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Systems biology—opportunities and challenges:

the application of proteomics to study the

cardiovascular extracellular matrix
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Abstract Systems biology approaches including proteomics are becoming more widely used in cardiovascular research. In
this review article, we focus on the application of proteomics to the cardiac extracellular matrix (ECM). ECM
remodelling is a hallmark of many cardiovascular diseases. Proteomic techniques using mass spectrometry (MS) pro-
vide a platform for the comprehensive analysis of ECM proteins without a priori assumptions. Proteomics over-
comes various constraints inherent to conventional antibody detection. On the other hand, studies that use whole
tissue lysates for proteomic analysis mask the identification of the less abundant ECM constituents. In this review,
we first discuss decellularization-based methods that enrich for ECM proteins in cardiac tissue, and how targeted
MS allows for accurate protein quantification. The second part of the review will focus on post-translational modifi-
cations including hydroxylation and glycosylation and on the release of matrix fragments with biological activity
(matrikines), all of which can be interrogated by proteomic techniques.
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1. Introduction

Proteomic techniques using mass spectrometry (MS) provide a platform
for the comprehensive analysis of proteins, thereby facilitating the imple-
mentation of systems biology approaches and circumventing the limita-
tions of a traditional, reductionist approach adopted by techniques like
western blotting that are based on a priori assumptions of the proteins
to be investigated. Furthermore, proteomics is without the constraints
of antibody-dependent protein detection and has the capability of
detecting post-translational modifications (PTMs), which is beyond the
means of gene expression platforms.1

Tissue fibrosis is a hallmark of most cases of cardiovascular disease
(CVD) and includes modification and deposition of extracellular matrix
(ECM). However, detailed studies on the cardiovascular ECM have been
sparse due to the lack of analytical tools that facilitate comprehensive
characterization of its components. In recent years, proteomics has been
successfully applied to study the ECM, providing unprecedented insights
into its biology and pathological remodelling.2–5 In the present review,
we describe the utility of ECM proteomics as applied to cardiovascular

research and the potential pitfalls. In addition, we highlight the means to
overcome common proteomic challenges and present translational
applications of proteomic datasets.

2. The ECM in cardiac disease

The ECM not only confers mechanical stability, but is also a reservoir for
bioactive molecules. Remodelling of the ECM, including quantitative but
also qualitative changes in composition, is a hallmark of CVD. Numerous
studies have demonstrated that structural, but also non-structural ECM
proteins play crucial roles during disease progression and normal cardiac
physiology.

Table1 summarizes important findings in clinical studies as well as in
animal models of cardiac disease.5–42 Additional studies reported ECM
proteins as potential biomarkers for cardiac pathologies43; these
have been intentionally omitted from the table, the focus of which
are ECM and ECM-associated proteins (i.e. extracellular proteases and
non-structural proteins that bind to or regulate ECM) from a functional
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perspective. Most proteins included in the table were individually studied
using antibodies and loss-of-function models in order to assign their rele-
vance to disease. Proteomics can quantify most of these ECM proteins in
a single experiment, leading to the identification of previously unre-
ported links between ECM components in disease.2–4 For example, in a
recent study we demonstrated that genetic deletion of biglycan was
accompanied by an unexpected rise of aggrecan in murine aortas.44

3. ‘In antibodies we trust’

Until recently, the identification of proteins in a tissue or a protein lysate
has been limited by the availability of antibodies that recognise certain

regions (epitopes) of a protein of interest. Antibodies have been and
continue to be an important component of the armamentarium for pro-
tein research but they are not without limitations. While antibody arrays
overcome the restriction to only one protein, ECM proteins tend to be
under-represented in arrays. The main issues of antibody-based protein
quantification, however, remain the same: (i) Usually only a small portion
of the protein (epitope) is recognised by an antibody. Protein detection
by antibodies relies on the presence of unmodified epitopes. In ECM
proteins, however, common PTMs include hydroxylation, glycosylation
or fragmentation. Due to epitope masking, ECM proteins may not be
detectable by antibodies. (ii) Antibodies are often not commercially
developed to target proteins in species beyond the commonly used
mice and rats such as canine and porcine models for myocardial

..............................................................................................................................................................................................................................

