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Abstract: Lysozyme is often used as a model protein to study interaction with drug molecules and to
understand biological processes which help in illuminating the therapeutic effectiveness of the drug.
In the present work, in vitro interaction studies of 1-{(2-hydroxyethyl)amino}-2-amino-1,2-dideoxy-
D-glucose triphenyl tin (IV) (GATPT) complex with lysozyme were carried out by employing various
biophysical methods such as absorption, fluorescence, and circular dichroism (CD) spectroscopies.
The experimental results revealed efficient binding affinity of GATPT with lysozyme with intrinsic
binding (Kb) and binding constant (K) values in the order of 105 M−1. The number of binding
sites and thermodynamic parameters ∆G, ∆H, and ∆S at four different temperatures were also
calculated and the interaction of GATPT with lysozyme was found to be enthalpy and entropy driven.
The CD spectra revealed alterations in the population of α–helical content within the secondary
structure of lysozyme in presence of GATPT complex. The morphological analysis of the complex
with lysozyme and lysozyme-DNA condensates was carried out by employing confocal and SEM
studies. Furthermore, the molecular docking studies confirmed the interaction of GATPT within the
larger hydrophobic pocket of the lysozyme via several non-covalent interactions.

Keywords: lysozyme; organotin; interaction studies; thermodynamics; molecular docking

1. Introduction

The interaction studies of small molecules with proteins are of great importance in
determining the ADME properties of a drug molecule with direct implications on its
pharmacokinetics and pharmacodynamics [1–7]. The interaction of the drug with proteins
can strongly affect the rate of drug distribution as well as elimination. Therefore, these
interaction studies are promising for the interpretation of the mechanisms involved in the
metabolism and transportation of the drug to the target site [8].

Lysozyme is a globular enzymatic protein that can be found in various secretions
such as human tears, saliva, mucus, milk, serum, and cerebrospinal fluid [9]. Lysozyme is
abundant in egg white protein; ~3.5% protein content is occupied by lysozyme [10]. Hen
egg-white lysozyme (HEWL) can be used as a model protein for studying drug-protein
interactions due to its similarity with human lysozyme [11,12]. HEWL is composed of
two major domains: (i) α-domain, consisting of α-helices, and (ii) β-domain, consisting
of an anti-parallel β-sheet. Lysozyme exhibits diverse pharmacological properties like
anti-bacterial, anti-cancer, anti-viral, anti-septic, and anti-inflammatory. It is also known to
bind reversibly with small molecules and has been reported to be used as a carrier in drug
delivery [13–17].

The combinatorial approach to coordinate metal ion with the organic scaffold offers
several advantages over the conventional organic compounds in the drug discovery such
as better reactivity, lipophilicity, reduce drug dosage, better cellular uptake, and reduced
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systemic toxicity [18,19]. In this lieu, the rapidly advancing field of glycobiology has
stimulated great interest in inorganic medicinal chemistry. Carbohydrates are of much
interest for drug designing because (i) of their high water solubility, (ii) better cellular
uptake due to lipophilicity which also helps in facile transport at the molecular level, (iii)
they can act as active sites for molecular recognition, and (iv) they are most abundantly
available and represent the key species in several biological processes of living organisms.
Therefore, these bioactive molecules on coordinating with metal ions could enhance their
activity and compatibility and serve as promising candidates for drug designing [20,21].

Metal complexes have gained much attention in drug discovery, being widely em-
ployed as therapeutic compounds to treat various human diseases such as diabetes, neuro-
logical disorders, cancer, etc. Metals exhibit unique characteristics that include variable
coordination modes, redox activity, reactivity towards organic substrates for which metal
complexes, either drugs or pro-drugs, have become potential candidates in medicinal chem-
istry [22–29]. Numerous researches have shown remarkable progress in the utilization
of organometallic complexes as drugs to treat various diseases as they exhibit modified
pharmacological and toxicological properties [30]. Since these complexes exhibit kinetic
stability, relative lipophilic character, structural diversity, great ability to bind to biological
targets, they provide ample opportunities in drug designing as compared to ‘coordination
complexes’ [31,32]. The use of organotin complexes as therapeutic compounds has become
more and more pronounced in drug designing because of their remarkable pharmacologi-
cal profile. Organotin complexes exhibit attractive properties such as (i) they can bind to
glycoproteins and can also interact with DNA directly, leading to cell death by apoptotic
mechanisms, (ii) increased water solubility, and (iii) better body clearance. The pharmaco-
logical activity of organotin complexes is significantly affected by the hydrolyzable groups
linked to the tin atom that controls the delivery of the active organotin ions. The organic
moiety attached to the tin atom directs the transport across the cell membrane and the
coordination position at the tin atom [33–37].

