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Review Article

EGFR exon 20 insertion mutations and ERBB2 mutations in lung 
cancer: a narrative review on approved targeted therapies from 
oral kinase inhibitors to antibody-drug conjugates
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Background and Objective: This review will provide an overview of EGFR and ERBB2 mutations in 
non-small-cell lung cancer (NSCLC) with a focus on recent clinical approvals.
Methods: We obtained data from the literature in accordance with narrative review reporting guidelines.
Key Content and Findings: EGFR mutations are present in up to 15–20% of all NSCLCs; amongst 
these, 10% correspond to kinase domain insertions in exon 20. Structurally similar, ERBB2 (HER2) 
mutations occurs in 1–4% of NSCLCs, mostly consisting of insertions or point mutations. The majority 
of EGFR exon 20 insertions occur within the loop following the regulatory C-helix and activate the kinase 
domain of EGFR without generating a therapeutic window to gefitinib, erlotinib, afatinib, dacomitinib or 
osimertinib. Mobocertinib represents a novel class of covalent EGFR inhibitors with a modest therapeutic 
window to these mutants and induces anti-tumor responses in a portion of patients [at 160 mg/day: 
response rate of <30% with duration of response (DoR) >17 months and progression-free survival (PFS) of  
>7 months] albeit with mucocutaneous and gastrointestinal toxicities. The bi-specific EGFR-MET antibody 
amivantamab-vmjw has modest but broad preclinical activity in EGFR-driven cancers and specifically for 
EGFR exon 20 insertion-mutated NSCLC has response rates <40% and PFS of <8.5 months at the cost of 
both infusion-related plus on-target toxicities. Both drugs were approved in 2021. The clinical development 
of kinase inhibitors for ERBB2-mutated NSCLC has been thwarted by mucocutaneous/gastrointestinal 
toxicities that preclude a pathway for drug approval, as the case of poziotinib. However, the activation of 
ERBB2 has allowed for repurposing of antibody-drug conjugates (ADCs) that target ERBB2 with cytotoxic 
payloads. The FDA approved fam-trastuzumab deruxtecan-nxki in 2022 for NSCLC based on response rate 
of >55%, DoR >9 months, PFS >8 months and manageable adverse events (including cytopenias, nausea and 
less commonly pneumonitis). Other therapies in clinical development include sunvozertinib and zipalertinib, 
among others. In addition, traditional cytotoxic chemotherapy has some activity in these tumors.
Conclusions: The approvals of mobocertinib, amivantamab, and trastuzumab deruxtecan represent the 
first examples of precision oncology for EGFR exon 20 insertion-mutated and ERBB2-mutated NSCLCs.
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Introduction

The last 20 years have seen the explosion of technological 
advances that have allowed for translation of biomedical 
knowledge into routine clinical practice within the field 
of medical oncology. The culmination of these factors 
within the field of thoracic oncology has heralded the era 
of precision oncology for lung cancer care (1-6). Thoracic 
tumors are a heterogeneous group of malignancies—
and even among lung cancers specifically, there are 
multiple histological variants that represent the epithelial, 
mesenchymal, and other cells of origin of the neoplastic 
process (Figure 1). Non-small-cell lung cancers (NSCLCs) 
are the most prevalent of these, comprising of mostly lung 
adenocarcinoma and squamous cell carcinoma (Figure 1A). 
Both larger entities can then be further subdivided into 
clinically relevant subgroups based on tumor biomarkers  
(7-12). Of these, identification of actionable oncogenic 
driver alterations (mutations or gene rearrangements) and 
tumor programmed death ligand 1 (PD-L1) cell surface 
expression are critical for optimal treatment selection and 
outcomes in these cancers (13-16). Lung adenocarcinomas 
are far more robustly enriched with these mostly non-
overlapping actionable driver oncogene aberrations that 
have common intracellular properties leading to constitutive 
activation of proliferative signaling cascades and induce the 
anti-apoptotic cellular machinery (32-35). The majority 
of clinically-relevant de novo driver oncogenes are truncal 
evolutionary events that are retained by NSCLCs (36,37). 
Presently, the list of driver oncogenic alterations tied to 
precision therapies approved by international regulatory 
bodies include: EGFR, ALK, ROS1, BRAF, MET, RET, 
KRAS, ERBB2, and NTRK (Figure 1A)—with many others 
rapidly emerging (13,38-40).

Activating events of ErbB family members are common 
across all cancer types and represent some of the most 
frequent driver oncogenes in NSCLC (24-26,41-43). 
ErbB-1 (also known as epidermal growth factor receptor, 
EGFR) and ErbB-2 (also known as Her2) are two of the 
most successful examples of actionable driver oncogenes. 
Mutations of the EGFR gene are present in more than 15–
20% of all NSCLC, particularly in lung adenocarcinomas 
occurring in younger patients, those of Asian descent, and in 
the presence of limited/no tobacco exposure as compared to 

NSCLCs occurring in other patient cohorts (10,17,44-47).  
Mutations of the ERBB2 gene are present in less than 5% 
of all NSCLCs and with similar enrichment amongst the 
populations previously noted (26-31). In both EGFR- and 
ERBB2-affected NSCLCs, the hotbed of oncogenic driver 
alterations is within the exon 20 kinase domain. Moreover, 
these are almost exclusively somatic events—very few cases 
of EGFR- or ERBB2-mutated NSCLC are associated with 
germline genetic susceptibility (48).

This review will provide an overview of EGFR and 
ERBB2 mutations in NSCLC, with a focus on recent clinical 
approvals of kinase inhibitors and antibodies that have 
added to the armamentarium of precision oncology within 
this cohort of cancers with previously unmet need. We 
present this article in accordance with the Narrative Review 
reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-23-98/rc).

Methods

Information used to write this review article was collected 
from a PubMed.gov search from years 2000 to 2023 using 
key words EGFR, ERBB2, and exon 20 insertion; hand 
searches of the references of retrieved literature; personal 
searches for texts on literature reviews of lung cancers with 
different ErbB mutations; discussions with co-authors and 
experts in the field; and personal experience of the senior 
authors participating in and writing expert reviews of the 
literature on similar topics. Both preclinical and clinical 
studies were evaluated. Table 1 summarizes the search 
strategy for this narrative review.

