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Abstract: Patients with intracranial artery stenosis show high incidence of stroke. Angiography
reports contain rich but underutilized information that can enable the detection of cerebrovascular
diseases. This study evaluated various natural language processing (NLP) techniques to accurately
identify eleven intracranial artery stenosis from angiography reports. Three NLP models, including a
rule-based model, a recurrent neural network (RNN), and a contextualized language model, XLNet,
were developed and evaluated by internal–external cross-validation. In this study, angiography
reports from two independent medical centers (9614 for training and internal validation testing and
315 as external validation) were assessed. The internal testing results showed that XLNet had the best
performance, with a receiver operating characteristic curve (AUROC) ranging from 0.97 to 0.99 using
eleven targeted arteries. The rule-based model attained an AUROC from 0.92 to 0.96, and the RNN
long short-term memory model attained an AUROC from 0.95 to 0.97. The study showed the potential
application of NLP techniques such as the XLNet model for the routine and automatic screening of
patients with high risk of intracranial artery stenosis using angiography reports. However, the NLP
models were investigated based on relatively small sample sizes with very different report writing
styles and a prevalence of stenosis case distributions, revealing challenges for model generalization.

Keywords: intracranial artery stenosis; cerebrovascular diseases; natural language processing;
ruled-based model; deep learning

1. Introduction

Intracranial arterial (cerebroarterial) stenosis (IAS), which affects the middle cerebral
artery, the intracranial portion of the internal carotid artery, the vertebrobasilar artery, and
the posterior and anterior cerebral arteries, is a common risk factor for ischemic stroke,
especially in the Asian population [1]. The prevalence of IAS for stroke patients is around
33–50% in China, Thailand, Singapore, South Korea, and Japan, which is higher than that
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among Caucasian populations (20%) [2,3]; the prevalence of asymptomatic intracranial
arterial stenosis has been estimated to be around 4.0–13.7% [4,5]. Optimal treatments for
intracranial arterial stenosis remains challenging due to racial differences, distinctive stroke
etiologies, and diverse locations of IAS; however, high-risk patients might benefit from
preventive medical therapy if the risk is detected early [6]. Nowadays, various imaging
modalities, including transcranial Doppler, magnetic resonance angiography (MRA), and
computed tomography angiography, had been routinely used to screen intracranial arterial
stenosis. But in real-world clinical practices, it is time consuming and resource intensive
when unstructured reports were used to extract various health conditions or detect diseases
thus remained largely unutilized. It has been estimated that about 80% of medical data,
including reports, remain unstructured which used in real-world clinical applications
(e.g., information extraction for disease risks identification) [7].

Recent studies utilizing machine learning (ML) and natural language processing
(NLP) techniques to improve the performance of clinical report information extraction
have been reported with varied results [8–11]. With high prevalence of arterial stenosis in
the Asian population, there is an urgent need for effective approaches for detecting and
preventing potential risks of stroke. ML/NLP techniques have shown to be promising in
their conversion of free text input into structured data to enable the automatic identification
and extraction of information and knowledge from unstructured medical reports. We aimed
to investigate different NLP approaches to ascertain which model is the most effective in
allowing healthcare physicians to effectively and accurately identify complex, multilabel
artery stenosis from commonly available angiography reports. In addition, to properly
evaluate and validate effective NLP techniques that can potentially be used to develop
clinical applications in real-world hospital settings, we employed a large cohort from a
national medical center and a selected external dataset from a regional medical center
to better assess our model’s performance and its potential generalizability. In this study,
we surveyed the most representative classic rule-based methods and state-of-the-art deep
learning NLP methods for evaluation and comparison. These included a rule-based model
with a handcrafted feature-based approach, a long short-term memory (LSTM) machine
learning model with a recurrent neural network approach, and an XLNet deep learning
method with a pretrained language model approach.

2. Materials and Methods
2.1. Data Collection and Preprocessing

This study employed two different data sources for model training, testing, and
validation. The primary source was the Linkou Chang Gung Memorial Hospital (LCGMH),
one of the largest medical centers in Taiwan, which we utilized for internal training and
testing. The other external dataset, used for testing, was drawn from our collaboration site
of Kaohsiung Veterans General Hospital (KSVGH), an independent local medical center.
In the LCGMH dataset, patients who underwent cerebral angiography and color duplex
ultrasound at LCGMH from January 2007 to December 2016 were enrolled and included.
From the KSVGH dataset, those participants who were admitted due to acute ischemic
stroke between July 2018 and June 2019 and had reports of MRA were recruited in the
external testing dataset to verify the performance of the stenosis identification models.

