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Purpose: To investigate whether a correction based on a Humphrey field analyzer (HFA)
24-2/30-2 visual field (VF) can improve the prediction performance of a deep learn-
ing model to predict the HFA 10-2 VF test frommacular optical coherence tomography
(OCT) measurements.

Methods: This is a multicenter, cross-sectional study. The training dataset comprised
493 eyes of 285 subjects (407, open-angle glaucoma [OAG]; 86, normative) who under-
went HFA 10-2 testing and macular OCT. The independent testing dataset comprised
104 OAG eyes of 82 subjects who had undergone HFA 10-2 test, HFA 24-2/30-2 test, and
macular OCT. A convolutional neural network (CNN) DL model was trained to predict
threshold sensitivity (TH) values in HFA 10-2 from retinal thicknessmeasured bymacular
OCT. The predicted TH values was modified by pattern-based regularization (PBR) and
correctedwith HFA 24-2/30-2. Absolute error (AE) ofmean TH values andmean absolute
error (MAE) of TH values were compared between the CNN-PBR alone model and the
CNN-PBR corrected with HFA 24-2/30-2.

Results: AE of mean TH values was lower in the CNN-PBRwith HFA 24-2/30-2 correction
than in theCNN-PBR alone (1.9dB vs. 2.6dB; P= 0.006).MAEof TH valueswas lower in the
CNN-PBR with correction compared to the CNN-PBR alone (4.2dB vs. 5.3 dB; P < 0.001).
The inferior temporal quadrant showed lower prediction errors compared with other
quadrants.

Conclusions: The performance of a DLmodel to predict 10-2 VF frommacular OCT was
improved by the correction with HFA 24-2/30-2.

Translational Relevance: This model can reduce the burden of additional HFA 10-2 by
making the best use of routinely performed HFA 24-2/30-2 and macular OCT.
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Introduction

Glaucoma is characterized by progressive visual
field (VF) damage and is the leading cause of
irreversible blindness in the world.1 Glaucomatous VF
deterioration is accompanied by structural changes
such as ganglion cell death and loss of axons.2–4
Structural damage can be detected by optical coher-
ence tomography (OCT),5 and researchers have devel-
oped models to discriminate between glaucomatous
and healthy OCT-imaged eyes using machine learning
algorithms such as support vector machine (SVM),6
random forests,7 and deep learning (DL).8,9 Recent
research has also demonstrated the potential for DL
models to predict VF sensitivity from OCT images in
patients with glaucoma.10–14

Patients suspected of having glaucoma are almost
always tested with static automated perimetry using
test points that are spaced 6° apart such as the
Humphrey field analyzer (HFA) 24-2/30-2 test.15,16
This is because glaucomatous VF damage usually
starts as Bjerrum scotoma or nasal step, which often
appear within the central 30°.17 Recent studies have
revealed that the measurement of the central 10° VF
is, however, essential for the accurate assessment of
glaucomatous damage.18 In particular, vision-related
quality of life is more closely associated with the 10°
VF than with the 24° or 30° VF. The problem is that
it is costly and time consuming to perform 10° VF test
in addition to a 24° or 30° VF test.19 This emphasizes
the importance of OCT imaging, because it has the
potential to reduce the number of VF measurements
necessary to accurately monitor disease progression.

We recently reported two models to predict visual
sensitivities of theHFA 10-2 test in a pointwisemanner
from spectral domain OCT (SD-OCT) in glaucoma
patients: (1) a DL model using a convolutional neural
network (CNN) with pattern-based regularization
(PBR) [CNN-PBR],11 showing good predictive perfor-
mance of absolute error [AE] of the whole VF, 2.7 dB
and pointwise mean absolute error [MAE], 5.5 dB; and
(2) a DL model with correction by HFA 24-2/30-2 test
results of the same eye, improving MAE from between
9.4 and 9.5 dB to 5.4 dB.20 In the current study, we
combined these two models and investigated whether
it was beneficial to correct CNN-PBR-predicted 10-2
visual sensitivities using HFA 24-2/30-2 test results of
the same eye.