Preclinical models of EGFR and ERBB2-directed 
therapies in NSCLC

The biomedical community has performed extensive 
characterization of ErbB mutant proteins, with the majority 
of focus on EGFR and ERBB2 wild-type (WT) proteins 
and kinase domain mutations (Figure 2). Many of these 
preclinical models of isolated proteins or rudimentary cell 
lines have been quite informative of patterns of response 
and resistance to EGFR/ERBB2 tyrosine kinase inhibitors 
(TKIs) with close relationship to clinically-observed activity 
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Figure 1 Frequency of driver oncogenes in lung cancer with a focus on EGFR and ERBB2 mutations. (A) Bar of frequency percentages 
of the major subtypes of lung cancer with pie charts of the prevalence of the most common driver oncogene mutations and PD-L1 
immunohistochemistry tumor proportion score expression ≥50% in both squamous cell carcinoma and adenocarcinoma histologies [data 
adapted from (7-16): for adenocarcinoma the prevalence of EGFR mutations is approximately 15–40%, ALK rearrangements 3–5%, 
MET exon 14 skipping mutations 2–4%, BRAF-V600E mutation 1–2%, ERBB2/HER2 mutations 1–2%, ROS1 rearrangements 1%, RET 
rearrangements 1%, NTRK rearrangements 0.1%, and KRAS-G12C mutation 15–35%; for squamous cell carcinoma the prevalence of 
KRAS-G12C is approximately 2–10%, EGFR mutations 1–5%, and the rare targets of BRAF-V600E mutations, MET exon 14 skipping 
mutations, ALK rearrangements, ROS1 rearrangements, RET rearrangements, ERBB2/HER2 mutations, and NTRK rearrangements: all less 
than 0.5%]. (B) Highlights of the amino-acid sequence of EGFR and ERBB2 within the exon 20 kinase domain sequence. The frequency of 
EGFR exon 20 insertion mutations by amino-acid position with representative examples are displayed. For ERBB2 mutations, the frequency 
of mutations within the kinase, transmembrane and extracellular domains indicated with representative examples displayed. The frequency 
of EGFR mutations was obtained from (17-23). The frequency of ERBB2 mutations was obtained from (18,24-31).
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of the same compounds.
There is significant heterogeneity in the prevalence 

of EGFR kinase domain aberrations noted, with most 
mutations occurring within exons 18 to 21 of the kinase 
domain of the EGFR gene (10,17,44-47) (Figure 2A). The 
most common mutations center on in-frame deletions 
or indels of exon 19 (EGFR-delE746_A750 the typical 
example of LREA-type amino-acid deletions) and the 
exon 21 L858R mutation (Figure 2A). These common 
canonical mutants lead to structural changes that change 
ATP kinetics, enhance EGFR activation (promoting an “on” 
instead of “off” switch), and generate a favorable therapeutic 
window to almost all EGFR TKIs that have completed 
clinical development, including: 1st generation reversible 
inhibitors (gefitinib, erlotinib), 2nd generation irreversible 
inhibitors (afatinib, dacomitinib), 3rd generation mutation-
selective covalent inhibitors (osimertinib), and EGFR exon  
20 insertion active inhibitors (poziotinib, dacomitinib) 
(33,63-69). This mutation-to-drug response phenotype 
translates well to the clinical realm, where tumors driven 
by common EGFR mutations are highly responsive to 
EGFR TKIs and experience clinical outcomes that far 
exceed what is typically seen with cytotoxic chemotherapy 
or immunotherapy (70-77). Hence, these EGFR TKIs have 
gained regulatory approval for use as frontline treatment 
options for those with advanced stage disease and are now 
entering the adjuvant arena (osimertinib) for those with 
earlier stage disease (78).

However, not all driver alterations in EGFR have proven 
to be equally actionable, and those with canonical exon 
19 deletions or L858R point mutations have experienced 

the greatest progress with application of available targeted 
therapies to date. Head-to-head clinical trials have been 
able to show that for patients with tumors harboring EGFR-
exon 19 deletions/indels or L858R, the 3rd generation 
EGFR TKI osimertinib outperforms others with higher 
and more durable response rates both systemically and in 
the central nervous system (CNS) along with lower rates of 
mucocutaneous/gastrointestinal toxicities and better overall 
tolerability (79). Osimertinib is therefore the preferred 
option for palliative first line therapy in cases with advanced 
disease and following surgery and chemotherapy in the 
adjuvant setting (78,79).

Other less common EGFR mutations (Figure 2A) 
display similar structural, drug inhibition, and clinical 
translational characteristics—but with far greater 
heterogeneity in their overall efficacy (Figure 2B). Some 
investigators have proposed using a structure-function 
subgrouping to better classify in vitro sensitivity of these 
different structurally-defined categories of EGFR mutants: 
(I) classical-like (exon 19 deletions/indels, L858R, L861Q) 
with broad sensitivity to multiple generations of EGFR-
directed TKIs; (II) P-loop αC-helix compressing (PACC) 
(G719X, S768I) with highest sensitivity to 2nd generation 
irreversible EGFR TKIs (Figure 2B); (III) T790M-like 
hydrophobic core mutants (such as compound EGFR-
T790M), and (IV) exon 20 loop insertions (80). Case series 
and non-randomized trials (49,81,82) have confirmed 
activity of afatinib and led to the approval of this drug for 
tumors with EGFR-G719X, -S768I or -L861Q mutations 
(Figure 2). Single arm studies have also confirmed the 
activity of osimertinib (83,84); use of this agent for these 

Table 1 The search strategy summary

Items Specification

Date of search 11/01/2022 to 02/01/2023

Databases and other sources  
searched

PubMed.gov, ASCO annual meeting abstracts, AACR annual meeting abstracts, ESMO 
annual meeting abstracts, IASLC annual meeting abstracts

Search terms used EGFR, ERBB2, and exon 20 insertion

Timeframe 06/04/2004 to 01/31/2023

Inclusion and exclusion criteria No exclusion was made to maximize source identification. Manual searches of the 
references of retrieved literature, personal searches for texts on literature reviews, 
discussions with co-authors and experts in the field, personal experience of the senior 
authors (DC, PV, SK) participating in and writing expert reviews of the literature on similar 
topics were used to maximize inclusion

