indirectly. We investigated the prognostic performance of KGs by using multivariate sur-

vival analysis including unsupervised hierarchical clustering and supervised classification. In

each case, we observed the strong prognostic performance of the proposed KGs. Then we con-

sidered the proposed 13 key proteins and their regulatory 4 TFs-proteins as the drug target

receptors to explore effective drugs for BC by molecular docking simulation with the 129

meta-drug agents. We detected 7 small molecules (NVP-BHG712, Nilotinib, GSK2126458,

YM201636, TG-02, CX-5461, and AP-24534) as the top ranked candidate drugs for the treat-

ment against BC. Then we investigated the resistance performance of both the proposed and

already published candidate drugs against the state-of-the-art alternatives already published

top-ranked 13 independent receptors for BC and observed that our proposed candidate drugs

are computationally more effective against the independent receptors also. Therefore, the pro-

posed candidate drugs might be played the vital role for the treatment against BC.

Supporting information

S1 File. Supplementary information on datasets.

(DOCX)

S2 File. Supplementary results.

(PDF)

Acknowledgments

We are grateful to the editor and reviewers for their valuable comments that help us to

improve the quality of the manuscript. We are also grateful and thankful to the authors whose

articles help us to write this paper.

Author Contributions

Conceptualization: Md. Shahin Alam, Md. Nurul Haque Mollah.

Data curation: Md. Shahin Alam, Adiba Sultana.

Formal analysis: Md. Shahin Alam, Adiba Sultana, Md. Selim Reza.

Investigation: Md. Shahin Alam, Adiba Sultana.

Methodology: Md. Shahin Alam, Adiba Sultana, Md. Selim Reza, Md. Nurul Haque Mollah.

Project administration: Md. Nurul Haque Mollah.

Supervision: Md. Nurul Haque Mollah.

PLOS ONE Exploring molecular biomarkers for breast cancer diagnosis, prognosis and therapies

PLOS ONE | https://doi.org/10.1371/journal.pone.0268967 May 26, 2022 17 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268967.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268967.s002
https://doi.org/10.1371/journal.pone.0268967


Validation: Md. Shahin Alam, Adiba Sultana.

Visualization: Md. Shahin Alam, Adiba Sultana.

Writing – original draft: Md. Shahin Alam, Adiba Sultana, Md. Selim Reza.

Writing – review & editing: Md. Shahin Alam, Md Amanullah, Syed Rashel Kabir, Md. Nurul

Haque Mollah.

References
1. Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, et al. Global patterns of breast cancer incidence and

mortality: A population-based cancer registry data analysis from 2000 to 2020. Cancer Commun

(Lond). 2021; 41(11):1183–94. https://doi.org/10.1002/cac2.12207 PMID: 34399040.

2. Koo MM, von Wagner C, Abel GA, McPhail S, Rubin GP, Lyratzopoulos G. Typical and atypical present-

ing symptoms of breast cancer and their associations with diagnostic intervals: Evidence from a national

audit of cancer diagnosis. Cancer Epidemiol. 2017; 48:140–6. https://doi.org/10.1016/j.canep.2017.04.

010 PMID: 28549339.

3. Cancer.Net. Breast Cancer: Statistics 2021. Available from: https://www.cancer.net/cancer-types/

breast-cancer/statistics.

4. Dong H, Zhang S, Wei Y, Liu C, Wang N, Zhang P, et al. Bioinformatic analysis of differential expression

and core GENEs in breast cancer. Int J Clin Exp Pathol. 2018; 11(3):1146–56 PMID: 31938209.

5. Mosharaf MP, Reza MS, Kibria MK, Ahmed FF, Kabir MH, Hasan S, et al. Computational identification

of host genomic biomarkers highlighting their functions, pathways and regulators that influence SARS-

CoV-2 infections and drug repurposing. Sci Rep. 2022; 12(1):4279. https://doi.org/10.1038/s41598-

022-08073-8 PMID: 35277538.

6. Islam T, Rahman R, Gov E, Turanli B, Gulfidan G, Haque A, et al. Drug Targeting and Biomarkers in

Head and Neck Cancers: Insights from Systems Biology Analyses. OMICS. 2018; 22(6):422–36.

https://doi.org/10.1089/omi.2018.0048 PMID: 29927717.

7. Reza MS, Harun-Or-Roshid M, Islam MA, Hossen MA, Hossain MT, Feng S, et al. Bioinformatics

Screening of Potential Biomarkers from mRNA Expression Profiles to Discover Drug Targets and

Agents for Cervical Cancer. Int J Mol Sci. 2022; 23(7). https://doi.org/10.3390/ijms23073968 PMID:

35409328

8. Ahmed FF, Reza MS, Sarker MS, Islam MS, Mosharaf MP, Hasan S, et al. Identification of host tran-

scriptome-guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2

infections by using the integrated bioinformatics approaches. PLoS One. 2022; 17(4):e0266124.

https://doi.org/10.1371/journal.pone.0266124 PMID: 35390032.

9. Amjad E, Asnaashari S, Sokouti B, Dastmalchi S. Systems biology comprehensive analysis on breast

cancer for identification of key gene modules and genes associated with TNM-based clinical stages. Sci

Rep. 2020; 10(1):10816. https://doi.org/10.1038/s41598-020-67643-w PMID: 32616754.

10. Li MX, Jin LT, Wang TJ, Feng YJ, Pan CP, Zhao DM, et al. Identification of potential core genes in triple

negative breast cancer using bioinformatics analysis. Onco Targets Ther. 2018; 11:4105–12. https://

doi.org/10.2147/OTT.S166567 PMID: 30140156.

