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Abstract: The constrained dipeptide surrogates 5- and 7-hydroxy indolizidin-2-one N-(Boc)amino
acids have been synthesized from L-serine as a chiral educt. A linear precursor ∆4-unsaturated
(2S,8S)-2,8-bis[N-(Boc)amino]azelic acid was prepared in five steps from L-serine. Although epoxi-
dation and dihydroxylation pathways gave mixtures of hydroxy indolizidin-2-one diastereomers,
iodolactonization of the ∆4-azelate stereoselectively delivered a lactone iodide from which separable
(5S)- and (7S)-hydroxy indolizidin-2-one N-(Boc)amino esters were synthesized by sequences featur-
ing intramolecular iodide displacement and lactam formation. X-ray analysis of the (7S)-hydroxy
indolizidin-2-one N-(Boc)amino ester indicated that the backbone dihedral angles embedded in the
bicyclic ring system resembled those of the central residues of an ideal type II’ β-turn indicating the
potential for peptide mimicry.

Keywords: indolizidin-2-one amino acids; peptide mimic; iodolactonization; lactam; heterocycle

1. Introduction

In peptide science, conformationally constrained dipeptides serve effectively as tools
for structure–activity relationship studies to identify biologically active conformers [1–20].
Among approaches for creating constrained dipeptides that employ steric [2,3], stereo-
electronic [4,5], and covalent constraints [1,5–21], the use of azabicyclo[X.Y.0]alkanone
amino acids offers unique potential for locking the polyamide backbone into specific
orientations that may mimic natural secondary structures such as β-turns. Among such
bicyclic systems, the azabicyclo[4.3.0]alkanone amino acids, so-called indolizidine-2-one
amino acid (I2aa) analogs and their ring-substituted derivatives (e.g., 1–3, Figure 1), are
among the most studied for utility in dissecting the backbone geometry and side chain
alignment responsible for peptide activity towards the development of receptor ligands
(e.g., 4) and enzyme inhibitors (e.g., 5–7) [9–21].

Several synthetic methods have been developed to introduce substituents at the 5-
and 7-positions along the I2aa ring system (Figure 1) [9–19]. For example, 5-hydroxy-5-
phenyl I2aa analogs were synthesized by diastereoselective photochemical cyclization of
carbamate-protected β-benzoylalaninyl prolinates [13]. A 5-chloro methyl I2aa derivative
was synthesized by the treatment of phthalimido allylglycinyl 5-methoxyprolinate with
TiCl4 in 64% yield [14]. Furthermore, 5-hydroxymethyl, 5-azidomethyl, 5-formyl, 5-carboxy,
5-benzyl, 7-hydroxymethyl, 7-hydroxypropyl, 7-azidopropyl and 7-benzyl, as well as 5,7-
dibenzyl I2aa derivatives were all synthesized diastereoselectively by routes featuring,
respectively, intramolecular displacements and reductive aminations of 4-substituted 5-
methanesulfonyl and 5-keto 2,8-diaminoazelates to form 5-substituted prolines, which
reacted in lactam cyclization [10–12]. Furthermore, 5-iodo I2aa diastereomers were respec-
tively prepared by transannular iodolactamization of hexahydro-1H-azonines [15]. Iodide
elimination afforded the corresponding ∆5-indolizidine-2-one, which was subsequently
arylated at the 5-position by oxidative Heck chemistry [16]. In addition, 7-hydroxyethyl,
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7-azidoethyl, 7-carboxymethyl, and 7-guanidinylethyl I2aas have been synthesized from
routes commencing with allylation of glutamic acid [17,22], and utilized in a program
towards the development of αvβ3 and αvβ5 integrin receptor ligands [18].
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Figure 1. Indolizidine-2-one amino acid (Boc-I2aa-OH) isomers 1, 5- and 7-hydroxy I2aas 2 and 3,
methyl ester counterparts 8 and 9, and biologically active 5- and 7-substituted I2aa NK-2 ligand 4
and thrombin inhibitors 5–7.

The Hanessian laboratory has played an instrumental role in demonstrating the value
of 5- and 7-substituted I2aa residues in the study of biologically active peptide recep-
tors [19–21]. For example, 5-benzyloxy I2aa 4 was designed by Hanessian and shown to
be a weak but selective antagonist of the tachykinin NK-2 (neurokinin-2) receptor [19].
Furthermore, 3,5,7-trisubstituted I2aas 5–7 were designed, synthesized, and shown to act as
potent thrombin [Factor IIa] and Factor VIIa inhibitors exhibiting selectivity over plasmin
and Factor XIa [20]. Substituted I2aa peptides 4–7 were respectively synthesized from py-
roglutamate by routes featuring the addition of 2-trimethylsilyloxy furan onto an iminium
ion intermediate, followed by lactone to lactam ring expansion to obtain the correspond-
ing 5-hydroxy 9-silyloxymethyl indolizidine-2-one [19–21]. Subsequent installation of the
amine and alkyl substituents at the 3-position and hydroxymethyl group oxidation at the
9-position gave the 3-azido indolizidine-2-one 9-carboxylate counterparts, which were intro-
duced into the peptide mimic structures [19–21]. Validating their utility for peptide-based
medicinal chemistry, the herculean research of the Hanessian laboratory has illustrated the
necessity for effective synthetic routes to access 5- and 7-substituted I2aa residues.

