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Abstract: High-dimensional signals, such as image signals and audio signals, usually have a sparse
or low-dimensional manifold structure, which can be projected into a low-dimensional subspace
to improve the efficiency and effectiveness of data processing. In this paper, we propose a linear
dimensionality reduction method—minimum eigenvector collaborative representation discriminant
projection—to address high-dimensional feature extraction problems. On the one hand, unlike
the existing collaborative representation method, we use the eigenvector corresponding to the
smallest non-zero eigenvalue of the sample covariance matrix to reduce the error of collaborative
representation. On the other hand, we maintain the collaborative representation relationship
of samples in the projection subspace to enhance the discriminability of the extracted features.
Also, the between-class scatter of the reconstructed samples is used to improve the robustness of the
projection space. The experimental results on the COIL-20 image object database, ORL, and FERET
face databases, as well as Isolet database demonstrate the effectiveness of the proposed method,
especially in low dimensions and small training sample size.

Keywords: collaborative representation; discriminant projection; feature extraction; linear
dimensionality reduction; subspace projection

1. Introduction

High-dimensional data widely exists in real applications, such as image recognition, information
retrieval, etc. Particularly, in actual data processing problems, one often encounters the so-called
high-dimensiona l small sample size (SSS) problem, in which the number of available samples is
smaller than the dimensionality of the sample feature. Besides, high-dimensional data contains a
lot of redundant information, and directly processing high-dimensional data will consume a lot of
storage and computing resources. Fortunately, some previous research work [1–3] has shown that
high-dimensional data is likely lying on or close to a low-dimensional submanifold space, which means
that high-dimensional data can be projected into a low-dimensional subspace by some dimensionality
reduction (DR) methods without losing important information. In the past few decades, numerous DR
theories and methods have been proposed, and part of the work can be found in [4–8].

Principal component analysis (PCA) [4] and linear discriminant analysis (LDA) [5] are the most
classic and popular DR methods, and PCA belongs to an unsupervised method while LDA is a
supervised method. Despite their simplicity and effectiveness, they still suffer from some limitations
in practice. For example, PCA is an unsupervised DR method and fails to provide discrimination
information for different classes of data. LDA can find at most C − 1 meaningful discriminant
projection directions because theoretical analysis shows that the rank of the between-class scatter
matrix is at most C − 1, where C represents the number of classes. More importantly, they do not
use the structural information of the samples, which greatly reduces the discriminativeness of the
extracted features, especially when dealing with SSS problems. Most of the DR methods proposed
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afterward are based on these two methods or their extended version but consider the structure of the
samples. Some DR methods which focus on the local structure of the data have been developed to
improve the discrimination performance of the low-dimensional space. A partial list of these methods
includes the unsupervised ones such as locality preserving projections (LPP) [9], neighborhood
preserving embedding (NPE) [10], and locally linear embedding (LLE) [1], and the supervised ones
like marginal Fisher analysis (MFA) [11] and constrained discriminant neighborhood embedding
(CDEN) [12]. Several other DR methods that utilize both the local and global structure of the data
to improve recognition accuracy have been proposed, such as local Fisher discriminant analysis
(LFDA) [13], locally linear discriminant embedding (LLDE) [14], and locality preserving discriminant
projections (LPDP) [15].

Recently, some representation-based methods have been used for classification, including sparse
representation classification (SRC) [16], sparsity preserving projections (SPP) [17], discriminant sparse
neighborhood preserving embedding (DSNPE) [18], and discriminative sparsity preserving projections
(DSPP) [19]. However, solving a sparse problem requires an iterative method, which is usually
time-consuming. Another type of representation-based DR method, which uses L2 regularization and
has a closed solution, has attracted wide attention. It has been proved in [20] that the collaborative
representation classification (CRC), with higher efficiency, is competitive to SRC in terms of recognition
accuracy. Since then, some collaborative representation based have been proposed, such as collaborative
representation based projections (CRP) [21], regularized least square-based discriminative projections
(RLSDP) [22], a collaborative representation reconstruction based projections (CRRP) [23], collaborative
representation based discriminant neighborhood projections (CRDNP) [24] and collaborative preserving
Fisher discriminant analysis (CPFDA) [25].

Except for the linear dimensionality reduction methods introduced above, a class of nonlinear
dimensionality reduction methods has been proposed to deal with nonlinear dimensionality reduction
problems. Most of the nonlinear DR methods directly use kernel trick to expand linear DR method,
likes kernel PCA (KPCA) [26], kernel Fisher discriminant (KFD) [27], kernel direct discriminant analysis
(KDDA) [28], and kernel collaborative representation-based projection (KCRP) [29]. Some other recent
DR methods can be found in [30–32].

In this article, we study linear DR methods. Although some of the proposed methods make
use of both the local structure and the global structure of the sample to extract features, when the
reconstruction error of the sample is large, it is difficult for them to maintain the true structural similarity
of the sample. In addition, most of the previous dimensionality reduction methods only consider
the structural similarity of similar samples when looking for the projection subspace, while ignoring
the structural similarity of different types of samples, which could also be used to improve the
discriminability of the extracted features.

In order to extract the features with a strong discriminant, a minimum eigenvector collaborative
representation discriminant projection (MECRDP) is proposed in this paper. The main contributions
of our work are as follows. First, in the collaborative representation of samples, we not only use the
information of the sample space but also consider the information of the sample eigenvector space.
Specifically, we use the eigenvector corresponding to the smallest non-zero eigenvalue of the sample
covariance matrix to reduce the collaborative representation error of each sample. Then, we maintain
the collaborative representation relationship of the samples to improve the discriminability of the
extracted features. Also, the between-class scatter of the reconstructed samples is used to improve
the robustness of the projection subspace. Last, experimental results on four public databases show
that MECRDP outperforms other DR methods in terms of recognition accuracy, especially in low
dimensions and small training sample size.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the research
work closely related to our method, including LDA and CRP. Section 3, we propose a minimum
eigenvector collaborative representation discriminant projection to improve the discriminability of
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the projection subspace. The experimental results are presented in Section 4. Finally, the conclusion
remarks are given in Section 5.