In this work we are reporting interaction studies of lysozyme with 1-{(2-hydroxyethyl)
amino}-2-amino-1,2-dideoxy-D-glucose triphenyl tin (IV) (GATPT) complex which was pre-
viously synthesized in our laboratory [38] by adopting a combinatorial approach involving
a combination of N-glycoside (carbohydrate scaffold) with triphenyltin (IV) moiety, which
modulates the pharmacological parameters of both the fragments pertinent to the delivery
of a drug to the cells. The detailed investigation of interaction studies of GATPT with
lysozyme was carried out by employing various complementary techniques. The binding
affinity was ascertained by UV-vis and fluorescence studies. Conformational changes in
the secondary structure were determined by CD spectroscopy. Morphology of the complex
with lysozyme and lysozyme-DNA condensates was studied by scanning electron and
confocal microscopy. Furthermore, molecular docking studies were performed to validate
the mode of interactions.

2. Results and Discussions
2.1. Conformational Changes in Lysozyme Investigated by UV–Visible Spectroscopy

UV-vis absorption spectroscopy is one of the basic methods for studying the structural
changes in biomacromolecules and investigating ligand-protein interactions. The UV-vis
spectrum of GATPT exhibited strong absorption around ~270 and 380 nm corresponding
to π−π* and n−π* transitions, respectively. Lysozyme, on the other hand, shows an
absorption band at ~280 nm owed to π–π* transitions due to the presence of three amino
acids, viz, tryptophan, tyrosine, and phenylalanine [39]. On progressive titration of GATPT
(0–50 µM) to constant concentration of lysozyme (10 µM) (Figure 1), ‘hyperchromism’
was observed at ~280 nm corresponding to non-covalent interactions. Hyperchromism is
usually associated with the breakage of the hydrogen bonds leading to the conformational
alteration in the secondary structure of the lysozyme. The quantitative assessment of
binding affinity of GATPT towards lysozyme was done by calculating intrinsic binding
constant, Kb by employing equations given in ESI and was found to be 2.9 × 105 M−1.
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The changes in the absorption spectra of lysozyme upon addition of GATPT provide an
inference that the microenvironments around three amino acid residues including the
secondary structure of lysozyme were altered due to the binding of GATPT.
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2.2. Intrinsic Fluorescence Measurements

The intrinsic fluorescence property of lysozyme is mainly because of the presence
of tryptophan and tyrosine amino acid residues [40]. When the protein is excited at
280 nm the resultant fluorescence emission around 340 nm is due to the tryptophan and
tyrosine residues, whereas at 295 nm excitation wavelength, fluorescence intensity is
solely due to the tryptophan residue. The other fluorophore present in the lysozyme is
phenylalanine but with very weak and negligible fluorescence [41]. Lysozyme consists of
six tryptophan residues; four reside in the α-domain whereas two residues are in the loop
region, connecting the α- and β-domains. Out of the total of six tryptophan residues, Trp62
and Trp108 are slightly exposed to the solvent and are primarily responsible for exhibiting
intrinsic fluorescence [42]. Figure 2 shows the intrinsic fluorescence spectra of lysozyme
with and without GATPT at 295 nm excitation wavelength. The successive reduction in
fluorescence intensity and wavelength maxima were observed on the progressive addition
of GATPT to lysozyme which could be attributed to the binding of GATPT in the vicinity
of the Trp fluorophores (Trp62 and Trp108) of lysozyme [43,44]. An interesting observation
was the reduction of emission intensity on the addition of DNA-lysozyme to GATPT
which was even less than lysozyme alone and lysozyme +GATPT complex. The above
observations could reveal the involvement of certain biochemical interactions between
GATPT and lysozyme and then GATPT leaving lysozyme and interacting with DNA. To
minimize the inner filter effect, a low complex concentration has been used and further
corrected as per the methods reported in literature [40]. The binding constant K was
determined by using modified Stern-Volmer equation (Equation (S7)) [45] and was found
to be 2.32 × 105 M−1. Further, binding constants were also determined at three other
different temperatures (303, 308, 313 K) and values are shown in Table 1.

Moreover, the dissociation constant (KD) values were also calculated which is a useful
way to present the affinity of a drug molecule for its biological target. GATPT exhibited
impressive dissociation constant values at all four different temperatures (given in Table 1).
It is interesting to mention that the complex exhibited better dissociation constant values as
compared to two well known drugs, viz, cisplatin and oxaliplatin, which exhibit KD values
as 1.83 ± 0.03 and 1.51 ± 0.02 mM, respectively.
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Table 1. Binding and thermodynamic parameters of lysozyme binding with GATPT at four different temperatures (298, 303,
308, 313 K).