Streamlined syntheses of 5- and 7-hydroxy indolizidine-2-one N-(Boc)amino acids 2
and 3 are now reported by methods employing L-serine as a chiral educt. Motivated
by the research of the Jackson laboratory in which (2S,8S)-1,9-dibenzyl ∆4-2,8-bis[N-
(Boc)amino]azelate was prepared by the copper-catalyzed SN2′ reaction of the zincate
derived from N-(Boc)-β-iodo alanine benzyl ester onto (E)-1,3-dichloroprop-1-ene [23], a
series of related ∆4-2,8-diaminoazelates were synthesized and studied in different olefin ox-
idation chemistries to prepare intermediates towards the hydroxy indolizidine-2-one struc-
tures. Among different oxidation approaches yielding access to 5-hydroxy and 7-hydroxy
I2aa derivatives, useful routes to (3S,5S,6S,9S)-2 and (3S,6S,7S,9S)-3 were conceived by way
of diastereoselective iodolactonization chemistry inspired by the seminal research of the
Bartlett laboratory [24].
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2. Results and Discussion

Initially, 5- and 7-hydroxy indolizidine-2-one N-(Boc)amino esters 8 and 9 were pur-
sued by pathways featuring a ring opening of 4-oxiranyl-2,8-diaminoazelates. Oxiranes
12a–c were synthesized by epoxidation of ∆4-2,8-diaminoazelates 11a–c, which were re-
spectively prepared from (E)-1,3-dichloroprop-1-ene by copper catalyzed SN2′ additions
of zincates derived from methyl β-iodo alaninates 12a–c protected with Boc [25], Cbz [26],
and Fmoc groups (Scheme 1) [27]. Although the 15 Hz coupling constant suggested the for-
mation of the E-trans olefins 11a and 11b, without the corresponding Z-cis isomer, NOESY
experiments were performed to confirm the double-bond geometry. The E-geometry of
olefins 11a and 11b was ascertained by NOESY experiments in which the long-range
through-space transfer of magnetization was observed, respectively, between the vinyl C4
(5.38 and 5.35 ppm) and allylic C6 protons (2.09 and 2.07 ppm) and between the vinyl C5
(5.51 and 5.48 ppm) and allylic C3 protons (2.47 and 2.50 ppm) (Scheme 1). No nuclear
Overhauser effect was observed between the two vinyl protons nor between the two sets of
allylic protons.
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Scheme 1. Synthesis of protected epoxides 12.

Previously, epoxidations of N-Boc and N-Cbz allyl- and homoallyl-glycine esters with
m-chloroperbenzoic acid (m-CPBA) in dichloromethane had given 1:1 diastereomeric mix-
tures of the corresponding oxiranes, which were inseparable by chromatography [28–30].
The C3-protons of benzyl (2S,4RS)-2-(Boc)amino-3-(2-oxiranyl)propionate was reported to
exhibit a doubling of signals in the 1H NMR spectrum [28]. The appearance of multiple sets
of signals for the two possible isomers was similarly observed in the spectra of inseparable
epoxide diastereomers 12a–c and validated by COSY spectra of the Cbz and Fmoc analogs
12b and 12c in which through-bond couplings between two sets of C3-protons with two
overlapping downfield α-(C2)-proton signals were observed. Oxiranes 12a–c were thus
obtained as 1:1 diastereomeric mixtures, which were used in the subsequent chemistry.