2. Related Works

For simplicity, suppose a training samples set of C classes is denoted by X = [x1, x2, . . . , xn] ∈ <m×n,
where xi ∈ <

m represents the ith sample, m is the dimension of the sample feature, and n is the number
of samples. Besides, suppose the cth class contains nc samples, and

∑C
c=1 nc = n. The method we

proposed in this paper has a great relationship with LDA and CRP. In what follows, we briefly review
these two methods.

2.1. Linear Discriminant Analysis

The goal of LDA [5] is seeking a projection matrix so that the within-class scatter is minimized,
and the between-class scatter is maximized simultaneously. According to the graph embedding [13],
the projection matrix of LDA corresponds to the following two optimization problems, respectively,

max
P

n∑
i, j

‖PTxi − PTx j‖
2
2W(b)

i, j , (1)

min
P

n∑
i, j

‖PTxi − PTx j‖
2
2W(w)

i, j , (2)

where the weights W(b)
i, j and W(w)

i, j are defined as, respectively,

W(b)
i, j =

{
1/n− 1/nc, if xi and x j belong to the cth class,
1/n, otherwise.

. (3)

W(w)
i, j =

{
1/nc, if xi and x j belong to the same class,
0, otherwise.

, (4)

Using some algebraic transform, we can rewrite (1) and (2) as

max
P

n∑
i, j
‖PTxi − PTx j‖

2
2W(b)

i, j = tr
(
PT

(∑n
i, j=1 (xi − x j)W

(b)
i, j (xi − x j)

T
)
P
)

= tr
(
PT

(∑n
i, j=1

(
xiW

(b)
i, j xT

i − xiW
(b)
i, j xT

j − x jW
(b)
i, j xT

i + x jW
(b)
i, j xT

j

))
P
)

= 2tr
(
PT

(
XD(b)XT

−XW(b)XT
)
P
)

= 2tr
(
PT

(
X
(
D(b)

−W(b)
)
XT

)
P
)

= 2tr
(
PT

(
XL(b)XT

)
P
)

= tr
(
PTSbP

)
(5)

min
P

n∑
i, j
‖PTxi − PTx j‖

2
2W(w)

i, j = tr
(
PT

(∑n
i, j=1 (xi − x j)W

(w)
i, j (xi − x j)

T
)
P
)

= tr
(
PT

(∑n
i, j=1

(
xiW

(w)
i, j xT

i − xiW
(w)
i, j xT

j − x jW
(w)
i, j xT

i + x jW
(w)
i, j xT

j

))
P
)

= 2tr
(
PT

(
XD(w)XT

−XW(w)XT
)
P
)

= 2tr
(
PT

(
X
(
D(w)

−W(w)
)
XT

)
P
)

= 2tr
(
PT

(
XL(w)XT

)
P
)

= tr
(
PTSwP

)
(6)
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where tr(·) denotes matrix trace, Sb = 2XL(b)XT and Sw = 2XL(w)XT are the between-class scatter
matrix, and the within-class scatter matrix, respectively. L(b) = D(b)

−W(b) and L(w) = D(w)
−W(w)

are the Laplacian matrices, in which D(b) and D(w) are diagonal matrices with their diagonal entries
are D(b)

i,i =
∑n

j=1 W(b)
i, j and D(w)

i,i =
∑n

j=1 W(w)
i, j , respectively.

Using (5) and (6), the objective function of LDA can be modeled as

max
P

tr
(
PTSbP

)
tr
(
PTSwP

) , (7)

2.2. Collaborative Representation Based Projections

CRP [21] is an unsupervised discriminant projection method based on L2 regularized least squares.
The collaborative representation coefficients of the ith sample is gotten by solving the following
optimization problem

min
ri
‖xi −Xri‖

2
2 + λ‖ri‖

2
2, s.t. eT

i ri = 0, (8)

where ri ∈ <
n is the collaborative representation coefficients of the ith sample, λ > 0 is a regularization

parameter, and ei = [01, . . . , 0i−1, 1, 0i+1, . . . , 0n]
T. The constraint in (1) means the ith sample is

represented on all the samples other than itself. The optimal solution of (1) can be easily achieved by
using the Lagrangian multiplier method as

ri = Q

Xxi −
eT

i QXxi

eT
i Qei

ei

, (9)

where Q = (XTX + λI)
−1

and I ∈ <n×n is a identity matrix.
Using the collaborative representation coefficients, the optimal projection matrix P ∈ <m×d (d < m)

of CRP is obtained by solving the following two optimization problems, simultaneously

min
P

n∑
i=1

‖PTxi −

n∑
j=1

ri, jPTx j‖

2

2

, (10)

max
P

n∑
i=1

‖PTxi − PTx‖
2
2, (11)

where ri, j denotes the jth entry of ri, and x = (1/n)
∑n

i=1 xi is the mean of the samples.
With some algebraic formulations, (10) and (11) can be, respectively, rewritten as

min
P

n∑
i=1
‖PTxi −

n∑
j=1

ri, jPTx j‖
2

2

=
n∑

i=1
‖PTXei − PTXri‖

2
2

= tr
(
PTX

(∑n
i=1 (ei − ri)(ei − ri)

T
)
XTP

)
= tr

(
PTX(I−R)(I−R)TXTP

)
= tr

(
PTSLP

)
(12)

max
P

n∑
i=1
‖PTxi − PTx‖22 = tr

(
PT

(∑n
i (xi − x)(xi − x)T

)
P
)

= tr
(
PTSTP

) (13)

where R = [r1, r2, . . . , rn] is the representation coefficients matrix, SL = (I −R)(I−R)T denotes the
local scatter matrix and ST =

∑n
i (xi − x)(xi − x)T is the total scatter matrix.
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Then, the optimal projection matrix of the CRP is gotten by solving the following
optimization problem

min
P

tr
(
PTSLP

)
tr
(
PTSTP

) (14)

3. Minimum Eigenvector Collaborative Representation Discriminant Projection

LDA uses between-class scatter and within-class scatter to improve the discrimination of extracted
features, but it ignores the structural relationship of the samples, resulting in a decline in the
discrimination of the features in the projection subspace. Although CRP takes into account the
structural relationship of the sample, it does not use the class information of the sample, which is not
conducive to the improvement of recognition accuracy. In particular, when the number of samples is
small, there will be a large representation error, ‖xi −Xri‖

2
2, which fails to maintain the similarity of

the sample structure. Here, we propose a new feature extraction method to alleviate the problems
mentioned above.