Selection process Four authors (DS, EA, HV, DBC) conducted the initial selection and then consensus was 
obtained from all authors on literature, meeting abstracts and online references to be used
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Figure 2 Subtypes of EGFR mutations with a focus on preclinical patterns of response/resistance to EGFR TKIs. (A) Representation of the 
EGFR protein by key gene numbers, overlaid with clinically-relevant types of mutations mostly centered within the kinase domain. The 
prevalence of these mutation subtypes are indicated by exon location. The frequency of EGFR mutations was obtained from (17-22,49-56). 
(B) Summary of preclinical models driven by selected EGFR mutations paired with the in vitro sensitivity and also in vitro selectivity pattern 
against EGFR WT of the diversity of approved EGFR TKIs. Data was extrapolated from (23,50,57-62) and unpublished data from the authors’ 
translational thoracic oncology laboratory. The degree of sensitivity and resistance is indicated by number of + (sensitive/selective) or − (resistant/
non-selective) signs as extrapolated from preclinical studies. Please, refer to aforementioned references for each individual half maximal 
inhibitory concentration (IC50) for preclinical proliferation assays. EGFR, epidermal growth factor receptor; ERBB2, erb-b2 receptor tyrosine 
kinase 2 (also known as HER2, human epidermal growth factor receptor-2); WT, wild-type; TKIs, tyrosine kinase inhibitors.
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less common mutations is thus also endorsed by expert 
consensus groups due to its more favorable toxicity 
profile the National Comprehensive Cancer Network 
(NCCN) (39) (Figure 2). Other less common but also 
variably EGFR TKI-responsive mutations in preclinical 
models and patients with NSCLC include: EGFR exon 19 
insertions (17,50), EGFR exon 18 indel delE709_T710insX 
or E709X (51-53), EGFR kinase domain duplications (54) 
and EGFR fusion genes (55) (Figure 2).

EGFR exon 20 insertion mutations as a group account 
for close to 10% of all EGFR mutations (Figure 2A) and 
the most heterogeneous cohort with multiple types on 
insertions/indels occurring along the span of the exon 
(Figure 1B) along with highly variable patterns of response 
to EGFR-directed therapies (18-22,56) (Figure 2B). The 
most prevalent mutants cluster around insertions spanning 
amino-acids EGFR-A767, -V769, -D770, -P772 and -N773 
(Figure 1B), which localize to the loop following the C-helix 
of the kinase domain. The crystal structure of one of these 
EGFR exon 20 insertion mutations reveals an unaltered ATP 
binding pocket in relation to EGFR WT; the inserted amino 
acid residues form a wedge at the end of the C-helix that 
promotes the active kinase conformation and related kinetic 
changes (19). Quite unlike the mechanism of activation 
seen with other types of EGFR-affecting alterations, this 
conformal change renders an unfavorable therapeutic 
window for 1st, 2nd, and most 3rd generation EGFR TKIs 
(19,20,56,85). Preclinical models have confirmed primary 
insensitivity of these exon 20 mutants to these prior EGFR 
TKIs (Figure 2B).

Multiple academic and pharmaceutical groups have used 
the growing structural and biochemical knowledge of these 
mutants to screen for or design EGFR TKIs that could 
exploit the non-ATP binding pocket structural changes 
and yield modest therapeutic windows in relation to EGFR 
WT (23,57-59,86). Most of the small molecules that fit this 
profile are covalent EGFR inhibitors and include poziotinib, 
mobocertinib, sunvozertinib, and zipalertinib among 
others. Preclinical models of the most frequent EGFR 
exon 20 insertion mutants consistently show only modest 
sensitivity and selectivity of mobocertinib and similar drugs  
(Figure 2B). The clinical development of such agents is 
outlined further below.

However, not all EGFR exon 20 insertion mutations are 
insensitive to previously existing EGFR TKIs. Notably, the 
EGFR-A763_Y764insFQEA mutation (and the identical 
EGFR-D761_E762insEAFQ)—accounting for 5% of exon 
20 insertion mutations—stands at the transition between 

exons 19 and 20 and alters the register of the C-helix 
toward its N-terminus resulting in structural and kinetic 
alterations that resemble those seen with other EGFR TKI-
sensitizing mutations (such as exon 21 L858R and exon 
21 L861Q). This leads to favorable preclinical therapeutic 
windows for all approved classes of EGFR TKIs (19,60) 
(Figure 2B). When translated into the clinic, patients whose 
tumors harbor this mutation have had prolonged responses 
to aforementioned EGFR TKIs. It is thus reasonable to 
offer off-label gefitinib, erlotinib, afatinib, dacomitinib, or 
osimertinib in these cases.

Other rare EGFR exon 20 mutations with unique 
patterns of responsiveness to available therapies include the 
EGFR-D770 to -G770 alteration that permits response to 
the irreversible 2nd generation EGFR-TKIs afatinib and 
dacomitinib (61,62) (Figure 2B). These variants also have 
modest sensitivity to mobocertinib (Figure 2B) and other 
similar EGFR TKIs and have been included in completed 
and ongoing clinical studies investigating novel agents for 
exon 20 insertion mutations.

In contrast,  previously existing EGFR-directed 
monoclonal antibodies like cetuximab have almost no 
preclinical or clinical activity as monotherapy for EGFR-
mutated NSCLCs (87,88). Novel classes of bivalent EGFR 
antibodies have had better success in both preclinical 
and clinical realms. Amivantamab (formerly called JNJ-
61186372) is a bispecific antibody targeting extracellular 
domain of EGFR-MET that shows preclinical activity 
in TKI-sensitive and TKI-resistant EGFR-mutated 
NSCLC models. Its activity may be dictated by direct 
signal inhibition of EGFR plus MET and/or induction of 
immune-directed antitumor activity (89-92). Antibody-
drug conjugates (ADCs) that target other ErB family 
members that heterodimerize with EGFR also have 
activity against TKI-sensitive and TKI-resistant EGFR-
mutated NSCLC models, and the ErbB3-directed ADC 
patritumab deruxtecan (HER3-Dxd) is one of the lead drugs 
undergoing clinical development (93).

ERBB2 (Her2) mutations are also heterogeneous  
(Figure 1B) and span aberrations including point mutations 
and exon 20 insertions closely resembling those previously 
discussed for EGFR. Unlike in other malignancies, 
ERBB2 mutation—rather than gene amplification or 
overexpression—appears most predictive of clinical benefit 
with leverage of ERBB2-directed therapies in NSCLC. 
The most prevalent ERBB2 exon 20 insertion mutation in 
lung cancers is ERBB2-A775_G776insYVMA (28,94-100).  
Preclinical characterization has disclosed that this mutant 
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does not lead to favorable therapeutic windows in relation 
to EGFR or ERBB2 WT proteins, and clinically-available 
pan-EGFR/ERBB2 TKIs (such as afatinib, dacomitinib, 
neratinib) have been tested and have not proven to be 
effective (101-104). Some pan-EGFR/ERBB2 TKIs narrow 
therapeutic windows in preclinical models include pyrotinib, 
poziotinib, and mobocertinib (105,106). However, other 
ERBB2 exon 20 insertion mutations are less recalcitrant 
in preclinical models. The ERBB2-P780_Y781insGSP 
(Figure 1B) and other rare ERBB2 insertions that lead to 
glycine insertions at positions similar to EGFR-D770>GY 
are most sensitive to irreversible EGFR/ERBB2 TKIs such 
as afatinib, dacomitinib and poziotinib (62,107,108). Some 
patients with these less common ERBB2 exon 20 insertion 
mutations have had more robust clinical responses to 
afatinib or dacomitinib (62) and have been amongst those 
with greatest benefit from poziotinib in clinical studies 
(109,110). ERBB2 TKIs are minimally active in models 
with ERBB2 point mutations (27). Novel pan-ERBB TKIs 
with improved efficacy against ERBB2 exon 20 insertion 
mutations and CNS penetration, such as TAS2940, 
continue to undergo preclinical development (111).