Based on the successful synthesis of 6-hydroxymethyl I2aa diastereomers in which
5-hydroxymethyl prolines were prepared from a related C2 symmetric oxirane using Lewis-
acid activation with BF3·Et2O in DCM at −78 ◦C [31], similar conditions were employed
for the intramolecular ring-opening of epoxide 12a (Scheme 2). Multiple isomers of the
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material with a molecular ion corresponding to proline 13 and hydroxyproline 14 were
obtained from oxirane 12a likely by endo and exo ring openings by the attack of the two
different carbamate-protected nitrogen [28,32,33]. Considering that the isomeric mix could
be due, in part, to carbocation intermediates formed under the Lewis acid conditions, a
method to remove the Boc group without the ring opening of the epoxide was attempted
featuring heating oxirane 12a in water at reflux [34]. Deprotection of the Boc group,
intramolecular epoxide ring opening, and lactam formation all occurred upon treating 12a
with boiling water. Amine protection with di-tert-butyl dicarbonate and triethyl amine in
dichloromethane, however, afforded four isomers of 5- and 7-hydroxy I2aa esters 8 and
9, which were observed by LCMS in a 1:1:1:1 ratio. Employing Cbz-protected epoxide
12b, hydrogenolytic cleavage of the carbamate using hydrogen and palladium-on-carbon
in ethanol commenced an epoxide ring opening and lactam formation sequence, which
was followed by Boc protection as described above to afford four isomers of 8 and 9,
which were observed in a 1:5:5:1 ratio by HPLC. The improvement in selectivity may be
due to a favored exo-tet-like ring opening of the epoxide diastereomers by the free amine,
which when generated at a lower temperature reacted to favor the proline instead of the
hydroxyproline counterparts [32,33]. In spite the possibility of improved regioselectivity in
the oxirane ring opening, the route (Scheme 2) was, however, deemed inefficient due to the
complications engendered from the lack of diastereomeric selectivity in the epoxidation of
olefins 11.
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Prompted by earlier success using transannular iodolactamization to prepare
azabicyclo[X.Y.0]alkan-2-one ring systems [15,35], and related iodoamination protocols for
preparing iodomethyl pyrrolidines and piperidines [36–38], ∆4-diaminoazelate 11a was
subjected to iodine and NaHCO3 at −20 ◦C (Scheme 3). The ring opening of the iodonium
intermediate by one of the two carbamate-protected nitrogen appeared to be a method for
selectively obtaining proline 15 instead of the azetidine counterpart; however, a mixture
of diastereomeric iodolactones 16 was also produced as a competing side product. Con-
sidering the lactone as a potential means for differentiating between the two carboxylates,
dihydroxylation of ∆4-diaminoazelate 11a was performed using osmium tetroxide and
N-methylmorpholine N-oxide (NMO) in aqueous acetone to provide hydroxy lactone 17
as a mixture of diasteromers [39]. Mesylate 18 was obtained by methanesulfonation of
hydroxy lactone 17 using methanesulfonyl chloride and triethylamine in dichloromethane.
Mesylate 18 was converted to hydroxy I2aa analogs 8 and 9 by a three-step sequence featur-
ing proline formation after Boc group removal with HCl gas bubbles in dichloromethane,
lactam cyclization upon treatment of the hydrochloride salt with triethylamine in methanol
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at reflux, and amine protection with di-tert-butyl decarbonate in dichloromethane. The
HPLC chromatogram of the products from this sequence exhibited four peaks with molec-
ular ions corresponding to 5- and 7-hydroxy Boc-I2aa-OMe isomers 8 and 9 (Scheme 3) in a
1:1:1:1 ratio.
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Different mixtures of 5- and 7-hydroxy Boc-I2aa-OMe diastereomers 8 and 9 likely
arose from a combination of a lack of facial selectivity in the epoxidation and the dihy-
droxylation of olefin 11 and competing nucleophilic attack from both nitrogen of diamino
azelate epoxide 12 and methanesulfonate 18. The loss of stereochemical integrity may
also arise from competing SN1 processes due to the epoxide ring opening prior to pyrroli-
dine formation. Intrigued by the production of iodolactone 16 as a side product from the
iodoamination strategy, an iodolactonization approach was considered because of the high
facial selectivity achieved on simpler γ,δ-unsaturated carboxylic acids [24,40,41].

After saponification of diester 11a with lithium hydroxide in aqueous dioxane, dicar-
boxylic acid 19 was treated with cesium carbonate and iodine in an ice-cold acetonitrile
solution (Scheme 4). Analysis by LCMS demonstrated a major peak with a molecular ion
corresponding to lactone 20. Subsequent treatment with iodomethane and potassium car-
bonate in DMF furnished the corresponding methyl ester tetrahydrofuran-2-one (1′R,5S)-16
after chromatography in 55% yield from diacid acid 19. Attempts to perform the iodolac-
tonization without a base gave a product mostly from the loss of Boc protection. Employing
the same three-step sequence described above to convert methane sulfonate 18 into esters
8 and 9, iodide (1′R,5S)-16 was transformed into separable 5- and 7-hydroxy I2aa esters
(5S,6S)-8 and (6S,7S)-9 in 42% and 34% overall yields, respectively. Subsequent saponifica-
tion of esters (5S,6S)-8 and (6S,7S)-9 gave, respectively, the acids (5S,6S)-2 and (6S,7S)-3 in
64% and 78% yields.
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Assignment of Regio-Chemistry and Stereochemistry of 5- and 7-Hydroxy I2aa Esters

The configuration of the ring fusion and hydroxyl group carbons of the 5- and 7-
hydroxy I2aa esters 8 and 9, as well as the alcohol position on the ring system, were
all assigned based on two-dimensional NMR spectroscopic experiments. The locations
of the indolizidine-2-one ring protons were initially assigned by COSY experiments in
which through-bond couplings were used to trace the sequence from the downfield shifted
carbamate NH to the C9 hydrogen. Subsequently, heteronuclear single quantum coherence
(HSQC) spectroscopy was used to correlate the protons linked to similar carbons. The
β-protons on the same face as the C3 carbamate and C9 carboxylate appeared generally
up-field of their α-counterparts due to anisotropic effects caused by the latter functional
groups [42]. Finally, relative configurations were ascertained (Figure 2) based on NOESY
experiments in which the observed through-space transfers of magnetization were used to
correlate the stereochemical assignments.
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The ring fusion protons (3.88 and 3.74 ppm) of 5- and 7-hydroxy Boc-I2aa-OMe (5S,6S)-
8 and (6S,7S)-9 were respectively assigned the S stereochemistry based on nuclear Over-
hauser effects (nOe) with the C4β and C8β protons (1.99 and 1.84 ppm) and with the C3
proton (4.13 ppm, Figure 2). No long-range through-space transfer of magnetization was
observed for the protons on the alcohol-bearing carbons. In the case of (6S,7S)-9, the relative
nOe between the C7 proton was stronger for the C8α proton (2.35 ppm) compared to that
of the C8β proton (2.15 ppm). The stereochemical assignments for Boc-(7-OH)I2aa-OMe
(6S,7S)-9 were confirmed by X-ray analysis as discussed below.