Table 1 Role of ECM and ECM-associated proteins in cardiac disease

Protein Clinical context Main findings

Adiponectin Cardiac remodelling (m) Induces cell migration, MMP activation, and collagen remodelling via APPL1-AMPK signalling6

ADAMTS9 Developmental defects (m) Haploinsufficiency leads to reduced versican cleavage, associated with cardiac anomalies7

Biglycan MI (m) Required for adaptive remodelling8

Cathepsin-K AF (h, rb) Increased levels and activity accompanied atrial changes linked to the AngII/ATR1R signalling pathway9

Cathepsin-S MI (m) Mediates fibroblast transdifferentiation during remodelling10

Collagen I Dilated cardiomyopathy (m) Point mutation induces cardiomyopathy11

Collagen VI MI (m) Absence improves cardiac function, structure, and remodelling12

Collagen XIV Developmental defects (m) Important for growth and structural integrity of the myocardium13

Collagen XV Hypertension (m) Necessary for remodelling. Deficiency predisposes to cardiomyopathy14

Connective tissue

growth factor

Pressure overload (m) Inhibition attenuates left ventricular remodelling and dysfunction15

Decorin Left ventricular assist

device implantation (h)

Ameliorates adverse remodelling by mediating TGF-beta inhibition16

MI (m) Absence leads to abnormal scar tissue formation17

Fibronectin MI (m, h) Essential for progenitor cell response during cardiac repair18

MI (m) Lack of EDA domain promotes survival and prevents adverse remodelling19

Fibulin-2 MI (m) Loss protects against progressive ventricular dysfunction20

Laminin alpha-4 Dilated cardiomyopathy (h, z) Mutations cause human cardiomyopathy via defects in cardiomyocytes and endothelial cells21

Lumican Hypertrophy (m) Deficiency results in cardiomyocyte hypertrophy with altered collagen assembly22

Mimecan MI (m, h) Prevents cardiac dilatation and dysfunction via collagen strengthening23

MMP-14 Pressure overload (m) Mediates pro-fibrotic signalling, leading to alterations in interstitial fibrosis and diastolic function24

MMP-28 MI (m) Deletion exacerbates cardiac dysfunction and rupture by inhibiting M2 macrophage activation25

TIMP-2 Pressure overload (m) Loss leads to exacerbated left ventricular dysfunction and adverse ECM remodeling26

MMP-9 AF (p, h) Increased gelatinase activity contributes to atrial ECM remodelling27,28

MI (h,m) Crucial for generation of bioactive collagen I fragments that promote scar formation after MI5

MI (m) Deletion leads to decreased collagen accumulation and left ventricular enlargement29

MMP-2 MI (m, r) Contributes to ischemia-reperfusion injury, and deletion/inhibition prevents cardiac rupture30,31

Osteopontin MI (m) Deletion leads to left ventricular dilatation and reduced collagen deposition after MI32

Periostin MI (r) Blockade of Exon 17 preserves cardiac performance33

Pressure overload (m) Deletion results in less fibrosis and hypertrophy34

Perlecan Developmental defects (m) Perlecan is critical for heart stability35

SPARC MI (m) Mediates early ECM remodeling36

Tenascin-C Pressure overload (m) Accelerates fibrosis by activating macrophages via the integrin aVb3/nuclear factor-jB/interleukin-6 axis37

MI (m) May aggravate left ventricular remodelling and function38

Thrombospondin-1 Pressure overload (m) Protects myocardium by modulating fibroblast phenotype and ECM metabolism39

MI (d, m) Role in preventing expansion of healing myocardial infarcts40

Thrombospondin-4 Pressure overload (m) Regulates myocardial fibrosis and remodelling41

Versican Developmental defects (m) Associated with chamber specification, septation, and valvulogenesis in the developing heart42

MMP, matrix metalloproteinase; ADAMTS, a disintegrin and metalloproteinase with thrombospondin domains; TIMP, tissue inhibitor of metalloproteinases; SPARC, secreted
protein acidic and rich in cysteine; MI, myocardial infarction; AF, atrial fibrillation; m, mouse; h, human; rb, rabbit; z, zebrafish; r, rat; p, pig; d, dog.
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..infarction,2,45,46 rabbit and goat models for studies involving atrial fibrilla-
tion9,47–49 and sheep as models of dilated cardiomyopathy.50 While
some anti-human or anti-mouse antibodies will cross-react, many others
will not recognize their target protein in different species or will display a
high degree of non-specific binding. Vice versa, proteins in the bovine
serum supplements of cell cultures can be detected not only in the con-
ditioned media but also in the cell lysates.51