This study collected a total of 9614 reports of magnetic resonance angiography (MRA)
from the LCGMH as the training and internal testing dataset, with a limited number of
315 MRA reports which were approved by KSVGH IRB and were used as the external
validation dataset. Examples of angiography reports from two hospitals with labels can
be found in the Supplementary Materials. All the angiography reports from two hospitals
were preprocessed by removing Chinese characters/sentences, special characters, and extra
spaces prior to model training. To properly validate the stenosis, two chief neurologists
from both hospitals independently labeled and validated the stenosis degree (<50% or
≥50% diameter stenosis) of 11 target arteries, which are routinely used for the diagnosis of
intracranial artery stenosis in angiography reports (both LCGMH and KSVGH datasets).
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The 11 target arteries used were the following: left/right intracranial internal artery (LI-
ICA, RIICA, respectively); left/right anterior cerebral artery (LACA, RACA, respectively);
left/right middle cerebral artery (LMCA, RMCA, respectively); left/right posterior cerebral
artery (LPCA, RPCA, respectively); left/right intracranial vertebral artery (LIVA, RIVA,
respectively); and the basilar artery (BA). The degree of arterial stenosis was determined
according to the North American Symptomatic Carotid Endarterectomy Trial (NASCET)
criteria [12]. For easy comparison, the percentages of cases with confirmed stenosis for each
artery, used in both internal and external datasets, are provided in Table 1. The ground
truth for the evaluation was established by a consensus between the two chief neurolo-
gists, who shared similarities in medical training and years of practice. They evaluated
each angiography report and reached a consensus, as with the process that is performed
in real-world hospital settings. In addition, with selected keywords in the angiography
reports, such as significant stenosis, tight stenosis, severe stenosis, and high-grade steno-
sis, the consensuses can be readily reached and recorded within rule-based guidelines
(Supplementary Materials Table S1).

Table 1. The percentage of cases with confirmed stenosis (≥50% diameter stenosis) for each artery in
both internal and external datasets.

Internal Dataset
(n = 9614)

External Dataset
(n = 315)

RIICA (%) 740 (7.7) 12 (3.8)
RACA (%) 416 (4.3) 2 (0.6)
RMCA (%) 967 (10.1) 13 (4.1)
RPCA (%) 491 (5.1) 6 (1.9)
RIVA (%) 1052 (10.9) 2 (0.6)

BA (%) 554 (5.8) 9 (2.9)
LIICA (%) 735 (7.6) 4 (1.3)
LACA (%) 407 (4.2) 4 (1.3)
LMCA (%) 1005 (10.5) 10 (3.2)
LPCA (%) 547 (5.7) 3 (1.0)
LIVA (%) 943 (9.8) 2 (0.6)

BA—basilar artery; LACA—left anterior cerebral artery; LIICA—left internal carotid artery; LIVA—left intracranial
vertebral artery; LMCA—left middle cerebral artery; LPCA—left posterior cerebral artery; RACA—right anterior
cerebral artery; RIICA—right internal carotid artery; RIVA—right intracranial vertebral artery; RMCA—right
middle cerebral artery; RPCA—right posterior cerebral artery.

2.2. Stenosis Identification Models

To develop and assess the best NLP model for the task of intracranial artery stenosis
identification, with the aim of improving patient care, three NLP algorithms (a classic rule-
based NLP approach, a LSTM recurrent neural network, and a contextualized language
XLNet model) were evaluated for their ability to accurately identify stenosis risks from
angiography reports, as shown in Figure 1.

2.2.1. Rule-Based NLP Model

The rule-based NLP algorithm was developed based on expert-derived keywords
and rules that were handcrafted by medical experts [13]. It has been widely adopted and
reported for a variety of radiology NLP tasks [14–16]. As shown in Figure 1 panel A, a
set of identification rules that was created by neurologists, containing reference keywords,
matching rules, and exclusion criteria for negated findings (see Supplementary Materials
Table S1), was developed. This set of rules was then transformed into a series of regular
expression rules by R package stringr, available at https://cloud.r-project.org/package=
stringr (accessed on 23 January 2022). The rule-based model also incorporated a standard
NLP pipeline, including section and sentence segmentations to increase its performance.
The reports obtained from LCGMH mainly contain four sections, as follows: basic patient
information, clinical information, image findings, and impression sections. Those from
KVGH contained similarly titled sections, as follows: basic patient information, methods,

https://cloud.r-project.org/package=stringr
https://cloud.r-project.org/package=stringr
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findings, and impressions. We chose two relevant sections validated by physicians to
auto-extract the contents of the image findings and impression sections from two hospitals’
reports for the NLP identification tasks. The extracted paragraphs from the target sections
were further processed and evaluated for sentence segmentation by the R package spacyr,
available at https://spacyr.quanteda.io (accessed on 23 January 2022).