The configurations of the hydroxyl group in Boc-(5-OH)I2aa-OMe (5S,6S)-8 and the
iodolactone of tetrahydrofuran-2-one (1′R,5S)-16 were based on the latter serving as a
common intermediate for both the former and Boc-(7-OH)I2aa-OMe (6S,7S)-9. The stereo-
chemistry of the ring-fusion and alcohol carbons are respectively derived from the inversion
on nitrogen attack of the iodide and retention on the lactone opening during synthesis of
the bicycle. Although the order of attack of the iodine and carboxylate may proceed by a
traditional iodonium intermediate (Scheme 4) [24], and by a more concerted nucleophile-
assisted alkene activation mechanism [43], the stereochemical outcome of iodolactone
(1′R,5S)-20 arises from the attack of iodine by the face of the olefin on the opposite side of
the proximal carboxylate of ∆4-azelate 19 (Scheme 4).

The relative configurational assignments for 7-hydroxy Boc-I2aa-OMe (6S,7S)-9 were
confirmed by X-ray analysis of crystals grown from a dichloromethane-in-hexanes mixture
(Figure 3). Two conformers differing primarily by the carbamate orientation were present in
the unit cell and connected by an intermolecular hydrogen bond from the 7-hydroxyl group
donor to the lactam carbonyl oxygen acceptor. Examination of the backbone dihedral angles
embedded in the I2aa ring system (ψi+1 −172◦ and φi+2 −78◦; ψi+1 −175◦ and φi+2 −71◦)
of the conformers in the X-ray structure of the 7-hydroxy analog (6S,7S)-9 indicated a
close relation to those of the central residues of an ideal type II’ β-turn (ψi+1 –120◦ and
φi+2 −80◦) [44], and to that of the methyl ester of the parent I2aa counterpart (6S)-21
(ψi+1 −176◦ and φi+2 −78◦, Figure 4) [45]. Relative to the values in the crystal structure of
Boc-I2aa-OMe (6S)-21, the φi+2 dihedral angle was apparently less influenced by the smaller
7β-hydroxy substituent than the 7α-hydroxymethyl substituent in Boc-(7-HOCH2)I2aa-
OMe (22, ψi+1 −175◦ and φi+2 −68◦) [11].
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3. Materials and Methods

Anhydrous solvents (CH3CN, DMF, (CH3)2CO, CH2Cl2, and CH3OH) were obtained
by passage through solvent filtration systems (GlassContour, Irvine, CA, USA). All reagents
from commercial sources were used as received: Iodine was purchased from Aldrich (USA)
and solvents were obtained from Fisher Chemical. The N-(Boc)-, (Cbz)-, and (Fmoc)-3-
iodo-L-alanine methyl esters 10a–c were respectively prepared according to the literature
methods reported in references [25–27]. Purification by silica gel chromatography was
performed on 230−400 mesh silica gel; analytical thin-layer chromatography (TLC) was per-
formed on silica gel 60 F254 (aluminum sheet) and visualized by UV absorbance or staining
with KMnO4. Melting points are reported in degree Celsius (◦C), uncorrected and obtained
using a Mel-Temp melting point apparatus equipped with a thermometer on the sample
that was placed in a capillary tube. Spectroscopic 1H and 13C NMR experiments were
recorded at room temperature (298 K) in CDCl3 (7.26/77.16 ppm), DMSO-d6 (2.5/39.56),
and CD3OD (3.31/49.0 ppm) on Bruker AV (500/125, and 700/175 MHz) instruments
using an internal solvent as the reference. Spectra are presented in the Supplementary
Materials. Chemical shifts are reported in parts per million (ppm), and coupling constant
(J) values in Hertz (Hz). Abbreviations for peak multiplicities are s (singlet), d (doublet), t
(triplet), q (quadruplet), q (quintuplet), m (multiplet), and br (broad). Certain 13C NMR
chemical shift values were extracted from HSQC spectra. High-resolution mass spectrom-
etry (HRMS) data were obtained on an LC-MSD instrument in electrospray ionization
(ESI-TOF) mode by the Centre Régional de Spectrométrie de Masse de l’Université de
Montréal. Either protonated molecular ions [M + H]+ or sodium adducts [M + Na]+ were
used for empirical formula confirmation. Infrared spectra were recorded in the neat on a
Perkin Elmer Spectrometer FT-IR instrument, and are reported in reciprocal centimeters
(cm−1). The X-ray structure was solved using a Bruker Venture Metaljet diffractometer by
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the Laboratoire de diffraction des rayons X de l’Université de Montréal. Specific rotations
[α]D were measured at 25 ◦C at the specified concentrations (c in g/100 mL) using a 0.5 dm
cell on a PerkinElmer Polarimeter 589 instrument and expressed using the general formula
[α]D

25 = (100 × α)/(d × c).