T (K) K (105 M−1) Ksv (105 M−1) KD (µM) Binding Site
(n)

∆H (kJ
mol−1)

∆S (J k−1

mol−1) ∆G (kJ mol−1)

298 2.32 4.05 4.31 0.932

−59.46 92.06

−86.89

303 1.63 3.32 6.13 1.010 −87.35

308 1.06 1.39 9.43 1.014 −87.81

313 0.76 0.89 13.15 1.056 −88.274
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2.3. Thermodynamic Parameters and Binding Modes

The mechanism of fluorescence quenching was ascertained by performing fluores-
cence quenching experiments at four different temperatures (298, 303, 308, and 313 K)
and the fluorescence quenching data were examined by using the linear Stern–Volmer
Equation (S6) [46] as given in Figure 3.
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The results obtained demonstrated that the Stern–Volmer quenching constant KSV
was in inverse relation to the temperature and kq (1013 M−1 s−1) is higher than the limiting
diffusion constant Kdif of the biomolecule (Kdif = 2.0 × 1010 M−1 s−1) which is consistent
with the static quenching mechanism [47].

Furthermore, the fluorescence quenching experiment was effectively utilized to deter-
mine the binding sites (n) and binding constant (K) (Table 1) from the double logarithm
Equation (S7).

The number of binding sites (n) were calculated to approximately equal to 1 at all
four temperatures, which strongly supported the existence of a single binding site for the
complex GATPT with lysozyme.

The values of thermodynamic parameters, viz enthalpy change (∆H), entropy change
(∆S), and free energy change (∆G), are the main evidence for ascertaining the binding
modes and were calculated from Van’t Hoff Equations (S8) and (S9) [48–51].

From the thermodynamic standpoint, ∆H > 0 and ∆S > 0 corresponds to hydrophobic
interactions; ∆H < 0 and ∆S < 0 implies the van der Waals forces or hydrogen bond
formation, whereas ∆H ≈ 0 and ∆S > 0 suggests the electrostatic forces. The positive ∆S
value is usually taken as an evidence for hydrophobic interactions [52–54]. Figure 4 shows
the variation of ln [K] as a function of 1/T. As evident from the Table 1, the negative ∆H
and positive ∆S values, as estimated from the slope and intercept of the linear regression
plot, are suggestive of hydrophobic and hydrogen bond interactions which play major roles
in the GATPT-lysozyme binding reaction and contribute to the stability of the complex.
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2.4. Conformational Transitions Monitored by CD

The conformational transition of lysozyme on interaction with GATPT was studied
by employing circular dichroism (CD) spectroscopy. CD titrations were carried out as
a function of GATPT concentration to analyze the conformational changes in lysozyme
and binding sites of the lysozyme upon titration with GATPT. The observed CD spectra
of lysozyme obtained before incubation exhibited the typical spectrum of predominantly
α-helical conformation and in presence of GATPT (5, 10, 20 µM), there was a decrement in
the ellipticity of lysozyme (Figure 5). An intense signature negative peak was observed
at 208 nm and another band was observed at 222 nm corresponding to π−π* and n−π*
transitions for both α-helix and random coil, respectively. On incubation of lysozyme-
GATPT, there was an anticipated reduction in the negative value at 208 nm, which was
suggestive of the interaction of GATPT complex with the amino acid residues of the
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polypeptide chain and disruption of the hydrogen bonding in the lysozyme leading to
the alteration of the secondary structure of the lysozyme [55]. The α-helix content of free
lysozyme was observed to be 26.33% which decreased in presence of GATPT (5–20 µM)
to 24.66–25.78%. This decrease in the α-helix content of lysozyme in presence of GATPT
suggests that GATPT interacted with lysozyme mostly in the α-helix region that results
in the alteration of the secondary structure of the protein [56,57]. Deconvulated spectral
analysis was also carried out by converting CD (mdeg) data into MRE values; the MRE
spectra are provided in ESI Figure S1.
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2.5. Binding Location of GATPT within the Lysozyme: Molecular Docking Studies

Understanding the binding locus of a small molecule or drug inside the carrier pro-
tein is of imperative importance to predict the efficacy of the latter in the biology and
medicine [58]. GATPT (structure shown in Figure 6b) binding sites within the lysozyme
have been explored by carrying out molecular docking studies. The possible pockets of
lysozyme are presented in Figure 6a. The big hydrophobic cavity of lysozyme played an
important role in the binding because this is the gateway to reach the GATPT complex to
the active site; further, it was revealed from molecular docking that the proposed binding
site of GATPT within the lysozyme was located in the cleft region near the catalytic site of
the macromolecule [59]. The hydrophobic pocket comprises of several amino acid residues
which are important for the binding perspective and among these Trp62 is fully exposed
residue while Trp 63 is less exposed in comparison to the former. Other residues such as
Trp108 and Ala107 are also important residues present in that pocket. The non-covalent
interactions that exist in the binding of GATPT and lysozyme were hydrophobic forces and
hydrogen bonding (Figure 6c). Most of the residues interacted through the hydrophobic
forces and these were Arg112, Gln57, Ala107, Ile58, Asn44, Asn46, Asp48, Asp52, Trp62,
Trp63, Trp108, and Ser50 (Table 2), and the residues bound through the hydrogen bonding
were Glu35 and Asn46. It is important to note here that all three Trp residues (62, 63, and
108) play an important role in the complexation of GATPT with the lysozyme. Table 2
represents the hydrophobic interactions between amino acid residues of the lysozyme and
GATPT.
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Table 2. Molecular docking parameters of lysozyme-GATPT interaction.