Figure 1. Overview of stenosis identification models. Panel A presents a rule-based model, which is
a handcrafted feature-based approach. Panel B presents a long short-term memory model, which
is a recurrent neural network approach. Panel C presents XLNet, which is a pretrained language
model approach.

2.2.2. Long Short-Term Memory Model

The LSTM model is a recurrent neural network architecture that has been designed
to address data sequences of varying length and to capture long-term dependencies [17].
This study built a deep LSTM model for stenosis identification using Keras v2.3.1 [18] with
the TensorFlow v2.1.0 [19] backend. The model structure is shown in Figure 1, panel B,
and consists of one embedding layer with an output dimension of 128, two LSTM layers of
64, 32 cells, and the fully connected output layer corresponding to the number of target
arteries. The total number of parameters used was 1,275,697; to reduce overfitting we
applied dropout with a probability of 0.2 to each layer. Since a patient may have several
artery sections mentioned in an angiography report, the sigmoid activation function was
adopted in the output layer to help solve the multilabel text classification problem. The
binary cross-entropy loss function and Adam optimizer [20] of 1 × 10−3 learning rate were
selected for an optimal model training.

2.2.3. XLNet Model

The XLNet model was a contextualized self-attention-based language model which
combined the advantages of autoregressive and autoencoder methods by using permutation
language modeling techniques. It used the Transformer-XL model [21] to make long-text
encoding more effective. In a recent report, XLNet was shown to overcome the limitations
of BERT [22] and achieved state-of-the-art results in several NLP tasks [23]. The XLNet
NLP model was pretrained on various text corpora including BooksCorpus [24], English
Wikipedia, Giga5 [25], ClueWeb 2012-B [26], and Common Crawl [27]. In this study, an
XLNet model was developed from pretrained weights provided by the HuggingFace’s
Transformers library [28], with default parameters of 24 hidden layers in the Transformer
encoder, 16 attention heads for each attention layer, and 340 M parameters. As shown in

https://spacyr.quanteda.io
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Figure 1 panel C, the token embedding layer transformed the texts to token identifiers and
fed them into an XLNet pretrained model. This contained a linear layer corresponding to the
number of target arteries employed in this study, with a sigmoid activation function added
on top of the contexture embedding layer. For fine-tuning the model, we selected AdamW
optimizer [29] with 1 × 10−5 learning rate and the sigmoid cross entropy with logits as the
loss function. The final model was then trained for 20 epochs with 16 batch sizes.

2.3. NLP Model Assessments

To assess the identification capabilities and performance of three NLP models, this
study employed a 10-time hold-out cross-validation. As shown in Figure 2, for each
validation round, we used 80% of the data (7692 cases) from the internal LCGMH dataset
for the training of three models, and the remaining 20% of the LCGMH dataset (1922 cases)
was used for internal testing and validation. To further investigate the generalizability
of our models to real-world clinical applications, we obtained a limited IRB-approved
KSVGH dataset (315 cases) as an independent external testing dataset that was included
in neither the model training nor the rule-based model development. Due to the smaller
sample size, with an imbalanced distribution of positive cases (i.e., stenosis) of each artery
(as shown in Table 1), to best evaluate the models’ performance we used the well-accepted
measure of area under the receiver operating characteristic curve (AUROC). This approach
was selected for its specificity and sensitivity. If the predictions were not derived from
probabilities, then the AUROC was acquired from a confusion matrix, as follows: 1/2
[(tp/(tp + fn)) + (tn/(tn + fp))]; Specificity is tn/(tn + fp), and Sensitivity is tp/(tp + fn),
where TP, TN, FP, and FN denoted true positives (i.e., the model correctly identified the
stenosis), true negatives (i.e., the model correctly identified no stenosis), false positives
(i.e., the model incorrectly identified the stenosis), and false negatives (i.e., the model
incorrectly identified no stenosis), respectively.