3.1. Method Proposed

The sample is represented on all samples other than itself; therefore, this may cause a large
reconstruction error when the number of samples is small. However, any eigenvector corresponding
to a non-zero eigenvalue of the sample covariance matrix contains partial information of each sample.
In order to improve the reconstruction error of the sample, but only use very little information of the
represented sample, we consider constructing an expanded sample matrix X̃ with the eigenvector
corresponding to the smallest non-zero eigenvalue of the sample covariance matrix. Let xv be the
eigenvector corresponding to the smallest non-zero eigenvalue of XXT, then the expanded sample
matrix X̃ is defined as X̃ = [X, xv]. Similar to (8), the collaborative representation coefficients of the ith
sample is achieved by

min
r̃i
‖xi − X̃̃ri‖

2
2 + λ‖̃ri‖

2
2, s.t. ẽT

i r̃i = 0, (15)

where r̃i ∈ <
n+1 is the collaborative representation coefficient and ẽi = [eT

i , 0]T. Let R̃ = [̃r1, r̃2, . . . , r̃n]

be the collaborative representation coefficient matrix.
Then, the sample xi can be reconstructed as

x̂i = X̃̃ri, (16)

and the reconstructed sample matrix is

X̂ = [x̂1, x̂2, . . . , x̂n] = X[r̂1, r̂2, . . . , r̂n] = XR̃ (17)

In order to maintain the reconstruction similarity of the samples and keep within-class compactness,
we modified the optimization problem in (2) as

min
P

n∑
i, j

‖PTxi − PTx̂ j‖
2
2W(w)

i, j , (18)
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Similar to (6), we can simplify (18) as

min
P

n∑
i, j
‖PTxi − PTx̂ j‖

2
2W(w)

i, j = tr

PT

 n∑
i, j

(
xi − x̂ j

)
W(w)

i, j

(
xi − x̂ j

)T
P


= tr

PT

 n∑
i, j

(
xiW

(w)
i, j xT

i − x̂ jW
(w)
i, j xT

i − xiW
(w)
i, j x̂T

j + x̂ jW
(w)
i, j x̂T

j

)P


= tr

(
PT

(
XD(w)XT

− X̂W(w)XT
−XW(w)X̂T

+ X̂D(w)X̂T
)
P
)

= tr
(
PT

_
SwP

)
(19)

where
_
Sw = XD(w)XT

− X̂W(w)XT
− XW(w)X̂T

+ X̂D(w)X̂T is the collaborative within-class scatter
matrix and W(w),D(w) are defined in (4) and (6).

In what follows, we define the collaborative reconstructed between-class scatter matrix as

Ŝb =
n∑
i, j

(
x̂i − x̂ j

)
W(b)

i, j

(
x̂i − x̂ j

)T

=
n∑
i, j

(
x̂iW

(b)
i, j x̂T

i − x̂ jW
(b)
i, j x̂T

i − x̂iW
(b)
i, j x̂T

j + x̂ jW
(b)
i, j x̂T

j

)
= X̂D(b)X̂T

− X̂W(b)X̂T
− X̂W(b)X̂T

+ X̂D(b)X̂T

= 2X̂(D(b)
−W(b))X̂T

= 2X̂L(b)X̂T

(20)

where L(b) has been defined (5).
Based on the Fisher criterion, considering both the between-class scatter matrix Sb and the

collaborative reconstructed between-class scatter matrix Ŝb, the objective function of the proposed
MECRDP is formulated as

min
P

tr
(
PT

_
SwP

)
tr
(
PTS̃bP

) , (21)

where S̃b = αSb + (1 − α)Ŝb and α ∈ [0, 1] is a balance factor between Sb and Ŝb. According to the
definition of Sb, we know that maximizing tr(PTSbP) can improve the discrimination of the projection
matrix P. However, when the dimension of the subspace exceeds a certain size, as the dimension of the
projection subspace increases, the discriminant performance is more affected by noise. Consider that
the collaborative representation between samples could better describe the similarity of samples in the
structure, thereby reducing the impact of the noise, then we can use Ŝb to improve the robustness of
the projection matrix.

The problem (21) is a generalized eigenvalue problem, whose optimal solution could be achieved
by the generalized eigenvalue decomposition as follows

_
Swpi = λiS̃bpi, (22)

where λi and pi are the eigenvalue and corresponding eigenvector, respectively. Then the projection
matrix P is composed of the eigenvectors corresponding to d—the smallest non-zero eigenvalues—that
is P = [p1, p2, . . . , pd].

Using xv, different from CRP, we not only consider the information in the sample space but
also use part of the information in the feature value space, so we can get a smaller representation
error, ‖xi −Xri‖

2
2 and keep more collaborative reconstruction information in the feature projection

space. In addition, CRP uses the local divergence and global divergence of the sample to obtain
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the discriminativeness of the extracted features, and in our method, we use the label information of
the sample to keep the sample in the projection space with a small within-class scatter and larger
between-class scatter, thereby improving the discriminativeness of the extracted features.