Irrespective of location/type of mutation within ERBB2 
(Figure 1B), activating mutants lead to enhanced expression 
of ERBB2 protein that can be exploited to target the 
extracellular domain of this receptor tyrosine kinase with 
antibodies and ADCs. Preclinical analyses of both ERBB2-
mutated and ERBB2-amplified cancers demonstrate that 
ERBB2 ubiquitination and internalization are the main 
events underlying receptor endocytosis and the efficacy 
of the anti-ERBB2 ADCs ado-trastuzumab emtansine  
(T-DM1) and trastuzumab deruxtecan (T-DXd) in lung 
cancer models (112,113).

Mechanisms of resistance to EGFR/ERBB2 TKIs 
and other oncogene-directed therapies fall into four 
main categories: (I) on-target resistance mutations [e.g., 
EGFR-T790M and EGFR-C797S (Figure 2B)]; (II) off-
target activation of co-occurring bypass pathways usually 
through genomic events (alternative oncogene mutation, 
amplification or rearrangement); (III) epigenetically-
mediated histological transformation (usually from 
adenocarcinoma to high grade neuroendocrine tumors that 
no longer express/depend on the truncal oncogene); (IV) or 
as yet unidentified mechanisms that may include changes 
other than in the genomic landscape alone and that alter 
the tumor microenvironment and/or pharmacokinetic/
pharmacodynamic effects of the drug (47,114-122). In the 
case of EGFR-mutated NSCLC, these events are present 

in different frequencies depending on the line of therapy 
and class of EGFR TKI used. On-target resistance seems 
to be more frequent when 1st or 2nd generation EGFR TKIs 
are used in preclinical models and clinical care. EGFR-
T790M is the single most common mechanism of resistance 
with early generation EGFR TKIs, while far more 
heterogeneous mechanisms of acquired resistance (including 
EGFR-C797S and others) are more commonly seen with 
mutation-selective advanced generation covalent TKIs like 
osimertinib. With the latter, the EGFR-C797S mutation 
and other definable mechanisms of on-target resistance 
are identified in less than 15% of rebiopsy series (123). 
Osimertinib resistance is instead defined by a spectrum 
of off-target aberrations in parallel signaling pathways 
involving MET, BRAF, ALK, and RET (123,124).

The mechanisms of acquired resistance to novel exon 
20-directed therapies are still being elucidated in evolving 
post-approval analyses and routine clinical practice. It is 
likely that both on-target and off-target aberrations similar 
to those seen with other EGFR-mutated NSCLCs will be 
identified with time. Our group and others have described 
in preclinical models that EGFR-C797S is a pan-resistance 
mutation when occurring in compound with typical EGFR 
exon 20 insertions in cell lines treated with mobocertinib, 
poziotinib, and zipalertinib (58,125). EGFR-T790M in 
compound with exon 20 insertions appears to render 
resistance to mobocertinib and poziotinib (58,109,126). Less 
is known about mechanisms of resistance to antibodies and 
ADCs where resistance may not be solely from biological 
effects on the target, but may reflect more complex 
pharmacokinetic and immune changes in the tumor or host.

From bench to bedside: use of EGFR and ERBB2 
exon 20-directed therapies in the clinic

Building upon evolving preclinical knowledge amassed 
by our group and others over the past decade, clinical 
approvals of several EGFR and ERBB2 exon 20-directed 
therapies in NSLC have been forthcoming in recent years: 
mobocertinib [2021], amivantamab [2021], and trastuzumab 
deruxtecan [2022]. Each will be discussed below.

Mobocertinib

Mobocertinib (formerly named TAK-788 or AP-32788) is 
a novel EGFR TKI that forms a covalent bond to EGFR 
(at EGFR-C797) and ERBB2 (at ERBB2-C805). As most 
exon 20 insertion mutations result in preservation of the 
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typical ATP binding pocket relied upon for activity of 
1st, 2nd, and 3rd generation EGFR TKIs, its development 
hinged on identifying structural changes that would create 
conformational selectivity for the mutated receptor so as 
to afford efficacy with manageable toxicity (57). To block 
oncogenic kinase activation, mobocertinib forms a covalent 
bond with EGFR-C797 and interacts with the gatekeeper 
residue through its isopropyl ester moiety which further 
selects for activity against EGFR exon 20 mutants (57). 
The drug is a derivate of osimertinib that was modified to 
achieve its properties in structural modeling and systems 
(127,128). As previously discussed, mobocertinib has 
demonstrated in vitro activity against models with EGFR or 
ERBB2 exon 20 insertion-mutated NSCLC (57,58,105).

Mobocertinib was first clinically studied in a phase I/
II multicenter clinical trial NCT02716116 (129). Eligible 
patients had previously treated metastatic disease with exon 20 
insertion mutations in either EGFR or ERBB2. The suitable 
(and maximum tolerated) dose was found to be 160 mg daily 
in the dose escalation phase (130). Across all patients, there 
were 96% treatment-related adverse events (TRAEs), 40% 
of which were grade ≥3. The most common TRAEs were: 
diarrhea (83%, 21% ≥ grade 3), nausea (43%), and rash 
(33%); 54% of patients required dose interruption, 17% 
dose reduction, and 16% discontinued the medication (130).  
In terms of pharmacokinetics, maximum plasma concentration 
was achieved at 4 hours, with half-life in the range of 11– 
17 hours. At the target dose of 160 mg (n=28) in patients 
with EGFR-mutated NSCLC, the investigator assessed 
objective response rate (ORR) was 43% (95% CI: 24–63%), 
median duration of response (DoR) 13.9 months [5.0–not 
reached (NR)], and median progression-free survival (PFS)  
7.3 months (4.4–15.6 months). Response was independent 
of the specific EGFR exon 20 mutant variant in this small 
cohort (130). However, a lower response rate in patients with 
baseline brain metastasis (intracranial ORR 25%, with a range 
of 5–57%), suggests limited CNS activity in this small (n=12) 
subset of patients (130).