Figure 2. The process of model training, internal testing, and external testing. Three different models
were trained on 80% of the Linkou Chang Gung Memorial Hospital (LCGMH) dataset, and were
tested on 20% of the LCGMH dataset for internal testing. The Kaohsiung Veterans General Hospital
dataset was used for external testing. * Rule-based model was built at first round and tested in
10 rounds.
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3. Results

The comparison of AUROC results between internal and external testing datasets
for the intracranial artery stenosis identification task from three different NLP models
is summarized in Table 2 and the receiver operating characteristic curves shown are in
Figure 3. For the internal testing dataset from LCGMH, the best performance was obtained
by the XLNet model with an AUROC ranging from 0.97 ± 0.01 RPCA to 0.99 ± 0.00 RIVA
among all 11 target arteries evaluated. The rule-based model which we considered as a
performance benchmark achieved its best AUROC in RIVA (0.96 ± 0.01) and its worst
AUROC in BA (0.92 ± 0.02). XLNet, built with a pretrained model developed in this
study, clearly demonstrated its superior performance in detecting stenosis with consistently
higher performance across all target arteries compared with those of LSTM model.

Table 2. Comparison of area under the receiver operating characteristic curve (AUROC) results
between internal and external testing datasets for the stenosis-identification task from three different
NLP models. Results are expressed as mean ± standard deviation.

Internal Testing Dataset
(n = 1922)

External Testing Dataset
(n = 315)

Cerebral Artery (Prevalence in
Internal/External Dataset) % Rule-Based Model LSTM XLNet Rule-Based Model LSTM XLNet

RIICA (7.7/3.8) 0.93 ± 0.01 0.95 ± 0.01 0.98 ± 0.00 0.71 0.76 ± 0.10 0.91 ± 0.11
RACA (4.3/0.6) 0.95 ± 0.01 0.96 ± 0.01 0.98 ± 0.01 0.50 0.73 ± 0.16 0.93 ± 0.01
RMCA (10.1/4.1) 0.94 ± 0.01 0.95 ± 0.01 0.99 ± 0.00 0.58 0.77 ± 0.10 0.97 ± 0.02
RPCA (5.1/1.9) 0.94 ± 0.01 0.95 ± 0.02 0.97 ± 0.01 0.50 0.58 ± 0.18 0.90 ± 0.06
RIVA (10.9/0.6) 0.96 ± 0.01 0.97 ± 0.01 0.99 ± 0.00 0.75 0.55 ± 0.19 0.99 ± 0.03
BA (5.8/2.9) 0.92 ± 0.02 0.95 ± 0.01 0.98 ± 0.01 0.83 0.47 ± 0.08 0.84 ± 0.04
LIICA (7.6/1.3) 0.93 ± 0.01 0.96 ± 0.01 0.98 ± 0.01 0.75 0.78 ± 0.07 0.93 ± 0.08
LACA (4.2/1.3) 0.95 ± 0.02 0.95 ± 0.01 0.98 ± 0.01 0.75 0.70 ± 0.15 0.99 ± 0.01
LMCA (10.5/3.2) 0.94 ± 0.01 0.95 ± 0.01 0.98 ± 0.00 0.50 0.80 ± 0.10 0.98 ± 0.01
LPCA (5.7/1.0) 0.93 ± 0.01 0.95 ± 0.02 0.98 ± 0.01 0.50 0.61 ± 0.14 0.79 ± 0.12
LIVA (9.8/0.6) 0.95 ± 0.01 0.97 ± 0.01 0.98 ± 0.00 0.50 0.65 ± 0.08 0.92 ± 0.09

BA—basilar artery; LACA—left anterior cerebral artery; LIICA—left internal carotid artery; LIVA—left intracranial
vertebral artery; LMCA—left middle cerebral artery; LPCA—left posterior cerebral artery; RACA—right anterior
cerebral artery; RIICA—right internal carotid artery; RIVA—right intracranial vertebral artery; RMCA—right
middle cerebral artery; RPCA—right posterior cerebral artery.

The performance of the three stenosis identification models dropped significantly with
the smaller external testing dataset obtained from KSVGH. Although the XLNet model
still outperformed both the rule-based model and the LSTM model in all target arteries
in this external testing dataset, the range of AUROC declined and varied greatly from
0.79 ± 0.12 LPCA to 0.99 ± 0.01 LACA, as shown in Table 2. In addition, the performance
of the XLNet model was found to increase on those arteries with higher prevalence of
stenosis. The LSTM model resulted in better detection of stenosis overall compared with
the rule-based model, except in few arteries (e.g., RPCS, RIVA, and BA) in the external
dataset; however, both were found to be less than optimal compared with the XLNet model.