Contrary to antibodies, proteomics does not rely on recognition of
one specific epitope and can be applied across species. Moreover, the
use of MS allows for determination of changes that occur at the protein
level (i.e. amino acid modifications) (Figure 1). For example, we demon-
strated using MS that the C-terminus of decorin, a small leucine-rich pro-
teoglycan, is often cleaved in the left atrium but not in the ventricle.52 MS
data provided an explanation why the use of different antibodies for the
same target protein yielded very different results (Figure 2).

4. ECM revisited by proteomics

Proteomics is the study of the complete protein component of a living
organism, tissue or cell and yields unbiased data without a priori
knowledge. The workhorse of modern proteomics is the mass

spectrometer and although it is not a new technology per se, it was for
a long time confined to areas outside the biological sciences. However,
it was the advent of matrix-assisted laser desorption ionization
(MALDI)53 and in particular of electrospray ionization (ESI)54—which
enables liquid chromatography (LC) systems to be interfaced directly
to mass spectrometers—that MS branched from analytical chemistry
into biology.

The gold standard for contemporary proteomics is LC-tandem MS
(LC-MS/MS). Briefly, the LC column separates the peptides (typically
generated by digesting proteins with trypsin) in the analyte prior to ion-
isation and subsequent MS analysis. In addition to recording the mass of
the peptide ions, MS/MS technologies induce the subsequent fragmenta-
tion of these precursor ions. The masses of these fragment ions can
therefore be used to delineate the amino acid sequence of the peptide.
The availability of annotated protein sequence databases and algorithms
that match the observed MS/MS spectra to protein entries have been
crucial for the biomedical application of MS to study proteins.55,56 MS
data can also be aligned to databases generated using DNA or RNA
sequences to infer amino acid sequences. Current MS technologies now
allow for the characterization of the ECM composition and turnover in
CVD in unprecedented detail that is not possible using other techni-
ques.2–5,52,57–59
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Glycosaminoglycan (GAG) N-linked oligosaccharide Antibody recognition site 

Diffuse bands due to glycans 

Epitope masking due to cleavage

Epitope masking due to glycosylation

Proteins detected regardless of size

Tryptic and non-tryptic peptides
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Epitope recognition
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D
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Fragments detected Only full-length detected 

Figure 1 Antibody limitations. Detection by antibodies relies on binding to specific regions (epitopes) of the target protein. PTMs such as glycosylation or
fragmentation may hinder epitope accessibility. Antibody A recognises non-glycosylated regions and always yields detection independently of sugar removal
(left panel). Antibody B recognises epitopes in the vicinity of glycosylated regions. Therefore, recognition is only achieved after deglycosylation. Similarly, if
protein fragmentation occurs, only antibody C, which recognises an intact portion, reveals a degradation pattern. Antibody D targets a region affected by
fragmentation and can only detect the intact epitope. Consequently, information about degradation is missed. Proteomics interrogates peptides across the
whole sequence and allows for consideration of variable modifications at the amino acid level. Different protein forms can therefore be identified and quanti-
fied. GAG, glycosaminoglycan; Pan-DG, pan-deglycosylation.
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5. Extraction of ECM proteins

Over the past years our group has focused on ECM remodelling in car-
diac2,52,60,61 and vascular tissues3,4,57,59 using proteomics. In a previous
review, we highlighted the potential of proteomics when applied to sys-
tems biology.62 A recent review by Chang et al.63 has focused on clinical
applications of ECM proteomics (i.e. biomarker discovery and tissue
engineering). In this review, we discuss how MS can be used to assess
ECM composition in CVD.