3.1. (3S,5S,6S,9S)-3-N-(Boc)amino-5-hydroxy-indolizin-2-one-9-carboxylic Acid [(3S,5S,6S,9S)-2]

A 0 ◦C solution of ester (3S,5S,6S,9S)-8 (15 mg, 0.046 mmol) in 1,4-dioxane (0.5 mL)
was treated with a 1N solution of LiOH (1.9 mg, 0.046 mmol, 1 equiv.). The cooling bath was
removed. The reaction mixture was warmed to room temperature with stirring overnight,
at which time TLC indicated the consumption of the starting material. The volatiles were
evaporated under reduced pressure. The residue was partitioned between H2O (5 mL) and
ethyl acetate (5 mL). The aqueous phase was acidified with 1 N HCl to pH 3 and extracted
with ethyl acetate (3 × 10 mL). The organic extractions were combined, dried with Na2SO4,
filtered, and concentrated under vacuum to afford (3S,5S,6S,9S)-2 (9 mg, 64%) as a white
foam; [α]D

25 –10.2 (c 0.32, CHCl3); 1H NMR (500 MHz, CDCl3): δ 5.39 (s, br, 1H), 4.71 (s,
1H), 4.39 (s, br, 1H), 4.29–4.28 (m, 1H), 3.84–3.80 (m, 1H), 2.6–2.52 (m, 1H), 2.39-2.33 (m,
2H), 2.26-2.20 (m, 1H), 2.05-2.02 (m, 1H), 2.0-1.95 (m, 1H), 1.67-1.63 (m, 1H), 1.47 (s, 9H);
13C{1H} NMR (125 MHz, CDCl3) δ 172.0, 167.3, 147.3, 80.5, 64.0, 60.0, 35.2, 32.0, 30.0, 28.3,
26.1, 23.0; FT-IR (neat) νmax 3328, 2919, 1702, 1521, 1449, 1362, 1208, 1166, 1050, 1031 cm−1;
HRMS (ESI-TOF) m/z [M + Na]+ calcd for C14H22N2O6Na 337.1370, found 337.1374.
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was removed. The reaction mixture was warmed to room temperature with stirring for
3 h, at which time TLC indicated the consumption of the starting material. The volatiles
were evaporated under reduced pressure. The residue was partitioned between H2O
(10 mL) and ethyl acetate (5 mL). The aqueous phase was acidified with 1 N HCl to pH
3 and extracted with ethyl acetate (3 × 10 mL). The organic extractions were combined,
dried with Na2SO4, filtered, and concentrated under vacuum to afford (3S,6S,7S,9S)-3
(112 mg, 78%) as a white solid: mp 105–106 ◦C; [α]D

25 –19.13 (c 0.23, CHCl3); 1H NMR
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337.1370, found 337.1374.
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dichloromethane (20 mL) was treated with HCl gas bubbles for 2-3 h, when TLC indicted
complete consumption of the starting carbamate and LCMS analysis indicated a new peak
RT = 0.7 min (C18 column, 10:90 CH3CN:H2O) with a molecular ion of [M + H]+ m/z 357.
The reaction mixture was evaporated to a residue, which was dissolved in MeOH (5 mL),
treated with triethylamine (545 mg, 5.4 mmol, 3 equiv.), and heated at reflux using an oil
bath overnight, when LCMS indicated a new peak RT = 0.68 min (eluent C18 column, 10:90
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reduced pressure. The residue was dissolved in dichloromethane (10 mL), treated with
(Boc)2O (0.14 g, 0.63 mmol, 1.2 equiv.), and stirred for 3 h, when TLC indicated two new
spots and LCMS indicated a new peak RT = 5.0 min (C18 column, 10:90 CH3CN:H2O). The
volatiles were removed under reduced pressure. The residue was purified by flash column
chromatography using 60–80% EtOAc in hexanes as eluent.
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3.4. Dimethyl (2S,4E,8S)-∆4-2,8-(di-N-(Boc)amino)azelate (11a)

In a 250-mL round bottom flask, fitted with a three-way stopcock, CuBr•DMS (1.22 g,
0.006 mol, 0.13 equiv.) was weighed, dried gently with a heat gun under vacuum until
the powder changed color from white to light green, placed under argon, treated with dry
DMF (30 mL), followed by (E)-1,3-dichloroprop-1-ene (2.5 g, 0.023 mol, 0.5 equiv.). In a
Schlenk tube, zinc (8.9 g, 0.14 mol, 3 equiv.) and iodine (0.35 g, 0.0014 mol, 0.03 equiv.)
were mixed under an argon atmosphere, and thrice heated under vacuum with a heat
gun for 10 min and cooled under a flush of argon. A solution of N-(Boc)-3-iodo-L-alanine
methyl ester 10a (15 g, 0.046 mol) in dry DMF (30 mL) was added to the Schlenk tube
and stirred for 1h, when TLC analysis confirmed the consumption of the iodide (Rf = 0.7,
30% EtOAc in hexanes) and formation of the organozinc reagent (Rf = 0.2, 30% EtOAc in
hexanes). Stirring was stopped, the excess zinc powder was allowed to settle, and the
supernatant was transferred dropwise via a syringe with care to minimize the transfer
of zinc into the flask containing the copper catalyst. After stirring at rt overnight, TLC
indicated a new spot (Rf = 0.48, 40% EtOAc in hexanes) and the reaction mixture was
diluted with ethyl acetate (150 mL), stirred for 15 min, and filtered through a silica gel
pad. The filtrate was treated with water (100 mL), transferred into a separatory funnel, and
diluted with ethyl acetate (50 mL). The organic phase was washed successively with 1 M
Na2S2O3 (2 × 100 mL), water (4 × 100 mL), and brine (2 × 100 mL), dried over Na2SO4,
filtered, and evaporated. The volatiles were removed under reduced pressure to afford a
residue that was purified by chromatography using 25–30% EtOAc in hexanes as the eluent.
Evaporation of the collected fractions gave azelate 11a (11.4 g, 56%) as a colorless liquid:
Rf = 0.48 (2:3 EtOAc/Hexanes, visualized with KMnO4); [α]D