3.2. Algorithmic Procedures

For simplicity, we summarize the algorithmic procedures of the proposed MECRDP as follows:

Step 1: Project the original high-dimensional sample into an intermediate subspace to remove noise
and useless information by PCA, and get the projection matrix PV. For simplicity, we still
utilize X to represent the training samples after the projection.

Step 2: Find the eigenvector xv corresponding to the smallest non-zero eigenvalue of XXT, then the
expanded sample matrix is X̃ = [X, xv].

Step 3: Compute the collaborative representation coefficients R̃ by (15) and then reconstruct the
samples matrix X̂ by X̂ = XR̃.

Step 4: Compute the collaborative within-class scatter matrix
_
Sw, the between-class scatter matrix

Sb and the collaborative reconstructed between-class scatter matrix Ŝb by (19), (5) and
(20), respectively.

Step 5: Perform generalized eigenvalue decomposition by
_
Swpi = λiS̃bpi, and use eigenvectors

corresponding to the smallest d eigenvalues to construct the projection matrix
P = [p1, p2, . . . , pd].

Step 6: For any input sample x ∈ <n, its low-dimensional projection is y = PTPT
Vx.

It is obvious that the proposed method has no iterative steps and its optimal projection matrix can
be analytically obtained. Without considering the first step, which is the data preprocessing process
that most linear DR methods need to perform, we simply analyze the computational complexity of our
proposed method. In step 2, it costs about O(m3) to find the eigenvector corresponding to the smallest
non-zero eigenvalue of XXT, step 3 costs about O(mn2 + n3), and step 4 needs about O(mn2 + m2n),
finding the optimal projection matrix in step 5 requires O(n3), with the total computational complexity
being about O(m3 + m2n + mn2 + n3).

4. Experiments

In this section, some experiments are conducted to evaluate the performance of the proposed
MECRDP. We compare the recognition performance of these methods on four public databases,
including an image object database COIL20 [33], and two face databases ORL [34], FERET [35],
and Isolet [36].

4.1. Preprocessing and Parameter Setting

In our experiments, all the images were converted to grayscale images and were resized. In the
following experiments, each sample is stacked into a column vector in column order and is normalized.
Besides, to avoid the singular problem caused by small sample size problems, we reduce the dimension
by remaining 98% data energy by PCA. Each database is randomly divided into a training set and
test set, say randomly selecting s-samples from each class to form a training set, and the remaining
samples are used as a test set. For simplicity, without additional explanation, the nearest neighbor
method is used to classify the test samples. Considering that most methods compared have adjustable
parameters, for the sake of fairness, we look for the satisfactory parameters in a larger range for them.
For example, we find the neighbor parameter for LLDE from 1 to s− 1, with and empirically set the
rescaling coefficient to 1. In MFA, the parameter for the intrinsic graph is empirically set as s− 1 and
the parameter for the penalty graph is chosen from {1C, 3C, 5C, 7C, 9C}.

Particularly, each experiment was independently repeated 20 times to avoid the bias caused
by random selection, and the average results are recorded and reported. All the experiments are
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implemented in MATLAB R2011b installed on a personal computer (Intel Core i5-4590, 3.30 GHz,
8 Gb RAM).

4.2. Experimental Results and Analysis

4.2.1. Experimental on COIL20 Database

The COIL20 [33] is an object recognition database which has 1440 images from 20 objects with
72 images in each object. We resize each image into 32 × 32 and randomly select 4, 6, 8, 10 images
from each class to form the training sample. The parameters λ and α in MECRDP are set to 0.5 and
0.1, respectively.

Table 1 records the maximum average recognition accuracy, the standard derivations,
the corresponding dimension, and the average running time of each method on COIL20. Figure 1
shows the average recognition accuracy versus the subspace dimensions on COIL20. From the results in
Table 1 and Figure 1, we observe that the proposed MECRDP achieves better recognition accuracy than
other methods on COIL20 database. Compared with other methods, the maximum average recognition
accuracy of MECRDP is improved about 3%. Table 1 shows the running time of our method is almost
the same as other methods, which implies the efficiency of our method. In addition, the optimal
recognition result of MECRDP is usually obtained in a lower projection dimension than other methods.
The same result could be verified more intuitively in Figure 1. The result in Figure 1 shows that when
the dimension of the projection subspace is low, MECRDP is significantly better than other methods.
This result means that the features extracted by our method have obvious discriminativeness even in
the low-dimensional space. Table 2 shows the maximum average recognition accuracy with different
dimension by using nearest neighbor classifier. To evaluate the effectiveness of MECRDP further,
we compare it with other dimension reduction methods under another classifier two-layer neural
network; the results are shown in Table 3. Tables 2 and 3 show that the recognition accuracy achieved
by the neural network is not as good as that of the nearest neighbor method, but the proposed method
always achieves the best results. The result of COIL20 verifies the effectiveness of our method for
feature extraction.

Table 1. The maximum average recognition accuracy (%) ± the standard derivations (%),
the corresponding dimension, and the average running time (seconds) in parentheses of each method
in the COIL20 database.