Contemporary mass spectrometers have exceptional sensitivity, pro-
viding detection at attomole concentrations.64 However, such sensitivity
is largely confined to pure solutions and not yet achievable in complex
biological samples. For example, the dynamic range of proteins present
in plasma spans 10 to 11 orders of magnitude (e.g. 4 � 1010 pg/ml for
albumin compared to few pg/ml for some interleukins).65 Current MS
instrumentation can only resolve 4–6 orders of magnitude. While pro-
teomics offers a comprehensive analysis of high abundant proteins it has
not yet overcome the difficulties of analysing low abundant proteins in
complex samples. Unlike PCR or antibody-based techniques, proteo-
mics lacks the ability to amplify low abundant proteins to aid detection
and instead relies on enriching the target proteome.

For instance, cardiac ECM proteins are markedly less abundant than
cytosolic and mitochondrial proteins.46 Thus, studies that use whole tis-
sue lysates for proteomic analysis inevitably mask the identification of
the less abundant ECM constituents. With cardiac tissue this is exacer-
bated due to the higher cellular content.2 Accordingly, methods that
enrich for ECM proteins have received considerable interest of late and
principally focus on removing plasma contaminants and soluble cellular
proteins.57,66

While the inherent insolubility of many ECM proteins lends itself to
effective enrichment by decellularization, subsequent proteomic analysis
requires all proteins to be solubilized. Standard lysis buffers are not effec-
tive for ECM solubilisation. Instead, we implemented a stepwise extrac-
tion of vascular ECM proteins.57 This involves treating vascular tissues

with sodium chloride (NaCl) to remove plasma proteins and extract
loosely bound extracellular proteins before decellularizing the tissue
with sodium dodecyl sulfate (SDS). Each incubation step takes 4 h.
Solubilisation of mature ECM proteins is finally achieved by treatment
with guanidine hydrochloride (GuHCl) which destabilizes the ionic,
disulfide-dependent protein conformations in large aggregating proteo-
glycans (versican, aggrecan, etc.), small proteoglycans (decorin, biglycan,
etc.), cell-attachment glycoproteins such as type VI collagen, fibronectins,
laminins, and basement membrane components.67 The method was later
adapted for the use in porcine cardiac tissue by reducing the incubation
time for NaCl and prolonging the SDS treatment2 (Figure 3A). In smaller
animal models (i.e. mouse, rat) cardiac cellularity is proportionally higher
compared to that of larger animal models such as pig or goat (Figure 3B).
With increased cellularity, decellularization is more difficult to achieve
and may require additional enrichment steps, i.e. for glycoproteins or
glycopeptides.52

Others have adopted similar workflows to extract ECM proteins in a
number of tissues.66,68–70 Of note is the Texas 3-step extraction method
by Lindsey’s group.66 In their method, applied to mouse hearts, a similar
sequential extraction consisting of NaCl and GuHCl extraction steps as
well as the SDS decellularization2,4,57 are performed. In addition, the
Texas 3-step method includes further extraction of the insoluble protein
pellet after incubation in GuHCl for 48 h. Notably, the vast majority of
ECM proteins are identified in the GuHCl fraction. The pellet, however,
contains few polymerized proteins, which are not extracted by our
‘English Quickstep’ method (Figure 3C).

In a recent proteomics study, Johnson et al.71 studied the human car-
diac ECM from cadaveric donor hearts. Decellularization was achieved
after perfusion with high SDS concentration (i.e. 10 times greater than
that used in our protocol) for more than 3 days. This yields a simplified
ECM, but the ECM proteins will be denatured and ECM-associated pro-
teins will be lost during prolonged incubation with such a high concentra-
tion of detergents. The study of ECM using MS approaches described
below, requires a gentler extraction method from snap-frozen tissues

Figure 2 MS to explain discrepancies between different antibodies. An antibody against a C-terminal epitope (green on left panels, red on right panels)
results in less intense staining for decorin (DCN) in the atrium compared to the left ventricle. An antibody against a different epitope (green on right panel)
shows no such difference in staining intensities. This may be explained by cleavage of decorin at the C-terminus, which was detected in the atrium using MS.
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..that strikes a balance between removal of cellular components while
preserving ECM-associated proteins.