25 +25.2 (c 1.04, CHCl3); 1H
NMR (500 MHz, CDCl3) δ 5.54–5.48 (dt, J = 15, 5 Hz, 1H), 5.39–5.34 (dt, J = 15, 5 Hz, 1H),
5.25–5.24 (d, J = 5.0 Hz, 1H), 5.03–5.01 (d, J = 10 Hz, 1H), 4.40–4.37 (m, 1H), 4.34–4.30
(m, 1H), 3.76 (s, 3H), 3.75 (s, 3H), 2.52–2.43 (m, 2H), 2.12–2.07 (m, 2H), 1.90–1.84 (m, 1H),
1.71–1.67 (m, 1H), 1.47 (s, 9H), 1.46 (s, 9H); 13C{1H} (125 MHz, CDCl3) δ 173.3, 173.0, 155.3,
155.2, 133.1, 125.5, 79.95, 79.84, 53.2, 53.0, 52.3, 52.2, 35.6, 32.4, 28.4, 28.3, 23.2; FT-IR (neat)
νmax 3363, 2977, 1698, 1508, 1437, 1391, 1365, 1247, 1211, 1157, 1103, 1050, 1021 cm−1; HRMS
(ESI-TOF) m/z [M + Na]+ calcd for C21H36N2O8Na 467.2363 found 467.2359.
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3.6. Dimethyl (2S,4RS,5RS,8S)-2,8-di-N-(Boc)amino-4-oxiranyl-azelate (12a)

A solution of ∆4-di-N-(Boc)aminoazelate 11a (2.0 g, 4.5 mmol) in dichloromethane
(DCM, 30 mL) was cooled to 0 ◦C and treated with m-chloroperoxybenzoic acid (2.0 g,
9.0 mmol, 2.0 equiv.). The ice bath was removed. The suspension was warmed to room
temperature with stirring overnight, when TLC showed the complete consumption of olefin
11a (Rf = 0.48, 40% EtOAc in hexanes) and a new polar spot for epoxide 12a (Rf = 0.2, 40%
EtOAc in hexanes). The reaction mixture was diluted with DCM (30 mL), transferred to a
separatory funnel, and washed sequentially with 1N NaOH (2 × 20 mL), water (20 mL),
and brine (20 mL), dried over Na2SO4, filtered, and concentrated under vacuum to a residue
that was purified by flash column chromatography using 20% EtOAc in hexanes as the
eluent. Evaporation of the collected fractions afforded epoxide 20a (1.75 g, 84%) as colorless
oil: Rf = 0.2 (2:3 EtOAc/hexanes, visualized with KMnO4); [α]D

25 +2.5 (c 0.81, CHCl3); 1H
NMR (500 MHz, CD3OD): δ 4.32–4.26 (m, 1H), 4.18–4.13 (m, 1H), 3.75 (s, 3H), 3.74 (s, 3H),
2.87–2.75 (m, 2H), 1.97–1.90 (m, 2H), 1.80–1.72 (m, 1H), 1.64–1.59 (m, 1H), 1.47 (s, 20H);
13C{1H} NMR (125 MHz, CD3OD) δ 173.2, 173.0, 156.7, 156.6, 79.4, 79.2, 58.0, 57.5, 55.4,
55.3, 53.5, 53.1, 51.51, 51.4, 51.3, 34.0, 27.3; FT-IR (neat) νmax 3326, 2955, 1699, 1523, 1437,
1210, 1045, 912 cm−1; HRMS (ESI-TOF) m/z [M + Na]+ calcd for C21H36N2O9Na 483.2313,
found 483.2321.
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(0.7 g, 63%): Rf = 0.21 (4:6 ethyl acetate/hexanes, visualized by UV). Epoxidation was
performed as described for Boc counterpart 11a using dimethyl (2S,4E,8S)-∆4-2,8-(di-N-
(Fmoc)amino)azelate (11c, 600 mg, 0.87 mmol), which gave a colorless solid (500 mg, 82%):
mp 89–92 ◦C; Rf = 0.30 (4:6 EtOAc/hexanes, visualized by UV); [α]D