Methods 4-Samples 6-Samples 8-Samples 10-Samples

CRP 81.51 ± 2.08 (16, 0.008) 85.35 ± 2.12 (14, 0.011) 89.90 ± 1.07 (16, 0.017) 91.84 ± 1.39 (17, 0.025)
CRRP 71.70 ± 2.90 (18, 0.007) 77.75 ± 2.59 (18, 0.016) 82.12 ± 2.04 (19, 0.026) 85.47 ± 1.54 (19, 0.042)
LDA 78.36 ± 2.93 (19, 0.008) 84.70 ± 2.28 (22, 0.008) 88.73 ± 1.74 (22, 0.016) 91.30 ± 1.55 (19, 0.017)
LLDE 78.22 ± 3.16 (20, 0.009) 84.27 ± 2.39 (19, 0.015) 88.78 ± 1.73 (19, 0.019) 91.38 ± 1.59 (18, 0.029)
MFA 78.84 ± 2.86 (26, 0.005) 84.65 ± 2.13 (32, 0.010) 88.95 ± 1.80 (21, 0.017) 91.33 ± 1.35 (18, 0.023)

RLSDP 77.25 ± 3.32 (19, 0.005) 82.91 ± 2.50 (18, 0.010) 87.30 ± 1.85 (20, 0.013) 89.83 ± 1.73 (16, 0.020)
PCA 80.84 ± 1.75 (18, 0.004) 85.67 ± 1.68 (14, 0.006) 89.10 ± 1.38 (23, 0.012) 91.14 ± 1.25 (18, 0.016)

MECRDP 84.89 ± 2.26 (11, 0.007) 89.60 ± 2.00 (11, 0.010) 92.79 ± 1.36 (13, 0.018) 94.50 ± 1.07 (13, 0.026)

Table 2. The maximum average recognition accuracy (%) in the COIL20 database with different
dimension by using nearest neighbor classifier.

Dimension 5 10 15 20 25 30 35 40

CRP 84.31 90.13 91.82 91.75 91.52 91.38 91.05 90.72
CRRP 62.02 76.25 82.75 85.29 84.48 84.15 83.83 83.41
LDA 85.83 90.47 90.92 91.27 91.07 90.59 89.80 89.22
LLDE 86.27 90.80 91.14 91.19 90.45 89.65 89.07 88.61
MFA 84.73 90.10 91.13 91.28 91.06 90.96 90.88 90.73

RLSDP 81.14 88.89 89.76 89.77 89.23 89.00 88.38 87.97
PCA 83.90 89.66 90.98 91.02 90.99 90.76 90.61 90.46

MECRDP 90.80 94.40 94.27 93.71 93.42 93.20 93.69 92.20



Sensors 2020, 20, 4778 9 of 19

Table 3. The maximum average recognition accuracy (%) on the COIL20 database with different
dimension by using neural network classifier.

Dimension 5 10 15 20 25 30 35 40

CRP 77.21 87.16 89.63 89.12 88.15 87.48 86.37 86.05
CRRP 60.76 74.60 79.71 80.67 80.57 79.98 79.27 78.78
LDA 84.46 87.19 85.19 83.10 82.73 82.65 81.71 81.84
LLDE 85.48 87.75 85.13 83.51 82.62 82.66 82.57 80.67
MFA 83.62 87.52 86.19 83.40 82.98 82.30 82.00 81.44

RLSDP 79.93 85.79 84.63 81.58 81.85 81.88 81.57 81.02
PCA 77.71 86.70 89.85 89.38 88.25 87.66 86.58 85.83

MECRDP 88.77 91.67 91.36 90.85 89.78 89.14 88.03 87.49
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4.2.2. Experiment on the ORL Database

The ORL [34] is the face database and consists of 400 images from 40 individuals with 10 images
for each individual. These images are varying in lighting, facial expressions, and details. In our
experiments, we cropped and resized each image to 32× 32, and randomly selected 3, 4, 5, 6 images
from each class to form the training set. We set λ and α in MECRDP to 0.05 and 0.9, respectively.

Table 4 reports the maximum average recognition accuracy, the standard derivations,
the corresponding dimension, and the average running time of each method on the ORL database.
Tables 5 and 6 list the average recognition rates obtained by the nearest neighbor classifier and neural
network classifier for each method, respectively. Figure 2 plots the average recognition accuracy versus
the subspace dimensions on ORL. The results show that our method is superior to other methods,
especially when the number of training samples is small; the performance improvement of our method
is more obvious. For example, when the training samples of each class are 3 and 4, the maximum
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average recognition accuracy of MECRDP is improved by about 4.1% and 3.1%, respectively. Besides,
we note that, for each method, the recognition accuracy is increased as the training sample increases,
while that of MECRDP always outperforms other methods. Figure 2 shows that as the projection
dimension increases, the performance of some methods, such as LDA, LLDE, and RLSDP, will decrease
because they can extract some noise information when the projection dimension is large. However,
our method has shown a certain degree of robustness. Comparing Tables 5 and 6, we find that the
recognition accuracy obtained by the nearest neighbor classifier is better than that of the neural network
classifier. What’s more, the proposed MECRDP can achieve the best results in almost all the selected
feature dimensions. The experimental results on the ORL database verify the advantages of the
proposed algorithm.

Table 4. The maximum average recognition accuracy (%) ± the standard derivations (%),
the corresponding dimension, and the average running time (seconds) in parentheses of each method
in the ORL database.

Methods 3-Samples 4-Samples 5-Samples 6-Samples

CRP 79.55 ± 3.12 (42, 0.019) 84.48 ± 2.32 (52, 0.024) 88.08 ± 2.17 (62, 0.044) 90.56 ± 3.06 (72, 0.058)
CRRP 81.02 ± 2.79 (40, 0.023) 87.46 ± 2.25 (40, 0.034) 90.58 ± 1.85 (40, 0.074) 92.75 ± 1.71 (38, 0.085)
LDA 84.20 ± 2.87 (38, 0.013) 88.75 ± 4.18 (42, 0.018) 92.95 ± 1.85 (42, 0.030) 95.25 ± 1.68 (44, 0.035)
LLDE 78.66 ± 3.26 (34, 0.016) 89.23 ± 2.00 (40, 0.025) 92.80 ± 1.57 (40, 0.045) 94.97 ± 1.62 (44, 0.054)
MFA 84.07 ± 3.19 (58, 0.018) 89.50 ± 1.43 (48, 0.027) 92.90 ± 1.55 (42, 0.034) 95.03 ± 1.17 (48, 0.045)

RLSDP 82.86 ± 2.86 (40, 0.012) 88.94 ± 2.34 (40, 0.018) 92.78 ± 1.57 (40, 0.031) 94.62 ± 1.45 (38, 0.038)
PCA 75.07 ± 2.95 (80, 0.008) 81.44 ± 2.63 (74, 0.012) 85.00 ± 2.81 (68, 0.027) 88.22 ± 2.54 (78, 0.024)

MECRDP 87.92 ± 2.26 (38, 0.014) 93.43 ± 1.62 (40, 0.023) 95.28 ± 1.70 (40, 0.037) 96.66 ± 1.42 (38, 0.054)

Table 5. The maximum average recognition accuracy (%) in the ORL database with different dimensions
by using the nearest neighbor classifier.