6. Discovery proteomics

Discovery proteomics refers to the use of proteomics as a hypothesis-
free tool to globally profile the proteome of a given sample. In discovery
proteomics, bottom-up or shotgun proteomics is based on the analysis
of peptides generated after enzymatic digestion of a protein mixture.
Digested peptides are separated by LC before MS/MS analysis. In com-
parison to gene expression analysis ECM proteomics offers certain
advantages. First, many diseases manifest over years. Therefore, although
transcript levels provide a window into cellular activity at the time of har-
vest, they merely provide an indirect assessment of protein synthesis at a
single time point. When studying dynamic entities such as the ECM, tran-
script levels become more extraneous, particularly as nascent ECM pro-
teins are incorporated into the existing matrix, and actual ECM protein
abundance is determined by the balance of protein synthesis, deposition,
and degradation.

There are multiple MS approaches that can be applied to yield accu-
rate quantitation. However, each approach comes with distinct trade-
offs.62 Label-free methods can provide relative quantification in simple
mixtures. In complex mixtures, isotopic labelling should be employed,
which allows multiplexing of samples. For instance, stable isotope label-
ling with amino acids in cell culture (SILAC) is based on metabolic label-
ling of proteins in vitro with amino acids containing heavy (e.g. 13C) stable
isotopes. Fully labelled SILAC mice have also been generated.72 Methods
for protein labelling are based on the use of isobaric tags, such as isobaric

tags for relative and absolute quantitation (iTRAQ) or tandem mass tag
(TMT).73 Isobaric tags have the same chemical structure but different
isotope substitutions. When samples are labelled with different tags,
they can be subsequently mixed in equal portions, and the protein abun-
dance from the different samples can be assessed by comparing the
abundance of peptides labelled with the different tags in a single LC-MS/
MS run. Although these tagging methods overcome issues such as tech-
nical reproducibility of LC-MS/MS runs, labelling is only introduced after
protein digestion and therefore, unlike SILAC, isobaric tags do not allow
for in vivo or in vitro labelling but have been used for quantitative compari-
sons using tissue samples.74,75

7. Targeted proteomics

The discovery proteomics approach is largely limited by the scan speed
as peptides are selected for fragmentation based on abundance. This sto-
chastic process results in a bias towards the more abundant proteins.62

In contrast to discovery proteomics, targeted proteomics focuses on a
predetermined group of proteins of interest (e.g. ECM proteins).
Proteotypic peptides unique to these proteins are quantified in what is
known as selected reaction monitoring (SRM) or multiple reaction moni-
toring (MRM).76 The targeted approach increases selectivity, sensitivity,
and accuracy and enables simultaneous measurement of hundreds of
transitions in a single LC-MS/MS run.76 The transitions for proteotypic
peptides will be interrogated as a surrogate of total protein levels, but
peptides not included in the search (e.g. non-annotated PTMs) are not
detected.55 This approach is particularly useful to detect CVD bio-
markers, as Domanski et al.77 demonstrated in a study that also included

A

B C

Figure 3 Enrichment of cardiac ECM proteins. (A) Our previously published 3-step ECM extraction method for cardiac tissue is based on decellularization
and ensures enrichment and detection of ECM proteins. The image shows a decellularized heart after prolonged SDS perfusion. The ECM is solubilized by
GuHCl and analysed using proteomics. (B) Smaller species display higher levels of cardiac cellularity as measured by the ratio of 3 members of different ECM
protein classes and the cardiac-specific troponin T (TNNT2, y-axis). (C) Proteins identified in murine hearts using the Texas 3-step66 extraction method
compared to those identified by our previously published method (see Drozdov et al.61). Most proteins are identified by both methods. Unlike the Texas
3-step method, our ‘English Quickstep’ method did not include an analysis of the remaining pellet after GuHCl extraction.
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..ECM biomarkers of fibrosis. Moreover, targeted proteomics constitutes
a robust method to validate findings obtained from discovery experi-
ments (Figure 4).3

8. Post-translational modifications

ECM proteins are often modified by PTMs,1 most notably hydroxylation
and glycosylation.