Methods

This study was approved by the Research Ethics
Committee of the Graduate School of Medicine and

Faculty of Medicine at the University of Tokyo,
Inouye Eye Hospital, Kyoto Prefectural University
of Medicine, Oike-Ganka Ikeda Clinic, JR Tokyo
general hospital, HiroshimaMemorial Hospital, Osaka
UniversityGraduate School of Medicine, and Shimane
University Faculty of Medicine. Informed consent for
storing their data in the hospital database for the
research purposes was obtained from all patients. This
study was performed according to the tenets of the
Declaration of Helsinki.

Training Dataset

Generally, a large amount of paired data of VF and
OCT are required for training, but a small amount of
paired data were available in the current study, because
VF testingwas performedmore often thanOCT scan in
our clinical setting. We used the paired and no-paired
datasets in the CNN-PBR model by first learning the
patterns from nonpaired data (VF data alone) using an
unsupervised method and then regularize (i.e., PBR)
the prediction by the CNN referring to the obtained
patterns. The details have been described elsewhere.12

The training dataset comprised 493 eyes of 285
subjects (407 eyes with open angle glaucoma [OAG]
and 86 normative eyes). Subjects had undergone HFA
10-2 VF testing and OCT imaging. A second training
dataset included 7715 HFA 10-2 VF tests that were
not paired with SD-OCT images, which came from
patients with glaucoma other than the paired dataset.
All subjects underwent complete ophthalmic exami-
nations, including biomicroscopy, gonioscopy, intraoc-
ular pressure measurement, fundoscopy, refraction,
best-corrected visual acuity measurement, and axial
length measurements. Patients were enrolled during
the period between April 2013 and August 2016 at
the University of Tokyo Hospital, Inoue Eye Hospital,
JR Tokyo General Hospital, and Hiroshima Memorial
Hospital.

OAG was defined as follows: (1) presence of typical
glaucomatous changes such as a disc rim notch and
a retinal nerve fiber layer defect identified by ophthal-
moscopy or fundus photography; (2) gonioscopically
wide open angles of grade 3 or 4 based on the Shaffer
classification; (3) visual acuity � 0.5 LogMAR; (4)
refractive error < +3.0 diopter; and (5) age 20 to 80
years old. Patients with ocular diseases that could affect
the results of SD-OCT examinations and VF testing,
such as diabetic retinopathy or age-related macular
degeneration, were carefully excluded. Eyes with clini-
cally significant senile cataract were also excluded.

Normative eyes were defined as follows: (1) no
abnormal findings except for clinically insignificant
senile cataract; (2) no history of ocular diseases that
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could affect the results of SD-OCT and VF exami-
nations; (3) normal VF test results according to the
Anderson-Patella criteria; (4) refractive error < +3.0
diopter; and (5) age 20 to 80 years,

Testing Dataset

The testing dataset was independent of the train-
ing dataset. It comprised 104 OAG eyes of 82 subjects.
Inclusion and exclusion criteria and VF and SD-OCT
measurements were identical to those in the training
dataset. In addition to HFA 10-2 test and OCT data,
all eyes in the testing dataset had also undergone HFA
24-2/30-2 VF testing. TheHFA24-2/30-2 test data were
used to correct the predicted threshold sensitivity (TH)
values using CNN-PBR.

VF Testing

VF testing was performed with HFA 10-2 test
using the Swedish Interactive Thresholding Algorithm
standard strategy within three months from the
measurement of SD-OCT. Near-refractive correction
was used as necessary. All subjects had previously
experienced the HFA test at least once. We excluded
unreliable VFs with fixation loss ≥ 20% or false-
positive responses ≥ 15%, following the recommenda-
tion by the manufacturer. HFA 24-2/30-2 tests in the
testing dataset were performed within three months of
the HFA 10-2 test.

SD-OCTMeasurement

RS 3000 (Nidek Co Ltd, Aichi, Japan) and OA-
2000 (Tomey, Aichi, Japan) were used to obtain SD-
OCT and axial length measurement data, respectively.
All SD-OCTmeasurements were performed after pupil
dilation with 1% tropicamide. We excluded data with
apparent eye movement and involuntary blinking or
saccade during the measurement, and imaging data
with quality factor < 7, as recommended by the
manufacturer. A 9.0 × 9.0 mm image was centered on
the fovea. The macular thicknesses of the three parts
were exported as pixel images (512 × 128): macular
retinal nerve fibber layer (RNFL), ganglion cell layer
+ inner plexiform layer, and outer segment + retinal
pigment epithelium.We resized the images in each part
to 224 × 224 pixels with a bicubic interpolation21 over
4 × 4 neighborhood and resampling using pixel area
relation22 to inherit the parameters fromResNet, which
is one of the most popular pretrained models for image
classification.23 Furthermore, data augmentation was
performed via vertical flip. The full details are described
in our previous study.12