Dimension 10 20 30 40 50 60 70 80

CRP 81.78 87.53 88.25 88.87 89.19 90.16 90.28 90.25
CRRP 72.16 86.03 90.56 92.69 92.28 92.00 91.97 91.84
LDA 88.41 93.12 93.75 95.03 95.00 94.50 93.84 92.81
LLDE 88.28 93.63 93.84 94.94 94.34 93.97 93.75 93.25
MFA 89.00 93.50 94.06 94.75 94.97 94.81 94.81 94.91

RLSDP 88.34 92.56 93.50 94.41 94.12 94.09 92.81 92.31
PCA 80.91 86.19 87.22 87.69 87.87 88.00 88.19 88.19

MECRDP 94.16 96.25 96.25 96.62 96.59 96.06 96.00 95.91

Table 6. The maximum average recognition accuracy (%) in the ORL database with different dimensions
by using the neural network.

Dimension 10 20 30 40 50 60 70 80

CRP 81.47 88.09 86.72 84.88 83.13 80.56 76.69 75.94
CRRP 71.00 81.28 80.87 78.13 77.53 76.19 72.47 73.56
LDA 85.72 87.53 86.06 78.28 77.69 76.38 75.28 74.69
LLDE 85.97 88.78 84.31 78.09 78.13 77.44 74.94 73.44
MFA 86.97 88.06 84.66 78.97 76.12 73.19 70.88 72.34

RLSDP 85.62 87.38 83.53 79.03 78.31 76.09 74.97 74.31
PCA 80.59 88.44 86.94 84.38 82.12 81.09 79.75 78.22

MECRDP 92.03 90.50 88.39 86.15 84.11 82.28 79.63 78.47
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4.2.3. Experiment on the FERET Database

The FERET [35] is the face database and consists of 13,539 images from 1565 individuals, where we
select a subset containing 1400 images from 200 individuals, with seven images for each individual.
These images are varying in facial expression, illumination, and pose. We cropped and resized each
image to 40× 40, and randomly selected 3, 4, 5 images from each class to form the training set. We set
λ and α in MECRDP to 0.1 and 0.1, respectively.

Table 7 shows the maximum average recognition accuracy, the standard derivations,
the corresponding dimensions, and the average running time of each method on the FERET database.
The average recognition rates obtained by the nearest neighbor classifier and neural network classifier
for each method are shown in Tables 8 and 9, respectively. Figure 3 illustrates the average recognition
accuracy versus the subspace dimensions on FERET. The results in Table 3 and Figure 3 show that the
proposed MECRDP outperforms other methods. It is worth noting that FERET has 200 classes but
only seven samples for each class. On the FERET database, the average recognition accuracy is greatly
improved by MECRDP. For example, the training samples of each class are 3 and 4, the maximum
average recognition accuracy of MECRDP is improved by about 26.2% and 14.1%, respectively. Besides,
Figure 3 shows that when the projection dimension increases, the recognition accuracy of MECRDP
will decrease but it is still higher than other methods. The results in Tables 8 and 9 show that the
nearest neighbor classifier could achieve higher recognition accuracy than the neural network classifier.
Table 8 shows that MECRDP has achieved the highest recognition accuracy in each selected feature
dimension. Table 8 shows that MECRDP has achieved the highest recognition accuracy in each selected
feature dimension, while Table 9 shows that MECRDP performs better than other feature extraction
methods in most cases when the neural network classifiers are used. In general, the experimental
results show that the features extracted by MECRDP are more discriminative in most cases.
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Table 7. The maximum average recognition accuracy (%) ± the standard derivations (%),
the corresponding dimension, and the average running time (seconds) in parentheses of each method
in the FERET database.

Methods 3-Samples 4-Samples 5-Samples

CRP 31.45 ± 1.40 (80, 0.561) 34.99 ± 1.63 (80, 1.189) 37.85 ± 2.67 (80, 2.005)
CRRP 48.08 ± 1.61 (34, 1.362) 64.32 ± 1.69 (32, 2.479) 72.91 ± 1.31 (24, 3.924)
LDA 52.03 ± 1.82 (34, 0.443) 68.64 ± 1.92 (32, 0.809) 77.30 ± 1.82 (26, 1.314)
LLDE 52.32 ± 1.86 (34, 0.551) 68.89 ± 1.61 (26, 1.029) 77.84 ± 1.89 (24, 1.630)
MFA 52.28 ± 2.04 (36, 0.454) 68.95 ± 1.99 (22, 0.864) 78.19 ± 1.57 (24, 1.387)

RLSDP 48.57 ± 1.71 (36, 0.480) 66.35 ± 1.54 (26, 0.873) 76.01 ± 1.27 (24, 1.374)
PCA 26.52 ± 0.99 (80, 0.245) 30.15 ± 1.11 (80, 0.460) 34.45 ± 2.03 (80, 0.806)

MECRDP 78.13 ± 1.71 (18, 0.563) 83.66 ± 1.12 (20, 1.038) 87.00 ± 1.26 (24, 1.727)

Table 8. The maximum average recognition accuracy (%) in the FERET database with different
dimensions by using the nearest neighbor classifier.