25 +5.5 (c 0.51, CHCl3);
1H NMR (500 MHz, CDCl3): δ 7.79–7.77 (d, J = 10 Hz, 4H) 7.63–7.57 (m, 4H), 7.43–7,40 (m,
4H), 7.34–7.31 (m, 4H), 5.74–5.67 (dd, J = 10, 5 Hz, 1H), 5.48–5.34 (dd, J = 12, 10 Hz, 1H),
4.60–4.51 (m, 2H), 4.46–4.40 (m, 4H), 4.26–4.22 (m, 2H), 3.81 (s, 3H), 3.78 (s, 3H), 2.85–2.73
(m, 2H), 2.16–1.74 (m, 6H); 13C{1H} NMR (125 MHz, CDCl3) δ 172.6, 172.1, 156.0, 143.8,



Molecules 2022, 27, 67 13 of 17

143.7, 141.3, 130.0, 128.0, 127.1, 125.1, 120.0, 67.2, 67.1, 67.0, 57.4, 55.3, 55.1, 53.2, 52.73, 52.7,
52.6, 52.5, 47.1, 35.0, 30.0, 28.97, 28.9, 27.6, 27.5; FT-IR (neat) νmax 3290, 2952, 1690, 1531,
1448, 1260, 1215, 1085, 1045 cm−1; HRMS (ESI-TOF) m/z [M + H]+ calcd for C41H41N2O9
705.2806, found 705.2819.
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1.12 mmol) in 1,4-dioxane (5 mL) was treated with a 1N solution of LiOH (94.4 mg,
2.25 mmol, 2 equiv.). The cooling bath was removed. The reaction mixture was warmed to
room temperature with stirring for 3 h, at which time TLC indicated the consumption of the
starting material. The volatiles were evaporated under reduced pressure. The residue was
partitioned between H2O (10 mL) and EtOAc (5 mL). The aqueous phase was acidified with
1 N HCl to pH 3 and extracted with ethyl acetate (3 × 10 mL). The organic extractions were
combined, dried with Na2SO4, filtered, and concentrated under vacuum to afford diacid
19 (430 mg, 92%) as a white solid: mp 71–73 ◦C; [α]D

25 +39.0 (c 0.82, CHCl3); 1H NMR
(500 MHz, DMSO-d6): δ 12.42 (s, 2H), 7.08–7.07 (d, J = 5.0 Hz, 1H), 6.97–6.96 (d, J = 5 Hz,
1H), 5.50–5.44 (m, 1H), 5.40–5.35 (m, 1H), 3.90–3.84 (m, 2H), 2.37–2.32 (m, 1H), 2.29–2.23 (m,
1H), 1.71–1.50 (m, 4H), 1.39 (s, 9H), 1.38 (s, 9H); 13C{1H} NMR (125 MHz, DMSO-d6) δ 175.0,
174.0, 156.03, 155.88, 132.2, 127.0, 78.47, 78.41, 60.2, 54.1, 53.3, 34.5, 31.1, 28.68, 28.66; FT-IR
(neat) νmax 3697, 2980, 1694, 1507, 1393, 1367, 1245, 1157, 1053, 1033, 1018 cm−1; HRMS
(ESI-TOF) m/z [M + Na]+ calcd for C19H32N2O8Na 439.2050, found 439.2070.
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A 0 ◦C mixture of carboxylic acid (1′R,5S)-20 (2.1 g, 3.87 mmol) and K2CO3 (800 mg,
5.8 mmol, 1.5 equiv.) in DMF (20 mL) was treated with methyl iodide (820 mg, 5.8 mmol,
1.5 equiv.). The ice bath was removed. After stirring for 2–3 h, the room temperature
mixture exhibited a nonpolar spot (2:3 EtOAc/hexanes) by TLC and indicated a new peak
at RT = 9.0 min (C18 column, 10:90 CH3CN:H2O) by LCMS analysis, with a molecular
ion of [M + Na]+ m/z 579. The reaction mixture was diluted with water and extracted
with ethyl acetate (4 × 50 mL). The ethyl acetate layer was washed with water (4 × 50 mL)
and brine (2 × 30 mL), dried over Na2SO4, filtered, and concentrated under reduced
pressure. The residue was purified by flash column chromatography using 20–30% EtOAc
in hexanes as the eluent. Evaporation of the collected fractions gave tetrahydrofuran-2-one
(1′R,5S)-16 (1.1g, 55% from diacid 19) as a colorless solid: mp 58–60 ◦C; Rf = 0.56 (2:3
EtOAc/hexanes, visualized by KMnO4), [α]D