Deep Learning (CNN-PBR)

We trained the CNN-PBR model to predict thresh-
old (TH) values of the HFA 10-2 test from the three
retinal thicknesses, using the parameters of ResNet.
The details of CNN-PBR are described in our previ-
ous reports.11,12 In short, CNN-PBR has an advantage
of making best use of paired (VF with OCT) data over
CNNwithout PBR, by avoiding the problem of overfit-
ting using VF data alone.

Correction With HFA 24-2/30-2 Test Results

To try to improve prediction performance, we
further corrected the predicted TH values by using
HFA 24-2/30-2 VF test results of the same eye, as
detailed in Figure 1. First, the TH values of the 10-
2 test at coordinates (X,Y): (3, 9), (9, 3), (3, −9), (9,
−3), (−3, −9), (−9, −3), (−9, 3), and (−3, 9) were
predicted using neighboring TH values, which were
predicted with CNN-PBR, and the weights based on
the distance to the test points. The predicted TH values
of the HFA 10-2 test were averaged in each quadrant
(superior nasal, inferior nasal, superior temporal, and
inferior temporal). Second, the actual TH values of
the HFA 24-2 test at (±3, ±3), (±3, ±9), (±9, ±3)
were averaged in each quadrant. Finally, the difference
between these averages was added to the predicted TH
values of the 10-2 test in each quadrant.

Statistical Analysis

We compared the prediction performance between
the two models: (1) CNN-PBR alone (CNN-
PBRalone) and (2) CNN-PBR with correction (CNN-
PBRcorrection). First, we compared absolute error (AE)
of mean TH (mTH) values for the whole VF between
the two models, using a linear mixed effects model
whereby patients were regarded as the random effects.
Second, we compared pointwise prediction perfor-
mance through mean absolute error (MAE) between
the two models, using a linear mixed effects model.
MAE was calculated as:
MAE

=
∑68

i=1|predicted visual sensitivity of the ith point−actual visual sensitivity of the ith point|
68 ,

where i = number of the 68 predicted test points.
We illustrated MAE at each testing point to investi-

gate the trend of the prediction error caused by spacing
position. Additionally, we illustrated the signed predic-
tion error stratified by actual sensitivity of HFA 10-2
test using a boxplot. Statistical analysis was performed
with Python (version 3.7.6; Python Software Founda-
tion) and the statistical programming language
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Figure 1. Outline of the HFA 24-2/30-2 correction method. The superior nasal VF in the left eye of a representative subject is shown. First,
the TH values at (3,9) and (9,3) coordinates were predicted from the neighboring TH values, which were predicted with CNN-PBR, and the
weights based on the distance to the test points. For example, distances between (1,9) and (3,9), between (1,7) and (3,9), between (3,7) and
(3,9), and between (5,7) and (3,9) are 2, 2

√
2, 2, 2

√
2 , and thus the weights become 1

2 : 1
2
√
2
: 1
2 :

1
2
√
2

= √
2:1:

√
2 : 1. Using these weights,

the TH value of 10-2 at (3,9) was predicted as follows:
30.5 ×√

2+31.5 × 1+32.4 ×√
2+32.1 × 1√

2+1+√
2+1

= 31.6
Likewise, the predicted TH value at (9,3) was 30.6. We averaged the TH values at (3,9), (9,3) and (3,3):
31.6+30.6+31.2

3 = 31.1
Second, we averaged the TH value of 24-2 at (3,9), (9,3), and (9.9):
30+29+32

3 = 30.3Finally, thedifferencebetween these values (30.3–31.1=−0.8)was added to thepredictedTHvaluesof 10-2. The corrections
in the other quadrants were performed in a similar manner.

R language (version 3.6.3; R Foundation for Statistical
Computing, Vienna, Austria).