Dimension 10 20 30 40 50 60 70 80

CRP 23.18 28.36 30.01 32.56 34.40 35.70 36.99 37.85
CRRP 66.75 74.49 72.58 71.66 70.66 69.55 68.65 67.42
LDA 70.65 76.89 76.99 76.05 75.10 73.93 72.85 71.42
LLDE 71.09 77.57 77.80 76.56 75.36 74.69 73.50 72.55
MFA 71.10 77.71 77.74 77.05 75.44 74.13 73.14 71.73

RLSDP 69.68 75.43 75.53 74.51 73.30 72.14 71.39 70.28
PCA 25.35 29.21 30.16 32.56 33.39 33.76 34.21 34.45

MECRDP 80.55 86.89 86.11 84.55 82.42 79.81 77.56 75.65

Table 9. The maximum average recognition accuracy (%) in the FERET database with different
dimensions by using the neural network.

Dimension 10 20 30 40 50 60 70 80

CRP 17.06 35.78 42.63 46.09 47.26 45.73 43.16 41.14
CRRP 51.83 58.00 52.88 47.17 42.04 37.91 34.28 31.39
LDA 55.03 61.86 56.45 50.16 45.00 40.05 36.50 33.14
LLDE 54.88 61.86 56.11 50.15 45.22 40.37 35.74 32.75
MFA 56.83 63.69 57.98 51.37 45.81 40.21 35.33 32.76

RLSDP 53.85 59.84 54.48 48.88 43.14 39.68 35.45 32.90
PCA 17.65 35.99 44.18 47.09 47.51 46.80 45.05 43.19

MECRDP 68.91 78.88 72.30 65.06 57.85 50.26 44.90 42.92
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Figure 3. The average recognition accuracy vs. the subspace dimensions of each method in the 
FERET database. 

4.2.4. Experiment on the Isolet Database 

The Isolet database [36] was generated as follows. One hundred fifty subjects spoke the name 
of each letter of the alphabet twice. Hence, there were 52 training examples from each speaker and 
the size of each sample was 617 × 1. The speakers were grouped into sets of 30 speakers each, and 
were referred to as isolet1, isolet2, isolet3, isolet4, and isolet5. In our experiment, we compared the 
performance of each feature extraction method in Isolet1. We set λ and α in MECRDP to 1 and 0.1, 
respectively. 

Table 10 shows the maximum average recognition accuracy, the standard derivations, the 
corresponding dimensions, and the average running time of each method on the Isolet1 database. 
Tables 11 and 12 report the average recognition rates obtained by the nearest neighbor classifier and 
neural network classifier for each method, respectively. Figure 4 illustrates the average recognition 
accuracy versus the subspace dimensions in Isolet1. The results in Table 10 show that under 
different numbers of training samples, the best results are always obtained by MECRDP. Figure 4 
shows that as the number of training samples increases, the recognition accuracy of all the feature 
extraction algorithms is improved. Although the advantages of the proposed MECRDP over other 
methods will gradually decrease, it can maintain a high recognition accuracy. For example, when 
the number of training samples for each class is five, the recognition accuracy of MECRDP is 
improved by at least 3.4% compared to other methods. When the number of training samples for 
each class is increased to 20, the performance of our method is improved by only 1.2%, and its best 
recognition accuracy is 94.05%. Tables 11 and 12 show that MECRDP performs better than other 
feature extraction methods in most cases. Based on the above experimental results, we believe that 
the proposed MECRDP is an effective feature extraction method. 

Figure 3. Cont.
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4.2.4. Experiment on the Isolet Database

The Isolet database [36] was generated as follows. One hundred fifty subjects spoke the name of
each letter of the alphabet twice. Hence, there were 52 training examples from each speaker and the size
of each sample was 617 × 1. The speakers were grouped into sets of 30 speakers each, and were referred
to as isolet1, isolet2, isolet3, isolet4, and isolet5. In our experiment, we compared the performance of
each feature extraction method in Isolet1. We set λ and α in MECRDP to 1 and 0.1, respectively.

Table 10 shows the maximum average recognition accuracy, the standard derivations,
the corresponding dimensions, and the average running time of each method on the Isolet1 database.
Tables 11 and 12 report the average recognition rates obtained by the nearest neighbor classifier and
neural network classifier for each method, respectively. Figure 4 illustrates the average recognition
accuracy versus the subspace dimensions in Isolet1. The results in Table 10 show that under different
numbers of training samples, the best results are always obtained by MECRDP. Figure 4 shows that
as the number of training samples increases, the recognition accuracy of all the feature extraction
algorithms is improved. Although the advantages of the proposed MECRDP over other methods will
gradually decrease, it can maintain a high recognition accuracy. For example, when the number of
training samples for each class is five, the recognition accuracy of MECRDP is improved by at least
3.4% compared to other methods. When the number of training samples for each class is increased
to 20, the performance of our method is improved by only 1.2%, and its best recognition accuracy is
94.05%. Tables 11 and 12 show that MECRDP performs better than other feature extraction methods in
most cases. Based on the above experimental results, we believe that the proposed MECRDP is an
effective feature extraction method.

Table 10. The maximum average recognition accuracy (%) ± the standard derivations (%),
the corresponding dimensions, and the average running time (seconds) in parentheses of each
method in the Isolet1 database.