Building upon these findings, the trial was expanded (131): 
newly recruited patients joined the EXCLAIM extension 
cohort (n=96); of those, patients who had previously 
received platinum-based chemotherapy (n=86) joined the 
initial group of patients involved in the dose escalation 
phase (n=28) to form the platinum-pretreated patients 
(PPPs) cohort (n=114). Importantly, recruitment for the 
expansion portion of the trial was international, and over 
half of the patients were recruited from Asian centers. 
In the PPP cohort, the independently reviewed ORR 

was 28% (95% CI: 20–37%), median DoR 17.5 months 
(7.4–20.3 months), median PFS remained 7.3 months (5.5– 
9.2 months), and median overall survival (OS) was  
2 4 . 0  m o n t h s  ( 1 4 . 6 – 2 8 . 8  m o n t h s ) .  I n  t u r n ,  t h e 
EXCLAIM cohort had similar ORR at 25% (17–35%), 
median DoR was NR (5.6–NR), median PFS was also  
7.3 months (5.5–9.1 months), and median OS was NR 
(13.1–NR). No subgroups were noted to derive specific 
benefit in either cohort, including when stratified by type 
of EGFR exon 20 insertion mutation, prior therapy, or 
baseline brain metastases (131). Most sites of progression 
were in the brain (22/58), again hinting at reduced CNS 
efficacy. There were no new safety signals observed, with 
a predominance of diarrhea (91%, 21% ≥ grade 3) and 
similar rates of dose reduction (25%) and discontinuation 
(17%) as seen in the initial phase of the trial (131).

Patient-reported outcomes (PROs) were also captured 
using the EORTC QLQ-C30 [general quality of life (QoL)] 
and QLQ-LC13 (lung cancer module). Improvements in 
dyspnea, cough, and chest pain were noted. Nevertheless, 
there were no positive or negative changes on overall 
QoL, although there was a transient reduction in diarrhea 
scores that improved by study completion (131). A more 
detailed analysis of PROs with mobocertinib 160 mg daily 
detailed the frequent detriments in QoL scores related 
to diarrhea and appetite loss, while improvements were 
observed for dyspnea, insomnia, and constipation (132). 
Investigators have since published proposals for proactive 
management of both dermatologic and gastrointestinal 
toxicities to minimize the need for mobocertinib dose 
reductions/interruptions (133). Real-world experience with 
mobocertinib has mirrored that seen in these initial clinical 
studies (134).

The findings from NCT02716116 and its expansion 
cohorts (such as EXCLAIM) are limited by the lack of a 
control arm (phase I/II design). However, as the outcomes 
with use of this agent meet an important unmet clinical 
need, mobocertinib was granted accelerated approval 
September 2021 by the United States Food and Drug 
Administration (FDA) for EGFR exon 20 insertion-
mutated advanced NSCLC for treatment following 
disease progression on platinum-based chemotherapy. 
The use of mobocertinib in the first line setting for 
metastatic disease is being evaluated in the ongoing 
phase III trial EXCLAIM-2 (NCT04129502) (135), 
which is nearing accrual completion and will hopefully 
determine if mobocertinib should overtake platinum-
based chemotherapy as the de facto evidence-based frontline 
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therapy for patients with advanced NSCLC harboring an 
EGFR exon 20 insertion mutation (135).

To date, there are no published clinical studies specifically 
studying the effects of mobocertinib in ERBB2 exon 20 
insertion-mutated NSCLC. While there were some patients 
(n=21) in the NCT02716116 trial, the published outcomes 
reference the EGFR-mutated cohort exclusively (130). Only 
one preclinical study thus far has studied mobocertinib 
in two models of ERBB2-mutated NSCLC, driven by 
ERBB2-A775_G776insYVMA and ERBB2-G776>VC, 
and with an eye towards identifying activity, dosing, and 
resistance mechanisms (105). Although mobocertinib has 
preclinical activity against other EGFR mutations (Figure 2B), 
there are no ongoing clinical studies targeting common and 
uncommon mutations that have already been paired with 
other FDA-approved targeted agents (Figure 2A).

Amivantamab-vmjw

Amivantamab is a humanized, bispecific antibody that 
binds EGFR and MET extracellularly to target activating 
mutations, including EGFR exon 20 insertion mutations, 
as well as MET mutations and amplification (89). Three 
distinct mechanisms inhibit tumor growth in the setting of 
aberrant EGFR and MET signaling: (I) immune effector 
cells (such as NK cells and macrophages) target mutated 
tumor cells for destruction through antibody-dependent 
cellular cytotoxicity, trogocytosis and phagocytosis (89); 
(II) inhibition of ligand binding prevents ligand-induced 
activation, phosphorylation, and downstream signaling that 
promote cellular proliferation; and (III) downmodulation 
or degradation of EGFR and MET receptors, thereby 
decreasing tumor volume (89).

The antibody amivantamab was first studied in a phase I/
II dose-escalation and dose-expansion study (NCT02609776/
CHRYSALIS) (136). Eligible patients were previously treated 
with, ineligible for, or declined standard chemotherapy 
for metastatic NSCLC harboring EGFR exon 20 insertion 
mutations. The maximum tolerated dose identified was  
1,050 mg (1,400 mg for patients ≥80 kg) once weekly 
administered intravenously for four weeks, followed by 
once every 2 weeks starting on week 5. Safety and efficacy 
were evaluated in the recommended phase two dose cohort 
(n=258), which included all patients given the maximum 
tolerated dose (137). Within this cohort, patients who had 
previously received platinum-based chemotherapy were 
included in the safety population (n=114), while those 
who had at least 3 disease assessments at the clinical cutoff 

were included in the efficacy population (n=81). In the 
efficacy population, the investigator-assessed ORR was 
36% (95% CI: 25–47%), median PFS 8.3 months (5.5–10.6 
months), and median OS 22.8 months (14.6–NR), although 
this endpoint was immature (137). Responses were seen 
irrespective of EGFR exon 20 insertion mutation type (137). 
In the safety population, 99% of patients experienced a 
TRAE (35% ≥ grade 3), most commonly rash (86%, 4% ≥ 
grade 3), infusion-related reaction (66%), paronychia (45%), 
and constipation (24%). Infusion-related reactions were 
observed primarily during the first dose, split over two days, 
with most occurring on day 1 (93%) as compared to day 2 
(4%) of the infusion (137). TRAEs led to dose reductions 
(13%) and discontinuations (10%), most commonly for rash 
at 10% and 1.8%, respectively (137).