Results

The Table shows the characteristics of the training
and testing datasets. Actual TH values of the HFA 10-
2 test are shown in Figure 2. The mTH value in the
inferior temporal quadrant (26.3 dB) was higher than
in the superior temporal (20.3 dB), superior nasal (17.8
dB), and inferior nasal quadrants (22.2 dB) (linear
mixed model, all P < 0.001).

Significantly lower AE of mTH values were
observed with CNN-PBRcorrection than with the CNN-
PBRalone (1.9 dB vs. 2.6 dB; difference, −0.7; 95%
confidence interval, −1.3 to −0.2; linear mixed model,
P = 0.006) (Fig. 3). MAE of TH values was also
significantly lower with CNN-PBRcorrection compared
to the CNN-PBRalone model (4.2 dB vs. 5.3 dB; differ-

ence, −1.1; 95% confidence interval, −1.6 to −0.6;
linear mixed model, P < 0.001) (Fig. 4). AE at each
testing point are shown in Figure 5. In general, the
AEs in the inferior temporal quadrant tended to be
lower than those in other quadrants. Figure 6 shows
the signed prediction error stratified by actual sensi-
tivity of HFA 10-2. There was a trend toward more
negative prediction error where actual sensitivity was
high.

Discussion

In the present study, the HFA 10-2 test was
predicted from SD-OCT imaging using a DL model
(CNN-PBR) further corrected using HFA 24-2/30-
2 test results of the same eye. Prediction perfor-
mance was significantly improved using this correction
method. Prediction errors were small: 1.9 dB (AE of
mTH values) and 4.2 dB (MAE of TH values); we
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Table. Characteristics of the Training and Testing Datasets

Training Testing

No. of subjects 285 82
Age (year) 53.7 ± 15.0 60.2 ± 12.1
Female 158 (55%) 38 (46%)

No. of eyes 493* 104†

Laterality (left) 241 (49%) 53 (51%)
Axial length (mm) 25.5 ± 2.0 25.5 ± 1.7‡

Mean threshold value of HFA 10-2 (dB) 24.5 ± 9.4 21.7 ± 8.5
Mean deviation of HFA 10-2 (dB) −8.5 ± 9.5 −11.0 ± 8.9
Mean deviation of HFA 24-2/30-2 (dB) NA −10.9 ± 8.6
Macular RNFL (μm) 30.8 ± 9.2 27.7 ± 8.3
GCL + IPL (μm) 40.2 ± 9.0 36.8 ± 8.6
OS/RPE (μm) 67.3 ± 3.8 66.2 ± 3.6

GCL, ganglion cell layer; IPL, inner plexiform layer; OS, outer segment; RPE, retinal pigment epithelium.
Data are presented as n (%) or mean ± standard deviation.
*Consisted of 86 normative eyes and 407 eyes with open-angle glaucoma.
†All subjects were open-angle glaucoma (30 eyes, normal-tension glaucoma; 15 eyes, primary open glaucoma; 59 eyes,

normal-tension glaucoma or primary open glaucoma was unknown).
‡Axial length was unknown in two patients.

Figure 2. Actual threshold values of the 10-2 VF test (left eye).
Mean (upper row) and standard deviation (lower row) values of all
eyes at each test point are shown. Right eyes were mirror imaged.

believe these to be the smallest errors reported to date
for this type of prediction model.

Many models have been reported to discriminate
between glaucoma eyes and nonglaucoma eyes using
OCT.6,7,24,25 Limited models have also been devel-
oped to predict VF measurements from OCT, but
predicted measurements were usually mean VF sensi-
tivity or sectoral VF sensitivity.10,13 In this research we

Figure 3. Absolute error of mean threshold values. The absolute
error of CNN-PBR corrected with Humphrey field analyzer 24-2/30-
2 test results was significantly lower than the same model without
correction (1.9 dB vs. 2.6 dB; difference, −0.7; 95% confidence inter-
val, −1.3 to −0.2; linear mixed model, P = 0.006).

predicted TH values in a pointwise manner; as shown
in a recent paper, accurate pointwise predictions are
more difficult than sectorial prediction.11 The impor-
tance of pointwise prediction cannot be overstated
when considering the application of such a model to
real-world clinical settings. Given that test-retest VF
variability lies between 1 and 2 dB in the central area
and between 4 and 6 dB in the points at 27°,26,27 the
current performance of pointwise prediction (MAE,
4.2 dB) within the central 10° area should be consid-
ered very good.
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Figure 4. Mean absolute error of threshold values. The MAE of
CNN-PBR corrected with Humphrey field analyzer 24-2/30-2 test
results was significantly lower than the same model without correc-
tion (4.2 dB vs. 5.3 dB; difference,−1.1; 95%confidence interval,−1.6
to −0.6; linear mixed model, P < 0.001).