11. Jin H, Huang X, Shao K, Li G, Wang J, Yang H, et al. Integrated bioinformatics analysis to identify 15

hub genes in breast cancer. Oncol Lett. 2019; 18(2):1023–34. https://doi.org/10.3892/ol.2019.10411

PMID: 31423162.

12. Liu S, Liu X, Wu J, Zhou W, Ni M, Meng Z, et al. Identification of candidate biomarkers correlated with

the pathogenesis and prognosis of breast cancer via integrated bioinformatics analysis. Medicine (Balti-

more). 2020; 99(49):e23153. https://doi.org/10.1097/MD.0000000000023153 PMID: 33285689.

13. Wei LM, Li XY, Wang ZM, Wang YK, Yao G, Fan JH, et al. Identification of hub genes in triple-negative

breast cancer by integrated bioinformatics analysis. Gland Surg. 2021; 10(2):799–806. https://doi.org/

10.21037/gs-21-17 PMID: 33708561.

14. Hong Z, Wang Q, Hong C, Liu M, Qiu P, Lin R, et al. Identification of Seven Cell Cycle-Related Genes

with Unfavorable Prognosis and Construction of their TF-miRNA-mRNA regulatory network in Breast

Cancer. J Cancer. 2021; 12(3):740–53. https://doi.org/10.7150/jca.48245 PMID: 33403032.

15. Yuan Q, Zheng L, Liao Y, Wu G. Overexpression of CCNE1 confers a poorer prognosis in triple-nega-

tive breast cancer identified by bioinformatic analysis. World J Surg Oncol. 2021; 19(1):86. https://doi.

org/10.1186/s12957-021-02200-x PMID: 33757543.

PLOS ONE Exploring molecular biomarkers for breast cancer diagnosis, prognosis and therapies

PLOS ONE | https://doi.org/10.1371/journal.pone.0268967 May 26, 2022 18 / 23

https://doi.org/10.1002/cac2.12207
http://www.ncbi.nlm.nih.gov/pubmed/34399040
https://doi.org/10.1016/j.canep.2017.04.010
https://doi.org/10.1016/j.canep.2017.04.010
http://www.ncbi.nlm.nih.gov/pubmed/28549339
https://www.cancer.net/cancer-types/breast-cancer/statistics
https://www.cancer.net/cancer-types/breast-cancer/statistics
http://www.ncbi.nlm.nih.gov/pubmed/31938209
https://doi.org/10.1038/s41598-022-08073-8
https://doi.org/10.1038/s41598-022-08073-8
http://www.ncbi.nlm.nih.gov/pubmed/35277538
https://doi.org/10.1089/omi.2018.0048
http://www.ncbi.nlm.nih.gov/pubmed/29927717
https://doi.org/10.3390/ijms23073968
http://www.ncbi.nlm.nih.gov/pubmed/35409328
https://doi.org/10.1371/journal.pone.0266124
http://www.ncbi.nlm.nih.gov/pubmed/35390032
https://doi.org/10.1038/s41598-020-67643-w
http://www.ncbi.nlm.nih.gov/pubmed/32616754
https://doi.org/10.2147/OTT.S166567
https://doi.org/10.2147/OTT.S166567
http://www.ncbi.nlm.nih.gov/pubmed/30140156
https://doi.org/10.3892/ol.2019.10411
http://www.ncbi.nlm.nih.gov/pubmed/31423162
https://doi.org/10.1097/MD.0000000000023153
http://www.ncbi.nlm.nih.gov/pubmed/33285689
https://doi.org/10.21037/gs-21-17
https://doi.org/10.21037/gs-21-17
http://www.ncbi.nlm.nih.gov/pubmed/33708561
https://doi.org/10.7150/jca.48245
http://www.ncbi.nlm.nih.gov/pubmed/33403032
https://doi.org/10.1186/s12957-021-02200-x
https://doi.org/10.1186/s12957-021-02200-x
http://www.ncbi.nlm.nih.gov/pubmed/33757543
https://doi.org/10.1371/journal.pone.0268967


16. Li Y, Zhou X, Liu J, Yin Y, Yuan X, Yang R, et al. Differentially expressed genes and key molecules of

BRCA1/2-mutant breast cancer: evidence from bioinformatics analyses. PeerJ. 2020; 8:e8403. https://

doi.org/10.7717/peerj.8403 PMID: 31998560.

17. Alam MS, Rahaman MM, Sultana A, Wang G, Mollah MNH. Statistics and network-based approaches

to identify molecular mechanisms that drive the progression of breast cancer. Comput Biol Med. 2022;

145:105508. https://doi.org/10.1016/j.compbiomed.2022.105508 PMID: 35447458.

18. Hao M, Liu W, Ding C, Peng X, Zhang Y, Chen H, et al. Identification of hub genes and small molecule

therapeutic drugs related to breast cancer with comprehensive bioinformatics analysis. PeerJ. 2020; 8:

e9946. https://doi.org/10.7717/peerj.9946 PMID: 33083112.

19. Peng Z, Xu B, Jin F. Circular RNA hsa_circ_0000376 Participates in Tumorigenesis of Breast Cancer

by Targeting miR-1285-3p. Technol Cancer Res Treat. 2020; 19:1533033820928471. https://doi.org/

10.1177/1533033820928471 PMID: 32462972.

20. Martin NH, Silke S, Rui NP, Karl S, Carolin S, René D, et al. CapG a putative oncogen affects gene
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