Amino Acid Residues Interaction Involved

Glu35
Hydrogen bonding

Asn46

Arg112

Hydrophobic

Gln57

Ala107

Ile58

Asn44

Asn46

Asp48

Asp52

Trp62

Trp63

Trp108

Ser50

2.6. Confocal Laser Scanning Microscopy of the Complex and Lysozyme and
Lysozyme-DNA Condensate

Confocal microscopy is a very powerful technique used for the determination of the
distribution of protein molecules and morphological changes in condensates of drug and
biomolecules [60]. By exploiting confocal microscopy we analyzed the formation and the
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distribution of GATPT-lysozyme and GATPT-lysozyme-DNA complexes. Figure 7a shows
GATPT-lysozyme condensate and Figure 7b shows GATPT-lysozyme-DNA condensate.
The observed results exhibited morphological transitions in GATPT-lysozyme condensate
as it was incubated with DNA, suggestive of GATPT uptake by DNA. It could be inferred
that some part of the drug (GATPT) molecule is getting transferred from lysozyme to DNA
and lysozyme is acting as a carrier to deliver GATPT to the DNA target. The confocal
results were consistent with the results of SEM.
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Lysozyme-DNA complex.

2.7. Scanning Electron Microscopy (SEM)

Literature reports reveal that the morphology of the condensate primarily depends on
the type of ion, ionic strength, solvent polarity, and nature of the condensing agent (charge
density and surface of the substrate) [61]. Herein, condensates (i) lysozyme-GATPT and (ii)
lysozyme-DNA-GATPT were prepared by evaporating equimolar mixtures of lysozyme,
DNA, and GATPT, under neutral conditions in aqueous Tris–HCl buffer (50 mM NaCl,
pH 7.2). SEM and SEM-EDX was employed to view and analyze morphological changes
of the condensates (i) and (ii) in comparison to the GATPT alone. Micrographs of GATPT
shown in Figure 8a,b displayed irregular crystalline morphologies of variable sizes and
shapes. However, the SEM micrographs of GATPT-lysozyme displayed the amorphous
clusters where the lysozyme molecules were found to be converted into dissocial, mesh-
like structures (Figure 8c,d), considered to be loosely bound by colloidal particles and
hydrophobic interactions in an unordered fashion. Amorphous clusters usually undergo
energy orientation and some conformational alterations because of changes in multiple
H-bonds and disulfide bonds that play a critical role in stabilizing the structure [62],
leading to the loss of the alpha helical content of the lysozyme. The micrographs of
condensate (ii), i.e., GATPT-lysozyme-DNA, depicted morphological transition evidenced
by the formation of rectangular and concrete-like structures indicating the condensation of
DNA and lysozymes into compact, massive structures (Figure 8e,f). The observed results
displayed more prominent morphological changes with condensate (ii) having DNA as
compared to condensate (i) suggesting the affinity of GATPT for DNA leaving lysozyme;
therefore, it can be concluded that lysozyme can act as a good carrier molecule to deliver
the drug to DNA target.
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3. Conclusions

Pertinent to the important pharmacological characteristics of lysozyme in various
therapies and its interaction with small molecules, in vitro binding studies with GATPT
complex were carried out by employing multi-spectroscopic techniques such as UV-vis,
fluorescence, and CD. To quantify the binding strength of GATPT with lysozyme, intrinsic
binding (Kb) and binding constant (K) values were calculated which revealed impressive
binding propensity in the order of 105 M−1. Interaction occurred via non-covalent, hy-
drophobic interactions and hydrogen bonding. Secondary structure of lysozyme was also
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altered upon interaction with GATPT which was evidenced from the decrease in α–helical
content of lysozyme. The confocal analysis revealed that these studies help to identify
specific drug-protein interactions and the conformational alterations in protein structure
upon interaction with GATPT.

Supplementary Materials: The following are available online. Figure S1: Mean residual ellipticity
(MRE) spectra of lysozyme in the absence and presence of different concentrations of GATPT at 25 ◦C,
(Lysozyme) = 10−5 M (orange color), GATPT (grey, blue, red color: 5, 10, 20 µM respectively).
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