Figure 5. Pointwise absolute prediction error (left eye). Mean
(upper row) and standard deviation (lower row) values of all eyes at
each predicted 10-2 VF test point are shown. Right eyes were mirror
imaged.

As widely acknowledged, the association between
retinal structure and function is nonlinear.4,28 Struc-
tural damage precedes functional damage in glaucoma,
that is, visual sensitivity has not deteriorated until
RNFL thickness reaches a critical level.29 DL models
are helpful for the current prediction task whereby
HFA 10-2 test sensitivity (response variable) and SD-
OCT measurements (explanatory variable) are consid-
ered to be nonlinearly associated, because DL does
not require any assumption, such as a linear relation
between response and explanatory variables, which is

generally an assumption for conventional multivariable
models.

In the current study, the AE in the inferior tempo-
ral area tended to be lower than the AE observed
in other quadrants. This area corresponds to the
preserved “central isle” of the VF seen in patients with
advanced glaucoma,30 and the TH values observed
in this region remained relatively high. This is a
possible explanation for the greater prediction perfor-
mance in the inferior temporal area, because OCT is
more useful for predicting VF in early-to-moderate
glaucoma than in advanced glaucoma.29,31 Another
possible reason may be the smaller standard devia-
tion of actual TH values in the inferior temporal area.
In addition, conventional VF testing, including the
Swedish Interactive Thresholding Algorithm standard,
decides VF sensitivity using the bracketing method.
However, this method is relatively inaccurate compared
to the thresholding method via frequency-of-seeing
curves. This finding is much more obvious where VF
sensitivity is low. This implies there may be a limit
of the prediction performance where VF sensitivity is
very low.

There are several limitations in the current study.
First, predicted VF sensitivity was confined to the
10-2 test pattern rather than 24-2/30-2 test patterns
because of the limited macular area captured by SD-
OCT. Future wide-field OCT may solve the problem.
Second, the model developed in the current study is
not directly ready to be used in the clinical setting,
because it has not been implemented in any medical
support tools. However, it may be possible to integrate
the current model into software in future. Third, the
generalizability of the current findings may be limited.
We used the same patients of the previous study11
because the principal aim of the current study was
to compare the prediction performance between the
previous model (using only OCT data) and the current
model (using both OCT and HFA 24-2/30-2 data).
Future studies using other external large datasets
are needed to validate the current findings. Fourth,
there was a possibility that myopic eyes could bias the
current results. Thuswe iterated the analyses separating
the eyes in the testing dataset to those with axial length
of <26.5 mm and >26.5 mm.32 The resulting mean of
MAE was 4.1 dB and 4.5 dB, respectively, which were
almost the same values as that of 4.2 dB calculated in
the overall eyes. Therefore we consider that bias caused
by myopic eyes would not be very large. Fifth, similar
to the fourth limitation, the existence of normal-
tension glaucoma could bias the current results. The
proportions of normal tension glaucoma and primary
open-angle glaucoma were 29% (N = 30) and 14% (N
= 15), respectively, in the testing dataset. The fine
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Figure 6. Pointwise signed prediction error (left eye). Mean (upper row) and standard deviation (lower row) values of all eyes at each
predicted 10-2 VF test point are shown. Right eyes were mirror imaged.

classification (primary open-angle glaucoma or
normal-tension glaucoma (NTG)) was unknown
in the remaining eyes, because these patients were
already under treatment when referred to our hospi-
tals. The mean of MAE was 4.47 and 4.52 dB in
eyes with normal-tension glaucoma and primary
open glaucoma, respectively; these values were almost
identical to that in the overall eyes (4.2 dB). However,
future studies with larger sample size would be needed
shedding light on this issue, because VF damages
of NTG have been reported to be different from
those in primary open-angle glaucoma. Sixth, by
our definition, HFA 24-2/30-2 could have been done
more than three months (maximum of six months)
apart from the OCT measurement. However, all of
the examined eyes had an interval of ≤3 months from
OCT to HFA 24-2/30-2, except for one eye, so this
would have only a negligible effect on the obtained
results.33

In conclusion, the current DL model (CNN-PBR),
with correction based on 24-2/30-2 test results, demon-
strated better prediction performance than the CNN-
PBR model alone. Software/support tools equipped
with this methodology, which we need to develop in the
future, would be beneficial in the clinical setting.