25 +13.4 (c 0.68, CHCl3); 1H NMR (500 MHz,
CDCl3): δ 5.10–5.08 (d, J = 10Hz, 2H), 4.45–4.41 (m, 1H), 4.37–4.33 (m, 2H), 4.08–4.04 (t,
J = 10 Hz, 1H), 3.79 (s, 3H), 3.14–3.09 (m, 1H), 2.23–2.17 (m, 1H), 2.11–2.05 (m, 1H), 1.95–1.87
(m, 2H), 1.78–1.73 (m, 1H), 1.48 (s, 9H), 1,47 (s, 9H); 13C{1H} NMR (125 MHz, CDCl3) δ
174.0, 173.0, 155.3, 130.0, 81.0, 80.2, 79.2, 53.0, 52.5, 52.0, 38.0, 36.0, 32.3, 32.0, 28.31, 28.27;
FT-IR (neat) νmax 3281, 2921, 2853, 1801, 1747, 1697, 1674, 1537, 1451, 1368, 1294, 1252, 1213,
1154, 1060, 1029, 1005 cm−1; HRMS (ESI-TOF) m/z [M + Na]+ calcd for C20H33IN2O8Na
579.1173, found 579.1195.
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idin-2-one amino esters (3S,5S,6S,9S)-8 and (3S,6S,7S,9S)-9 in six steps and 21% and 17% 
respective overall yields from ∆4-2,8-diaminoazelate 11a. Saponification of the esters 
(3S,5S,6S,9S)-8 and (3S,6S,7S,9S)-9 delivered the corresponding carboxylic acids, which 
are suitable for peptide synthesis. 

The configuration of 5- and 7-hydroxy indolizidin-2-one amino esters (3S,5S,6S,9S)-
8 and (3S,6S,7S,9S)-9 was assigned using a series of NMR experiments. Furthermore, X-

3.11. (1′R,5S)-3-N-(Boc)amino-5-[1′-iodo-4′-N-(Boc)amino-4′-hydroxcarbonylbutyl]-
tetrahydrofuran-2-one [(1′R,5S)-20]

A solution of diacid 19 (1.6 g, 3.8 mmol) in acetonitrile (20 mL) was treated with
Cs2CO3 (3.7 g, 11.5 mmol, 3 equiv.), stirred for 15 min, cooled to 0 ◦C with an ice bath, and
treated with iodine (2.93 g, 11.5 mmol, 3 equiv.). The ice bath was removed. After stirring for
3–4 h, the reaction mixture had warmed to room temperature and was observed by LCMS
to contain a new peak at RT = 8.1 min (C18 column, 10:90 CH3CN:H2O) with a molecular
ion [M + Na]+ m/z 565. The reaction mixture was filtered through a pad of Celite™ and
the filter cake was washed with acetonitrile (3 × 30 mL). The filtrate and washings were
combined and evaporated under reduced pressure. The residue was partitioned between
H2O (50 mL) and EtOAc (25 mL). The aqueous phase was acidified with 1 N HCl to pH 3
and extracted with ethyl acetate (3 × 50 mL). The organic extractions were combined, dried
with Na2SO4, filtered, and concentrated under vacuum to afford tetrahydrofuran-2-one
(1′R,5S)-20 (2.1 g) as a pale-yellow solid, which was used without further purification.
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4. Conclusions

The copper catalyzed SN2′ addition of zincate derived from methyl β-iodo alani-
nate onto (E)-1,3-dichloroprop-1-ene has given useful entry into a set of protected ∆4-2,8-
diaminoazelates (e.g., 11a–c). Attempts to fold the latter linear precursors into bicyclic 5-
and 7-substituted indolizidin-2-one amino acid (I2aa) derivatives have, however, demon-
strated the challenges of achieving diastereomeric and regioisomeric selectivity in the facial
differentiation of the olefin. Epoxidation and dihydroxylation were unselective and gave
oxiranes 12 and hydroxy lactone 17 as inseparable mixtures of diastereomers, which were
shown by LCMS analyses to be convertible into mixtures of up to four hydroxy indolizidine-
2-one isomers due in part to the inability to control the intramolecular cyclization of the
respective nitrogen. Moreover, diastereomeric stereochemical integrity may have also been
lost due to cyclization by way of planar SN1 intermediates.

Iodolactonization of ∆4-2,8-diaminoazelic diacid 19 occurred with high facial selectiv-
ity to provide tetrahydrofuran-2-one (1′R,5S)-16 as a single isomer. Both nitrogen of iodide
16 reacted in intramolecular SN2 displacements to respectively provide hydroxyproline
and proline intermediates. Lactam formation provided 5- and 7-hydroxy indolizidin-2-one
amino esters (3S,5S,6S,9S)-8 and (3S,6S,7S,9S)-9 in six steps and 21% and 17% respective
overall yields from ∆4-2,8-diaminoazelate 11a. Saponification of the esters (3S,5S,6S,9S)-8
and (3S,6S,7S,9S)-9 delivered the corresponding carboxylic acids, which are suitable for
peptide synthesis.

The configuration of 5- and 7-hydroxy indolizidin-2-one amino esters (3S,5S,6S,9S)-8
and (3S,6S,7S,9S)-9 was assigned using a series of NMR experiments. Furthermore, X-
ray analysis of ester (3S,6S,7S,9S)-3 demonstrated that the backbone geometry within the
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7-hydroxy indolizidine-2-one framework replicated that of the parent I2aa ester (6S)-21
and mimicked the dihedral angles of the central dipeptide in a type II’ β-turn. The utility
of 5- and 7-hydroxy indolizidin-2-one amino acids (3S,5S,6S,9S)-2 and (3S,6S,7S,9S)-3 is
currently being investigated inside biologically relevant peptides and will be reported in
due time.
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