Compared with previously reported studies, the stenosis-identification task employed
in our study was a complicated multilabel challenge of identifying and reporting up to
11 target arteries labeled with their individual stenosis statuses and lesion locations. To
further compare the performance of our XLNet model with other previous studies, we
binarized the angiography reports as being with/without stenosis and tested the identifi-
cation ability. The results showed that XLNet presented an improved performance when
the identification task was simplified, with AUROC = 0.98 ± 0.0 and AUROC = 0.97 ± 0.01
from the internal and external testing datasets, respectively. For more evaluation metrics
such as sensitivity and specificity, as well as a detailed AUROC of the XLNet model
with different training epochs and learning rates in each stenosis detection task, see
Supplementary Materials Tables S2–S4, as described in Materials and Methods.
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Figure 3. Comparison of the receiver operating characteristic curves (ROC) in stenosis detection tasks
obtained by the rule-based model, the long short-term memory (LSTM) model, and the XLNet model
with the internal test dataset. Each plot represents stenosis detection performance on each artery. The
XLNet model clearly demonstrates superior performance with consistent larger area under the curve
results compared with those of the LSTM model.

4. Discussion

In this study, we evaluated three different approaches of NLP models and demon-
strated that machine-learning-based NLP techniques are more efficient in identifying
multilabel intracranial arterial stenosis and its location from angiography reports. As
summarized in Table 2, the XLNet model outperformed the rule-based and LSTM models
in the internal training and testing assessments of the stenosis-identification task. It should
be noted that, although machine learning approaches dominated the current NLP research,
the rule-based approach still has several advantages, such as its minimal requirement for
labeled data. This was demonstrated by its performance with the large dataset employed in
our study. In this case, only a set of handcrafted rules with a list of expert-derived keywords
were needed to develop the detection and prediction algorithms, in contrast to the machine
learning methods (e.g., LSTM and XLNet) that required a large labeling dataset, not only
for model training but also for the evaluation and validation tasks. In addition, in the
rule-based model, it is easy to incorporate domain knowledge for general improvement and
interpretability through its declarative expressions. Unlike machine learning approaches
that demand relatively high computing resources to train a model, a rule-based model
does not require a training phase. Our internal testing results showed that a well-crafted
rule-based model has a reasonable ability to identify stenosis from the reports. Therefore,
with insufficient annotated datasets or a lack of computing resources, rule-based models
can serve as an alternative solution. However, it should be noted that factors such as
ambiguity in terminology or findings that may be too complex for clinicians to interpret
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and craft meaningful keywords, may limit and impact rule-based NLPs’ performance. In
addition, to further improve a rule-based model, appropriate preprocessing steps including
spell checking, word stemming, and removal of meaningless words could be helpful for
improving the performance [30].

The present study also discovered that dataset inconsistency and different writing
styles most significantly impacted the rule-based model, since it strongly depended on
the keywords, the structure of sentences, abbreviations, and term variations in the reports.
The performance results of the three developed stenosis identification models showed a
decline in performance when using the external KSVGH testing dataset. We discovered
that the main reasons for the poor performance were the different writing styles and
the medical training in report writing practices of physicians in different hospitals. For
example, one angiography report from the internal testing/validation dataset of LCGMH
mentioned “Total occlusion of right distal VA”, but did not point out or describe any
normal artery. Conversely, those from the external testing dataset (i.e., KSVGH) had more
detailed descriptions, as follows: “MRA shows no evidence of occlusion or high-grade
stenosis over intracranial portion of the internal carotid artery and vertebral basilar artery,
and main trunk of the bilateral anterior cerebral arteries and middle cerebral arteries and
posterior cerebral arteries”. In addition, similar but different terms used, such as “stenosis”
and “occlusion” in the internal testing dataset versus “paucity” in the external testing
dataset, also contributed to the performance variations in these models. Furthermore, same
diagnoses with different descriptions, such as “Total occlusion of right ICA” versus “Distal
internal carotid artery (ICA): severe stenosis, right side”, further complicated the validation
tasks between the two hospitals’ datasets. Descriptions of the same lesion location were
also found to be quite different. It was also noted that the reports from LCGMH tended to
describe stenosis conditions separately, and placed location descriptions before each artery,
e.g., “Stenosis of right MCA M1-2, left PCA P1 and right PCA P2-3 junction (all > 50%)”,
but those from KSVGH would write “High grade stenosis over bilateral posterior cerebral
arteries” or “Posterior cerebral artery (PCA): moderate to severe stenosis, left”, for example.
The LSTM model, which does not have pretrained language representation, was also
greatly affected by the complicated context forms described above. Challenges in most ML
modeling research, such as dataset shift (e.g., an imbalanced dataset), were also found in
this study, with changes in data distribution or prevalence [31]. As shown in Table 1, the
prevalence of stenosis from each artery was found to be very different between internal and
external datasets, a disparity that is often observed in many real-world cases with limited
datasets obtained from IRB-approved data for ML-based studies and with population bias
represented in different regional hospitals. In addition, the number of positive (i.e., has
stenosis) cases versus negative (i.e., no stenosis) cases was also found to be imbalanced;
therefore, there were further challenges in developing a generalized clinical ML-based NLP
tool. Tackling this dataset shift problem to generate better ML-based NLP models could
involve the application of continual learning or federated learning, which enables a model
to learn continually from a stream of data from participating hospitals. This was shown to
make models more robust and less susceptible to changes in data distributions [32]. Despite
these data challenges in the external testing dataset, this study clearly demonstrated that
the XLNet-based NLP model can produce superior performance in detecting stenosis from
clinical reports with large training and testing dataset from within same hospital; therefore,
this model can help streamline and improve physicians’ clinical routines.