Acknowledgments

Supported by the Ministry of Education, Culture,
Sports, Science and Technology of Japan grants
18KK0253, 19H01114, 17K11418, 25861618,
20768254, and 00768351; the Translational Research
program; Strategic Promotion for practical application
of Innovative medical Technology (TR-SPRINT) from

Japan Agency for Medical Research and Development
(AMED) ; JST-AIP JPMJCR19U4.

Disclosure: Y. Hashimoto, None; T. Kiwaki,
None; H. Sugiura, None; S. Asano, None;
H. Murata, None; Y. Fujino, None; M. Matsuura,
None; A. Miki,None; K. Mori,None; Y. Ikeda,None;
T. Kanamoto, None; J. Yamagami, None; K. Inoue,
None; M. Tanito, None; K. Yamanishi, None; R.
Asaoka, None

References

1. Jonas JB, Aung T, Bourne RR, et al. Glaucoma.
Lancet. 2017;390:2183–2193.

2. Harwerth RS, Carter-Dawson L, Smith EL, et al.
Neural Losses Correlated with Visual Losses
in Clinical Perimetry. Invest Opthalmol Vis Sci.
2004;45:3152.

3. Kerrigan LA, Quigley HA, Pease ME, et al. Num-
ber of ganglion cells in glaucoma eyes compared
with threshold visual field tests in the same persons.
Invest Opthalmol Vis Sci. 2000;41:8.

4. Leite MT, Zangwill LM, Weinreb RN, et al.
Structure-function relationships using the cirrus
spectral domain optical coherence tomograph
and standard automated perimetry. J Glaucoma.
2012;21:49–54.

5. Hood DC. Improving our understanding, and
detection, of glaucomatous damage: an approach
based upon optical coherence tomography (OCT).
Prog Retin Eye Res. 2017;57:46–75.

6. Burgansky-Eliash Z, Wollstein G, Chu T, et al.
Optical coherence tomography machine learning



Prediction of HFA 10-2 From OCT and HFA 24-2/30-2 TVST | November 2021 | Vol. 10 | No. 13 | Article 28 | 8

classifiers for glaucoma detection: a preliminary
study. Invest Opthalmol Vis Sci. 2005;46:4147.

7. Asaoka R, Hirasawa K, Iwase A, et al. Validat-
ing the usefulness of the “random forests”classifier
to diagnose early glaucoma with optical coherence
tomography. Am J Ophthalmol. 2017;174:95–103.

8. Phene S, Dunn RC, Hammel N, et al. Deep learn-
ing and glaucoma specialists: The relative impor-
tance of optic disc features to predict glaucoma
referral in fundus photographs. Ophthalmology.
2019;126:1627–1639.

9. Asaoka R, Murata H, Hirasawa K, et al. Using
deep learning and transfer learning to accurately
diagnose early-onset glaucoma frommacular opti-
cal coherence tomography images. Am J Ophthal-
mol. 2019;198:136–145.

10. Park K, Kim J, Kim S, Shin J. Prediction of visual
field from swept-source optical coherence tomog-
raphy using deep learning algorithms.Graefes Arch
Clin Exp Ophthalmol. 2020;258:2489–2499.

11. Hashimoto Y, Asaoka R, Kiwaki T, et al. Deep
learning model to predict visual field in central 10°
from optical coherence tomography measurement
in glaucoma. Br J Ophthalmol. 2020;105:507–513.

12. Sugiura H, Kiwaki T, Yousefi S, et al. Estimat-
ing Glaucomatous Visual Sensitivity from Retinal
Thickness with Pattern-Based Regularization and
Visualization. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining - KDD ’18. London:
ACM Press; 2018:783–792.

13. Christopher M, Bowd C, Belghith A, et al. Deep
learning approaches predict glaucomatous visual
field damage from optical coherence tomogra-
phy optic nerve head enface images and retinal
nerve fiber layer thickness maps. Ophthalmology.
2020;127:346–356.