8.1. Collagen hydroxylation
Collagens are the major fibril-forming proteins in the ECM and they con-
sist of a basic triple-helical conformation. The triple helix increases
molecular stability and provides resistance to tensile stress. Although
many types of collagen exist, a consistent pattern can be observed for
amino acid sequences of all collagens; each chain contains enriched trip-
let repeats consisting of the sequence Xaa-Pro-Gly, where Xaa is any
amino acid, Pro is proline, and Gly is glycine. Prolines within these
domains become hydroxylated under the action of prolyl-hydrox-
ylases.78 Hydroxyprolines provide the substrate for the formation of
hydrogen bonds between the adjacent collagen alpha chains. Prolyl-4-
hydroxylases and prolyl-3-hydroxylase catalyse the hydroxylation of
specific proline residues. The former enzyme reacts on proline with the
minimum sequence Xaa-Pro-Gly and the latter appears to require a Pro-
4Hyp-Gly (Hyp is hydroxyproline) sequence.78,79 Hydroxylation is a sta-
ble, non-reversible PTM that addsþ15.99 Da (i.e. an oxygen atom) to
proline. Xaa-Pro-Gly domains are rare in ECM proteins other than colla-
gens, and this confers specificity to the acquisition of this PTM.

Similar to prolyl-hydroxylases, lysyl-hydroxylases catalyse the hydrox-
ylation of lysine, which is critical for collagen stability. The specifics of
lysine hydroxylation are beyond the scope of this review, and are dis-
cussed elsewhere.80 Adding hydroxylation as a variable modification,

improves identification and quantification of collagen levels in disease.3,68

Ascorbic acid (vitamin C) is a key cofactor for prolyl-4-hydroxylase, and
its deficiency causes defects in collagen assembly.81 Inhibition of this
enzyme has been shown to affect left ventricular remodelling after myo-
cardial infarction in rats.82 In this study only proline:hydroxyproline
ratios were assessed. MS provides assessment of hydroxylation with
concomitant assignment to specific collagen types.

8.2. Glycosylation
Glycosylation is an enzymatic process through which a glycan is cova-
lently attached to a second biomolecule. Glycosylation is a very common
form of PTM of ECM proteins. Attached glycans affect ECM protein
structure and function by influencing its folding, solubility, aggregation,
and/or degradation behaviour.83 Indeed, aberrant glycoforms are already
approved as biomarkers for cancer.84 In cardiac tissue, Montpetit et al.85

showed that aberrant glycosylation of extracellular domains alters ion
channel activity.

There are two main glycosylation types in mammals: N-glycosylation
occurs at the carboxamido nitrogen on asparagine residues (Asn) of
secreted/membrane proteins within the consensus sequence Asn-Xaa-
Thr/Ser, where Xaa is any amino acid except for proline.86 The second
main type of glycosylation is O-glycosylation, in which sugar residues
attach to serine and threonine residues (Ser, Thr) or, to a much lesser
extent to hydroxyproline and hydroxylysine.87 The latter two are partic-
ularly abundant in collagens and add an additional level of regulation to
collagen biosynthesis. If both present, O-glycosylation occurs after N-
glycosylation. Moreover, O-glycosylation is not restricted to secreted
proteins and to date, no consensus sequences have been identified
for this PTM.88 ECM proteins may be extensively modified by addition of
N- and O-linked large and repetitive glycosaminoglycans (GAGs) and
shorter and diverse N- and O-linked oligosaccharides. Aberrant

Figure 4 MS strategies for ECM characterisation. Untargeted proteomics is appropriate for discovery experiments where no a priori information is avail-
able. When a delimited number of targets of interest are known a priori, targeted proteomics offers a robust method for detection and quantification.
Novel MS methods such as a combination of higher energy collision dissociation (HCD) and electron transfer dissociation (ETD) allow for characterisation
of complex PTMs including glycosylation. ZIC-HILIC, zwitterionic hydrophilic interaction LC; Pd, product-dependent; Alt, alternating.
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..glycosylation can lead to pathological abnormalities and disease. In the
last decade, proteomics has emerged as a powerful platform to charac-
terize glycosylation profiles of ECM proteins, including the cardiovascu-
lar field.52,58,89 There are two major strategies that can be used to study
glycoproteins by MS (Figure 4).