Though data are limited by the early phase nature of 
the trial, the FDA granted accelerated approval May 2021 
to amivantamab for the treatment of advanced EGFR exon 
20 insertion-mutated advanced NSCLC following prior 
platinum-based chemotherapy. The CHRYSALIS trial is 
ongoing and analyses of activity in other cohorts of EGFR-
mutated advanced NSCLC are expected shortly (136). Use 
of amivantamab in the second-line setting with/without 
the third-generation EGFR inhibitor, lazertinib, is being 
evaluated in the ongoing phase I trial, CHRYSALIS-2 
(NCT04077463) (138). In the first-line setting, amivantamab 
in combination with carboplatin and pemetrexed is ongoing 
in the phase III PAPILLON trial (NCT04538664) in 
patients with advanced EGFR exon 20 insertion-mutated 
NSCLC (139). A subcutaneous formulation is also 
currently being evaluated in the phase I PALOMA trial 
(NCT04606381) (140). There is no data studying the use of 
amivantamab in ERBB2-mutated NSCLC, and the absence 
of direct targeting of ERBB2 likely limits applications of this 
agent to tumors with EGFR or MET activation.

Fam-trastuzumab deruxtecan-nxki (T-DXd)

T-DXd is an ADC that consists of a humanized monoclonal 
antibody directed at ERBB2 with a cleavable tetrapeptide-
based linker attached to a potent topoisomerase I inhibitor 
(a derivative of the camptothecin analog exatecan: DXd; 
DX-8951 derivative) as its cytotoxic drug payload (141). 
Preclinical models have shown T-DXd has a higher drug-
to-antibody ratio and shorter payload half-life than other 
ERBB2-directed ADCs (mainly T-DM1) (142).

T-DXd initially received FDA approval as a breakthrough 
therapy in December 2019 for use in ERBB2-overexpressing, 
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unresectable/metastatic breast cancer based on the results 
of the DESTINY-Breast01 trial (141). A phase I dose-
expansion trial in multiple advanced solid tumors (n=60) 
with ERBB2 overexpression (immunohistochemistry 
of at least 1+) or ERBB2 mutations included 18 patients 
with advanced NSCLC (143), 11 of which had tumors 
with ERBB2 mutations (almost all of which were exon 20 
insertions). ORR and median PFS in the overall cohort 
vs. ERBB2-mutated NSCLCs were 28.3% vs. 72.7% and  
7.2 months (95% CI: 4.8–11.1 months) vs. 11.3 months 
(95% CI: 8.1–14.3 months), respectively (143).

DESTINY-Lung01 next specifically explored use of 
T-DXd exclusively in ERBB2-mutated NSCLC (144). The 
trial was conducted as a phase II, single arm trial of patients 
with previously treated, refractory metastatic ERBB2-
mutant NSCLC (n=91). The trial reported an ORR of 55% 
(95% CI: 44–65%) with median DoR 9.3 months (95% 
CI: 5.7–14.7 months), median PFS 8.2 months (95% CI: 
6.0–11.9 months), and median OS 17.8 months (95% CI: 
13.8–22.1 months). Responses were seen across all ERBB2 
mutation types and regardless of type/extent of prior cancer 
therapy, including prior pan-EGFR/ERBB2-directed 
therapies in 14% with some responses to T-DXd (144). Our 
group has similarly published our clinical experience with 
poziotinib following T-DXd (145). Though limited by small 
numbers, these outcomes suggest possible non-overlapping 
mechanisms of drug resistance between TKIs and ADCs 
directed against ERBB2. DESTINY-Lung02 study next 
endeavored to assess the safest and most effective dose of 
T-DXd in previously treated, ERBB2-mutated advanced 
NSCLC. T-DXd was evaluated at a dose of 6.4 vs. 5.4 mg/kg  
in a randomized dose-finding trial (146,147). The ORRs 
were similar across the two doses. Of note, the efficacy 
cohort of 5.4 mg/kg (n=52) disclosed ORR of 58% (95% 
CI: 43–71%) and the median DOR of 8.7 months (95% CI: 
7.1–not estimable) (146,147).

Cytopenias are amongst the most prevalent TRAEs 
with use of T-DXd in the published studies to date. The 
most common TRAEs in DESTINY-Lung01 trial were 
neutropenia (15% grade 3) and anemia (10% grade 3) (144).  
Of particular importance is the identification of drug-
induced interstitial lung disease (ILD) in both initial and 
sequent trials of T-DXd across cancer types, including 
treatment-related respiratory failure and death in 1 patient 
in the initial phase I trial. Drug-related ILD was reported 
in 26% of participants in DESTINY-Lung01 and resulted 
in death in 2% of all patients included in the trial (144). In 
DESTINY-Lung02, higher rates of drug-induced ILD at 

the 6.4 vs. 5.4 mg/kg dose (14.0% vs. 5.9%, respectively) 
led to selection of the 5.4 mg/kg dose administered 
intravenously every 3 weeks for further study and approval 
(146,147). In this study, any grade drug-related ILD event 
occurred in 5.9% and 14.0% of cases receiving T-DXd 5.4 
or 6.4 mg/kg, respectively (147). This has resulted in a black 
box warning for ILD. As use of these agents evolves in real-
world settings, it will be necessary to assess whether the 
risk of ILD is exacerbated by prior chest radiotherapy and/
or immune checkpoint inhibitor (ICI) use as are commonly 
the case in the care of patients with NSCLC. Given 
poor tolerability of respiratory toxicities in patients with 
significant baseline pulmonary comorbidities, a high index 
of clinical suspicion and low threshold to identify, evaluate, 
and manage patients experiencing such toxicities will be 
necessary in this patient population (144). Clinical guidance 
on best practice for diagnosis and management of T-DXd-
induced pneumonitis has been published (148).

On the basis of these results, T-DXd was granted 
accelerated approval in August 2022 by the FDA for use 
in metastatic or unresectable ERBB2-mutated NSCLC 
with disease progression following prior therapy. While 
the current approval is for patients with previously treated, 
ERBB2-mutated advanced NSCLC, important questions 
still remain regarding optimal combinations and sequencing 
of T-DXd with other biologically active systemic therapies 
in NSCLC (145). The ongoing DESTINY-Lung03 trial 
(NCT04686305) is investigating the safety of T-DXd in 
combination with platinum doublet chemotherapy and 
durvalumab (149). Also ongoing, DESTINY-Lung04 
(NCT05048797) will investigate the safety and efficacy 
of T-DXd versus standard-of-care first-line treatments 
(platinum-doublet +/− pembrolizumab) in advanced NSCLC 
with ERBB2 exon 19 or 20 kinase domain mutations (150).