14. Hemelings R, Elen B, Breda JB, et al. Point-
wise visual field estimation from optical coherence
tomography in glaucoma: a structure-function
analysis using deep learning. ArXiv210603793
Cs Eess. 2021, http://arxiv.org/abs/2106.03793;
Accessed September 12, 2021.

15. Hood DC, Raza AS, de Moraes CGV, et al. Glau-
comatous damage of the macula. Prog Retin Eye
Res. 2013;32:1–21.

16. Khoury JM,Donahue SP, Lavin PJ, Tsai JC. Com-
parison of 24-2 and 30-2 perimetry in glaucoma-
tous and nonglaucomatous optic neuropathies. J
Neuroophthalmol. 1999;19:100–108.

17. Drance SM. The glaucomatous visual field. Br J
Ophthalmol. 1972;56:186–200.

18. Rao HL, Babu JG, Addepalli UK, et al. Retinal
nerve fiber layer andmacular inner retinameasure-

ments by spectral domain optical coherence tomo-
graph in Indian eyes with early glaucoma. Eye.
2012;26:133–139.

19. Crabb DP, Russell RA, Malik R, et al. Frequency
of visual field testing when monitoring patients
newly diagnosed with glaucoma: mixed methods
and modelling. Health Serv Deliv Res. 2014;2:1–
102.

20. Asano S, Asaoka R, Murata H, et al. Predict-
ing the central 10 degrees visual field in glau-
coma by applying a deep learning algorithm to
optical coherence tomography images. Sci Rep.
2021;11:2214.

21. Das V. A novel diagnostic information based
framework for super-resolution of retinal fundus
images. Comput Med Imaging Graph. 2019;72:22–
33.

22. Thévenaz P, Blu T, Unser M Image interpolation
and resampling. Handbook of medical imaging,
processing and analysis. 2000;1:393–3420.

23. He K, Zhang X, Ren S, Sun J Deep Residual
Learning for Image Recognition. In: 2016 IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR). Las Vegas: IEEE; 2016:770–778.

24. Mwanza J-C, Warren JL, Budenz DL Combin-
ing spectral domain optical coherence tomography
structural parameters for the diagnosis of glau-
coma with early visual field loss. Invest Opthalmol
Vis Sci. 2013;54:8393.

25. Baskaran M, Ong E-L, Li J-L, et al. Classification
algorithms enhance the discrimination of glau-
coma from normal eyes using high-definition opti-
cal coherence tomography. Invest Opthalmol Vis
Sci. 2012;53:2314.

26. Parrish RK, II, Schiffman J, Anderson DR
Static and kinetic visual field testing: repro-
ducibility in normal volunteers. Arch Ophthalmol.
1984;102:1497–1502.

27. Heijl A, Lindgren G, Olsson J Normal variability
of static perimetric threshold values across the cen-
tral visual field. Arch Ophthalmol. 1987;105:1544–
1549.

28. Altangerel U, Spaeth GL, Rhee DJ Visual func-
tion, disability, and psychological impact of glau-
coma. Curr Opin Ophthalmol. 2003;14:100–105.

29. Hood DC, Kardon RH. A framework for compar-
ing structural and functional measures of glauco-
matous damage. Prog Retin Eye Res. 2007;26:688–
710.

30. Weber J, Schultze T, Ulrich H The visual field in
advanced glaucoma. Int Ophthalmol. 1989;13:47–
50.

31. Swanson WH, Felius J, Pan F Perimetric defects
and ganglion cell damage: Interpreting linear

http://arxiv.org/abs/2106.03793


Prediction of HFA 10-2 From OCT and HFA 24-2/30-2 TVST | November 2021 | Vol. 10 | No. 13 | Article 28 | 9

relations using a two-stage neural model. Invest
Opthalmol Vis Sci. 2004;45:466.

32. Ohno-Matsui K, Lai TYY, Lai C-C, Cheung
CMG Updates of pathologic myopia. Prog Retin
Eye Res. 2016;52:156–187.

33. Thonginnetra O, Greenstein VC, Chu D, et al.
Normal versus high tension glaucoma: a compar-
ison of functional and structural defects. J Glau-
coma. 2010;19:151–157.