8.2.1 Indirect MS methods
A common large-scale strategy utilizes a glycopeptide or glycoprotein
enrichment step followed by glycan removal. Glycopeptides are usually
enriched using lectins, hydrophilic interaction LC, hydrazide or graphite.
The method of choice will determine the type of glycopeptides that will
ultimately be enriched.90,91 After enrichment, PNGase-F is used to enzy-
matically remove the glycan moiety from asparagine residues, serving
two purposes: Firstly, the core peptide can be analysed without interfer-
ence from sugars during MS/MS and secondly, PNGase-F via a deamida-
tion reaction converts the asparagine to aspartic acid. This conversion is
characterized by a 0.984 Da mass shift that can be detected using MS.
Moreover, if the reaction is performed in the presence of H18

2 O, it
instead leads to a 2.99 Da mass shift, indicative for the presence of glyco-
sylation at that position. Using this methodology in rat hearts, Parker
et al.58 identified 1556 N-linked glycosites from 972 protein groups. This
study provided information on the changes in glycosylation following
ischemia and reperfusion. Enzymatic deglycosylation allows for the sepa-
rate analysis of the core protein and glycan,92 but the link between the
glycans and peptides is lost.

8.2.2 Direct MS methods
The combined analysis of the glycan motif (glycomics) and the protein
(proteomics) forms the field of glycoproteomics. For such analysis,
proteins in the sample are first digested into peptides, followed by glyco-
peptide enrichment using zwitterionic hydrophilic interaction LC (ZIC-
HILIC)93 or alternative approaches.91,94 Recently, the combination of
higher energy collision dissociation (HCD) and electron transfer dissoci-
ation (ETD) have facilitated direct MS analysis of glycopeptides. HCD
fragmentation breaks glycosidic bonds, whereas ETD preserves the gly-
can attachment and fragments the peptide backbone, providing peptide
sequence information.89 Direct analysis of intact glycopeptides has rarely
been applied in the cardiovascular context. Our study by Yin et al.89

characterised the glycopeptides of secretomes from human endothelial
cells. More recently, we have characterized the glycosylation profile of
human cardiac ECM proteins.52

8.3. Reversible PTMs on ECM proteins
Glycosylation and hydroxylation are among the most common PTMs in
ECM proteins. Importantly, they constitute non-reversible modifications,
but reversible PTMs such as phosphorylation and sulfonation also occur.
For example, the transmembrane collagen XVII can be phosphorylated
and this mechanism regulates shedding of its ectodomain.95 Similarly,
phosphorylation of osteopontin inhibits vascular calcification.96 In a study
by Lundby et al.97 proteomics was used to identify phosphosites on 14
different rat tissues including hearts. Phosphopeptides were enriched
using titanium dioxide. Notably, many previously unrecognized

Figure 5 Biological activity of ECM fragments. Fragments derived from a variety of ECM proteins (i.e. matrikines) exert functions that regulate diverse cel-
lular and tissue processes. Proteomics offers a tool for the analysis of known ECM fragments as well as the discovery of previously unknown fragments with
functions potentially important for cardiac physiology and putative therapeutic targets. *Indicates putative fragments with activities only characterised after
exogenous administration. CO1A1, collagen alpha-1(I) chain; FINC, fibronectin; EDA, extra domain A; TENA, tenascin; FN3, fibronectin type III domain;
CO6A3, collagen alpha-3(VI) chain; ELN, elastin; PGS2, decorin; CO4A1, collagen alpha-1(IV) chain; OSTP, osteopontin; LAM332, laminin 332; VTNC, vitro-
nectin; CSPG2, versican; EGF, epidermal growth factor-like domain; HGF, hepatocyte growth factor; COIA1, collagen alpha-1(XVIII) chain; PGBM, perlecan;
COFA1, collagen alpha-1(XV) chain; POST, periostin; FAS1, fasciclin-like domain; PGCA, aggrecan; HPLN1, hyaluronan and proteoglycan link protein 1.
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.
phosphosites were reported in ECM proteins including several collagens
and non-collagenous ECM proteins such as laminins, fibronectin, versi-
can, and decorin to name a few. This methodology was effective on fresh
animal tissues, but has yet to be applied to the context of cardiac disease.
Challenges to its application will include preservation of short-lived
PTMs in patient samples and during sample preparation.