Therapies in development: poziotinib, sunvozertinib, 
zipalertinib

Poziotinib is an irreversible pan-ErbB inhibitor with activity 
against EGFR, ERBB2, and ERBB4. In vitro, poziotinib has 
demonstrated its abilities as a potent inhibitor of cells with 
EGFR or ERBB2 exon 20 insertions (23). However, concerns 
regarding toxicity have limited its use in the clinical setting. 
A phase II trial of poziotinib in EGFR-mutated advanced 
lung adenocarcinoma with acquired resistance to erlotinib/
gefitinib (n=37) showed limited clinical efficacy with ORR 
of 8% and median PFS 2.7 months (151). Of note, this 
trial included predominantly patients with acquired EGFR-
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T790M; no patients with EGFR exon 20 insertions were 
included.

Subsequent preclinical studies further characterized 
the potential utility and clinical activity of poziotinib in 
EGFR exon 20 insertion mutations and ERBB2 mutations 
specifically, ultimately leading to clinical studies yielding 
more favorable results (23). A phase II trial was published 
in which patients with ERBB2 exon 20 insertion-mutated 
advanced NSCLC (n=30) received poziotinib 16mg daily; 
both previously treated and treatment-naïve patients were 
included (109). Investigators reported an ORR of 43% 
(95% CI: 25–63%), disease control rate (DCR) of 73%, 
and median PFS of 5.5 months (95% CI: 4.9–7.0 months). 
Another trial by the same group included patients with 
advanced NSCLC harboring EGFR exon 20 mutations 
(n=50) and yielded similar findings: ORR of 32% (95% 
CI: 20.7–45.8%), DCR of 84%, and median PFS again  
5.5 months (95% CI: 5.0–9.4 months) (152). Patients in this 
latter trial were heavily pretreated (94%), 34% of whom had 
received prior EGFR TKI therapy. Acquired mechanisms 
of resistance to poziotinib were also explored in this study, 
with identification of EGFR-T790M, MET amplification, 
and epithelial to mesenchymal transition as has been seen 
with other EGFR-directed agents (152).

ZENITH20-2 is a phase II, single arm trial of poziotinib 
in previously treated advanced NSCLC with ERBB2 exon 20 
insertion mutations (110,153). The trial enrolled 90 patients,  
all of whom were treated with poziotinib 16 mg daily. 
Similar to prior studies, the ORR was 27.8% (95% CI: 
18.9–38.2%), DCR 70% (95% CI: 59.4–79.2%), and 
median PFS 5.5 months (95% CI: 3.9–5.8 months). 
Response rates were noted to be similar regardless of prior 
therapy, including 27.8% of patients who had received 
prior anti-EGFR/ERBB2 targeted therapy. Additionally, 
there was no difference in response based on the type of 
ERBB2 mutation present; ERBB2-A775_G776insYVMA 
was present in 65 out of 90 patients. ZENITH20-4 
subsequently investigated poziotinib in treatment-naïve 
ERBB2-mutated advanced NSCLC (153,154). The results 
of this trial were presented in abstract form at the 2022 
ESMO Targeted Anticancer Therapies Congress (154). The 
trial included 70 patients and reported a combined ORR of 
41% (95% CI: 30–54%) with a median PFS of 5.6 months 
(range, 0–20 months) (154).

These phase II trial results have been further corroborated 
in a real-world study (n=30) describing clinical outcomes in 
an expanded access program that provided poziotinib for 
compassionate use to patients with advanced NSCLC with 

EGFR and ERBB2 exon 20 insertion mutations (155). In 
keeping with prior studies, an ORR of 30% with median PFS 
of 5.6 months (95% CI: 3.6–6.7 months) was reported (155).

High-grade gastrointestinal and mucocutaneous 
toxicities have been of significant concern with poziotinib 
and have limited the prospect for its use in routine clinical 
practice. In the ZENITH20-2 trial, the most common 
grade 3 TRAEs included rash and diarrhea in 78.9% of 
all patients, with 13% ultimately discontinuing poziotinib 
as a result (152). Other studies have shown similarly high 
rates of drug-induced rash, diarrhea, mucositis, paronychia, 
and xerosis in up to one-third of all patients and resulting 
in dose reduction in the majority (72%) of patients (109). 
Due to concerns regarding low overall response rates with 
minimal DoR and poor tolerability, the FDA elected not 
to approve poziotinib for use in EGFR- or ERBB2-mutated 
NSCLC (156), and enrollment in a phase 2 study of 
poziotinib in advanced NSCLC harboring EGFR or ERBB2 
exon 20 insertion mutations was halted in early 2023 as a 
result (153).

Sunvozertinib (formerly DZD9008) is a newly developed 
EGFR exon 20 insertion mutation-active TKI which also 
irreversibly binds EGFR-C797 like mobocertinib, instead 
using an anilino-phenyl moiety to interact with the C-helix 
of EGFR (86). Sunvozertinib is currently being studied in an 
international phase I study in advanced NSCLC (157). With 
median follow-up thus far under 6 months, early clinical 
data suggests an ORR around 40% in heavily pretreated 
patients (86). Similar to other TKIs in this class, the primary 
toxicities appear to again be mostly gastrointestinal and 
dermatologic (86). There is additionally evidence that 
sunvozertinib may have anti-tumor activity against other 
EGFR-sensitizing mutations as well as ERBB2 exon 20 
insertion mutants (86).

Zipalertinib (formerly TAS6417/CLN-081) is a pan-
mutation-selective EGFR TKI with potent activity against 
exon 20 insertion mutations in preclinical studies, however 
with limited efficacy in ERBB2-mutated lung cancer (59). 
Zipalertinib fits into the ATP binding site of the EGFR 
hinge region, conferring its antitumor activity (158). 
Currently, the drug is being evaluated in an international 
phase I/II trial (159), with interim results suggestive of an 
ORR around 40% (159). Rash was present in more than half 
of the study participants; conversely, diarrhea appears less 
common than with other EGFR TKIs (159). Additionally, a 
phase II trial for EGFR exon 20 insertion-mutated NSCLC 
and phase III trial against standard-of-care chemotherapy in 
the first line setting are planned.
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Other EGFR exon 20 insertion mutant active TKIs 
undergoing initial clinical trial development include BLU-
451 and BAY2927088.

Platinum doublet chemotherapy and ICIs

Even despite the ongoing advances in targeted therapies 
outlined above, the evidence-based standard of care for 
first line therapy in advanced NSCLC harboring EGFR 
or ERBB2 exon 20 insertion mutations remains platinum-
based chemotherapy, with or without an ICI even as 
outcomes have remained stagnant and generally modest (39). 
In a large retrospective review of 105 patients receiving 
first line platinum doublet chemotherapy, an ORR 19.2% 
and median PFS of 6.5 months were noted (160-165). 
Another retrospective study of 77 patients receiving first 
line pemetrexed (alone or in combination with a platinum 
agent) reported a better ORR of 41.5%, however again 
with limited median PFS of 7.6 months and median OS of  
25 months (161). In the second line setting, responses 
to single agent chemotherapy have been reported with 
similarly limited efficacy and median PFS of 4.0 months 
(95% CI: 3.2–4.8 months) (160).