Among the three different approaches implemented and evaluated in this study,
XLNet clearly surpassed other two NLP models. Recent studies have demonstrated that
pretrained language models are highly successful in many NLP tasks [33], with XLNet
being one of the architectures reported. Pretraining in an unsupervised manner on a large
medical report text corpus can enable models to learn universal language representations,
aiding downstream tasks, as clearly reflected in the model’s performance with our internal
testing dataset. Our results when the XLNet model performed the simple downstream
task indicated that the pretrained language model approach provided a better model
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initialization step, and reduced the problem of model generalizability compared with
the other NLP models [34]. In general, the size of model parameters could contribute to
better performance [35], as demonstrated in our study; the number of parameters used for
XLNet was 340 times larger than that for LSTM (340 M vs. 1 M). Several recent studies
explored different computational approaches for simple disease-identification tasks from
a radiology report. For example, Wu et al. proposed three machine learning models to
identify patients with the conditions of intracranial artery stenosis based on their ultrasound
report, including a logistic regression model, a field-aware convolution neural network,
and a recurrent neural network (RNN) with an attention mechanism. Their results showed
that the RNN–attention model achieved only approx. 95.4% accuracy [36]. Drozdov et al.
also evaluated thirteen supervised classifiers in identifying normal, abnormal and unclear
chest radiography reports. Their bidirectional long short-term memory networks with an
attention mechanism effectively identified only three different types of chest radiography
reports in the internal testing dataset, with an f1 score of 0.94, and in the external testing
dataset, with an f1 score of 0.90 [37]. Those studies were performed on much simpler
identification tasks compared with the multilabel challenges tackled in our study, with less
favorable performances.

Identifying not only the stenosis status but also its accurate lesion location from
large angiography datasets remains challenging, but it is critical for real-world clinical
applications of identifying the risks of potential stroke. Depending on each hospital
setting, this study provided a clear pathway with three different NLP approaches to
best ascertain and tackle this challenge. Our future work will focus on obtaining more
datasets from different hospitals and employing different or hybrid methodologies such
as federated learning to further assess and improve stenosis identification models. In
general, NLP models pretrained for general-purpose language understanding have shown
poor performance in specific-domain NLP tasks [38–40]. Huang et al. proposed a domain-
specific pretrained model called Clinical XLNet [41]. These proposed approaches and
models will be explored in the future to further improve stenosis-identification tasks.

5. Conclusions

In this work, we evaluated three very different NLP approaches in the aim of find-
ing the best model for automating and accurately identifying potential stenosis risks on
11 targeted arteries from angiography reports. The results clearly demonstrated that a
contextualized language XLNet model has superior performance compared with LSTM
and rule-based models. This ML approach can greatly assist physicians, by alleviating the
requirement for the manual human interventions which are currently employed in hospital
settings. In addition, the information extracted from the XLNet model in this study can be
combined with other clinical risk factors to assist physicians in providing better preventive
stroke care, which will improve patient health.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12081882/s1. Table S1: Examples of the keyword
matching guideline for the rule-based NLP model, Table S2: Specificity results for stenosis detection
by different models and results are expressed as mean ± standard deviation, Table S3: Sensitivity
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