9. Fragmentation of ECM proteins

Proteolytic fragmentation of ECM proteins by secreted proteases con-
trols their localisation, activation, and interaction, adding an additional
layer of regulation for tissue processes. Using experimental data, data-
bases/algorithms such as MEROPS and PROSPER have been created to
calculate probability matrices for target protease sequences.98–100 This is
a valuable resource for research and is particularly useful when used in
conjunction with proteomics. Standard proteomics pipelines work with
digested protein mixtures (i.e. trypsin digestion) to screen for the abun-
dance of proteins in a tissue. Trypsin cleaves C-terminally to lysine (Lys,
K) or arginine (Arg, R) residues. However, proteases other than trypsin
can be present in samples and the endogenous proteolytic activity may
give rise to non-tryptic peptides. In a study from Stegemann et al.59, we
described a number of potential proteolytic targets for various MMPs in
the vasculature after addition of these proteases to human vascular tis-
sue explants.

When searching for protease targets, appropriate controls are needed
(i.e. healthy or non-digested tissues) in order to avoid reporting artefactual
cleavages that may arise from experimental processing, or identifying those
that are part of normal physiological turnover. Moreover, the addition of
broad-spectrum protease inhibitors during extraction reduces the chance
of producing artefactual fragmentation. More sophisticated methods
include free C- or N-terminal labelling of endogenous protease-generated
fragments prior to digestion for MS analysis.101 For example, the TAILS
proteomics approach (isotope-based N-terminal labelling) has been suc-
cessfully applied by Prudova et al.102 to analyse the degradome of MMP-2
and MMP-9. The same authors used a similar methodology to characterize
the degradation of proteolytic fragments in human platelets.103 Ultimately,
after identification of cleavage sites, targeted proteomics can be used to
study the abundance of ECM fragments in clinical samples.

Specific biological activities have been attributed to certain ECM pro-
teolytic fragments (Figure 5).5,19,52,104–122 The term matrikines has been
proposed for these fragments. This should not be confused with the term
matricryptins, which is more accurately applied to ECM protein domains
that are unexposed (and therefore inactive) unless the protein is subject
to fragmentation-derived conformational changes. For example, C-termi-
nal cleavage of collagens XV and XVIII, generates restin and endostatin,
respectively. Both fragments exert anti-angiogenic activity in vivo.119 Other
collagen types also generate biologically active fragments, e.g. collagens IV
and VI, which are highly expressed in the cardiac ECM2, as reviewed else-
where.123 The large proteoglycan versican is cleaved by proteases from
the matrix metalloproteinase (MMP) and a disintegrin and metalloprotei-
nase with thrombospondin motifs (ADAMTS) families.124 Versikine is gen-
erated by N-terminal cleavage of versican by ADAMTS-1/4, and influences
cell proliferation and apoptosis locally.113 Endorepellin, a C-terminal pep-
tide from perlecan exerts anti-angiogenic effects.120 Last, non-structural
ECM proteins also release fragments, e.g. the small leucine-rich proteogly-
can decorin releases decorunt and other fragments, that exert local regula-
tory roles over cytokines and growth factors.52,107,117 Recently, we
demonstrated that decorin is fragmented in the cardiac ECM. We

detected C- and N-terminal non-tryptic cleavage sites on decorin by MS.
The resulting cleavage products may regulate growth factor availability.52

Using similar approaches, the Lindsey group identified cleavage products
derived from collagen I that promote scar formation after MI.5

10. Conclusions

The application of MS constitutes one of the biggest technological advan-
ces introduced to protein research. It offers an unbiased platform to ana-
lyse global protein expression and holds potential in facilitating novel
insights. As recently highlighted in a scientific statement of the American
Heart Association55; it is anticipated that proteomics research will further
our understanding of mechanisms of CVD with one important aspect
being the elucidation of ECM composition in healthy and diseased cardio-
vascular tissues. To achieve this goal, bioinformatics approaches should be
applied for interpreting the protein datasets and extract the biologically
relevant information. Undoubtedly, the amount of data generated by pro-
teomics represent an analytical challenge. In this regard, special attention
should be paid to ECM fragments as they hold potential for two purposes:
from a diagnostic perspective, they leak from tissues and when released
into the blood stream can be used as biomarkers for CVD. Secondly, since
many ECM fragments are biologically active, they not only hold potential
as therapeutic targets but also as modifiable therapeutic agents—to date
an underexplored avenue of cardiovascular medicine.
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