In a recent retrospective cohort of advanced NSCLC 
with EGFR  exon 20 insertion mutations receiving 
chemotherapy as either first or second line treatment was 
reported (162). Amongst 41 patients receiving first line 
platinum-based treatment, median PFS was 5.7 months 
(95% CI: 3.0–10.9 months); for those receiving ICI in 
addition to chemotherapy, a median PFS of 4.5 months 
(1.2–10.3 months) was reported, though the subset was 
small (n=16). Of the 50 patients who received chemotherapy 
in the second line, median PFS was 3.3 months (95% CI: 
2.3–5.9 months) (162). Notably, reported outcomes with 
chemotherapy-based regimens have superseded those seen 
with 1st and 2nd generation EGFR TKIs in this molecularly-
defined subgroup, where median PFS for this earlier 
generation targeted agents have not exceeded 3 months (160).

The largest study was a multi-center retrospective 
evaluation of 93 patients who received platinum-based 
chemotherapy. The ORR was 43.5% and median PFS 
was 6.0 months (95% CI: 5.0–7.1 months). Outcomes of 
second line chemotherapy were not specifically shown 
in this cohort (163). A second smaller study included  
25 patients that received platinum/pemetrexed in the first 
line, with an ORR of 36% and median PFS of 5.1 months 
(95% CI: 4.9–5.3 months) (164). A retrospective study 
of NSCLC patients with either EGFR or ERBB2 exon 20 

insertion mutations reported a median PFS of 6 months 
(95% CI: 5.7–7.0 months) with first-line platinum-
containing chemotherapies (162).

Outcomes with contemporary regimens including the 
addition of ICI to platinum doublet chemotherapy are 
still being vetted, and there have been very few case series 
evaluating the efficacy of ICIs advanced NSCLC with either 
EGFR or ERBB2 exon 20 insertion mutations (162-165).  
The largest study is a retrospective evaluation of 15 
patients with EGFR exon 20-mutated advanced NSCLC 
who received ICI (either as first or second line treatment). 
Limited efficacy was noted with ORR 6.7%, median PFS 
of 2.0 months (95% CI: 0.6–2.7 months), and median OS 
of 5.3 months (95% CI: 1.8–12.5 months). There was a 
trend towards decreased OS (12.9 vs. 25.2 months, P=0.08) 
in those receiving vs. not receiving ICI therapy compared 
to EGFR exon 20 insertion-mutated NSCLCs that never 
received immunotherapy. In this limited sample as has 
been true elsewhere in the literature surrounding ICI use 
in EGFR-mutated NSCLC, tumor PD-L1 expression does 
not appear predictive of treatment response (165). In a 
retrospective, single-center cohort study of 122 ERBB2-
mutated advanced outcomes of 26 patients receiving ICI 
therapy were evaluated. In the ICI-treated cohort, the ORR 
with was 12% (95% CI: 3–30%), median PFS 1.9 months 
(95% CI: 1.5–4.0 months) and median OS 10.4 months 
(95% CI: 5.9–NR) (166).

Additional data can be extrapolated from larger 
retrospective studies evaluating ICIs in a pooled analysis of 
oncogene-driven NSCLCs. A multi-center study included 
two groups of ERBB2-mutated NSCLC reported dismal 
responses to single agent ICI, with median PFS ranging 
from 1.9 months (95% CI: 1.6–2.1 months; n=15 patients  
from one center) to 3.0 months (95% CI: 1.8–NR; n=21 
patients from a different center) (167). In another study, 
29 patients who had received ICI therapy at any point 
in their treatment course were evaluated; ICI-associated 
ORR of 7% and median PFS of 2.5 months (95% CI: 
1.8–3.5 months) were reported (168). In yet another 
retrospective study of 23 patients that receiving ICI therapy 
in the second line and beyond, showed reported improved 
ORR of 27.3%, though with still poor median PFS of  
2.2 months (1.7–15.2 months) (169).

Similar to what has been previously described in other 
EGFR-mutated NSCLC subgroups (170,171), these findings 
raise important questions regarding the relevance of ICI-
based approaches in patients whose tumors harbor exon 
20 alterations in EGFR and ERBB2. It is postulated that 
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limited/absent tobacco exposure in these molecularly defined 
subgroups may render an immune microenvironment that is 
not favorable for engagement of the immune system. ICI use 
(particularly as a sole agent) in these patients should be used 
with caution, possibly deferring until other targeted and/or 
chemotherapeutic strategies have been exhausted first.

Conclusions

Evolving insights into the biologic importance of 
oncogenic driver pathways and opportunities for novel drug 
development have led to brisk advances in the identification 
and management of oncogene-driven NSCLCs, thus linking 
scientific discovery in the lab to innovations in the clinic 
that have transformed the care of many patients. However, 
due to unique challenges stemming from protein structure 
and biology, leveraging the power of targeted therapeutics 
for an important molecularly-defined subset—those with 
EGFR and ERBB2 exon 20 insertion mutations—has lagged 
beyond others of its kind and represents an ongoing albeit 
evolving area of unmet need. Identifying agents that possess 
the hallmark characteristics of other targeted therapies 
already available for use in advanced NSCLC—deep, 
durable, and tolerable efficacy—has proven challenging 
in this molecularly-defined subset and has necessitated 
diversification of the targeted therapeutics armamentarium, 
including development of novel EGFR-directed TKIs, 
bivalent antibodies, and ADCs.

This review provides an overview of EGFR and ERBB2 
mutations in NSCLC with a focus on the recent clinical 
approvals of mobocertinib, amivantamab, and T-DXd that 
have added to the armamentarium of precision oncology. 
Table 2 summarizes the major clinical studies of the EGFR 
TKI mobocertinib, EGFR-MET antibody amivantamab, 
and anti-ERBB2 ADC T-DXd, with a focus on efficacy and 
toxicity. Though promising efficacy (even in treatment-
refractory disease) and manageable toxicities have been 
demonstrated in studies to date, currently ongoing and 
future studies will hopefully shed light on ways to optimize 
treatment selection, dosing, and sequencing so as to 
maximize outcomes for these important subsets of patients 
with advanced NSCLCs harboring EGFR exon 20 insertion 
mutations and ERBB2 mutations.
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