Methods 5-Samples 10-Samples 15-Samples 20-Samples

CRP 71.59 ± 1.24 (35, 0.015) 76.11 ± 1.39 (39, 0.054) 78.80 ± 0.78 (40, 0.125) 80.72 ± 1.01 (40, 0.209)
CRRP 70.47 ± 2.25 (24, 0.025) 79.59 ± 1.21 (24, 0.073) 83.79 ± 1.17 (25, 0.223) 86.25 ± 1.10 (24, 0.412)
LDA 82.59 ± 1.87 (25, 0.012) 89.12 ± 1.08 (25, 0.030) 91.55 ± 0.76 (25, 0.064) 92.80 ± 0.68 (24, 0.118)
LLDE 82.48 ± 1.89 (26, 0.016) 88.89 ± 0.94 (26, 0.055) 91.65 ± 0.75 (26, 0.118) 92.86 ± 0.59 (26, 0.217)
MFA 82.94 ± 1.72 (29, 0.013) 88.93 ± 0.98 (25, 0.043) 91.59 ± 0.87 (25, 0.099) 92.71 ± 0.82 (24, 0.169)

RLSDP 82.31 ± 1.72 (25, 0.011) 88.71 ± 0.97 (26, 0.034) 91.42 ± 0.53 (25, 0.077) 92.80 ± 0.67 (25, 0.144)
PCA 71.29 ± 1.57 (40, 0.007) 75.86 ± 1.45 (40, 0.022) 79.09 ± 0.87 (39, 0.049) 80.91 ± 1.13 (40, 0.089)

MECRDP 86.40 ± 1.61 (25, 0.013) 91.36 ± 1.05 (26, 0.046) 93.23 ± 0.77 (25, 0.103) 94.05 ± 0.68 (25, 0.199)
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Table 11. The maximum average recognition accuracy (%) in the Isolet1 database with different
dimensions by using the nearest neighbor classifier.

Dimension 5 10 15 20 25 30 35 40

CRP 59.25 67.74 73.92 76.97 79.15 80.00 80.34 80.72
CRRP 48.04 66.51 75.96 83.81 86.23 86.02 85.75 85.59
LDA 75.03 84.04 89.88 91.83 92.79 92.73 92.64 92.36
LLDE 73.01 82.88 89.40 91.58 92.83 91.69 90.58 89.92
MFA 72.20 85.12 90.28 92.03 92.68 92.37 92.24 92.33

RLSDP 75.94 84.21 89.91 91.75 92.80 92.37 92.14 91.63
PCA 58.51 67.83 74.08 77.25 79.32 80.04 80.23 80.91

MECRDP 74.72 86.62 91.82 93.26 94.05 93.82 93.73 93.57

Table 12. The maximum average recognition accuracy (%) in the Isolet1 database with different
dimensions by using the neural network classifier.

Dimension 5 10 15 20 25 30 35 40

CRP 63.29 74.57 83.81 85.74 87.16 87.41 87.55 87.13
CRRP 50.40 66.66 75.35 80.59 81.92 81.40 80.44 79.51
LDA 73.79 81.86 85.65 86.40 85.50 84.89 84.07 83.75
LLDE 70.66 80.75 85.86 86.70 86.14 85.39 85.08 84.30
MFA 71.56 82.97 86.58 87.63 86.38 84.95 84.04 83.00

RLSDP 74.24 81.78 85.86 86.29 85.90 85.10 84.17 83.53
PCA 63.65 75.17 84.34 86.29 87.08 87.81 87.75 87.83

MECRDP 73.49 85.08 89.17 88.94 89.54 89.19 89.23 89.06
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4.2.5. Parameter Sensitivity Analysis

Here we analyze the influence of parameters on the proposed algorithm through experiments on
the four databases.

Figures 5 and 6 plot the maximum average recognition accuracy of MECRDP versus the parameter
λ and α for the four samples of each database, respectively. Figures 4 and 5 show that the parameter
selection of MECRDP has a great relationship with the sample database. Within a certain range,
such as λ ∈ [0, 1], there is a little change in the recognition accuracy of the four databases. While α has
a greater impact on the recognition accuracy for COIL20, ORL, and FERET, particularly for Isolet1,
the recognition accuracy of MECRDP was robust for parameter α.
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four databases.

4.2.6. Visualization

In order to compare the distribution of extracted features in low-dimensional space more intuitively,
we randomly selected six classes of samples from the ORL database and then projected them into
two-dimensional space. Figure 7 shows the projection results of all methods in two dimensions.
The results show that most methods have good clustering results except CRP and PCA, which are
unsupervised feature extraction methods. This shows that the label information helps to improve
the discriminative feature extraction. However, in some classes (class 1 and class 6), some methods,
such as CRRP, LDA, MFA, and RLSDP, have not achieved a large between-class distance. Figure 7
shows that the features extracted by MECRDP not only have a small within-class compactness, but also
have a larger between-class distance.
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Figure 7. The visualization of six individuals in the ORL database. (a) CRP, (b) CRRP, (c) LDA,
(d) LLDE, (e) MFA, (f) RLSDP, (g) PCA, (h) MECRDP.
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In a word, these experimental results imply that using the minimum eigenvector to reduce the
sample reconstruction error, and maintaining the collaborative representation relationship between the
samples helps to improve the discriminability of the extracted features, especially when the number of
training samples is small.

5. Conclusions

A new linear dimensionality reduction method based on minimum eigenvector collaborative
representation discriminant projection has been proposed for feature extraction in this paper, which can
be viewed as an extended collaborative representation projection method. This method employs the
eigenvector corresponding to the smallest non-zero eigenvalue of the sample covariance matrix to
reduce the collaborative representation error. Meanwhile, the collaborative representation relationship
of the samples is maintained in the projection subspace. In addition, the between-class scatter of the
reconstructed samples is used to improve the robustness of the projection subspace. The experimental
results on four public databases demonstrated the superiority of the proposed method in terms of
recognition accuracy as compared with other commonly used linear DR methods. What’s more,
the experiments show that the proposed method is especially suitable for dealing with small sample
size problems, and it can also work well when the number of training samples is large. Thus, we believe
that MECRDP is a general algorithm for feature extraction.

Note that the proposed MECRDP is a parameterized method, and its performance will inevitably
be affected by the choice of the parameters, which also happens to other parameterized methods such as
CRP, MFA, and RLSDP. In addition, sometimes, as the feature dimension increases, the performance of
the algorithm will decrease. How to utilize other information of the sample, such as spatial distribution
information, local structure information, and high-order statistical information to further improve the
performance and robustness of the algorithm, is also an interesting direction for future study.
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