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Abstract
In conservation biology, phylogenetic diversity (PD) provides a way to quantify the
impact of the current rapid extinction of species on the evolutionary ‘Tree of Life’. This
approach recognises that extinction not only removes species but also the branches of
the tree on which unique features shared by the extinct species arose. In this paper,
we investigate three questions that are relevant to PD. The first asks how many sets
of species of given size k preserve the maximum possible amount of PD in a given
tree. The number of such maximum PD sets can be very large, even for moderate-
sized phylogenies. We provide a combinatorial characterisation of maximum PD sets,
focusing on the setting where the branch lengths are ultrametric (e.g. proportional
to time). This leads to a polynomial-time algorithm for calculating the number of
maximum PD sets of size k by applying a generating function; we also investigate the
types of tree shapes that harbour the most (or fewest) maximum PD sets of size k.
Our second question concerns optimising a linear function on the species (regarded
as leaves of the phylogenetic tree) across all the maximum PD sets of a given size.
Using the characterisation result from the first question, we showhow this optimisation
problem can be solved in polynomial time, even though the number of maximum PD
sets can grow exponentially. Our third question considers a dual problem: If k species
were to become extinct, then what is the largest possible loss of PD in the resulting
tree? For this question, we describe a polynomial-time solution based on dynamical
programming.
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1 Introduction

Advances in molecular genetics and computational techniques over recent decades
have allowed biologists to reconstruct evolutionary relationships among thousands
of species (Jetz et al. 2014; Upham et al. 2019). However, as fast as this ‘Tree of
Life’ is being assembled, many of these species are heading to extinction because of
anthropogenic impacts (Davis et al. 2018). This extinction of species also entails the
loss of features and genetic variation through the differential pruning of the underlying
tree structure. The impact on this tree is often estimated by the reduced sum of edge
lengthsmeasured in evolutionary time (Faith 1992). For example, if all 575 bird species
classified as ‘imperilled’ were to disappear from the bird phylogeny (from ∼10,000
species), this would result in the loss of 2.7 billion years of evolution (Jetz et al. 2014).

The ancestral relationships between a set of species are generally modelled using
phylogenetic trees (Felsenstein 2004), and one measure of how much of a tree is
spanned by a subset of species is the phylogenetic diversity (PD) measure (precise
definitions are provided in the next section; here, we give an informal description).
In simple terms, every non-empty set of species defines a minimal subtree which
connects those species to the root of the tree, and the length of every branch in that
subtree is summed to give a PD score for the set overall. The greater the PD score, the
more diverse a set of species is assumed to be. To illustrate, Fig. 1 shows the relative
ancestry of the species x1, x2, . . . , x7. Solid edges are those used in the calculation of
the PD score for species x3, x4 and x7. Thus the PD score of {x3, x4, x7} is 16. Note
that the PD score of {x4, x7} is 10.

An important concern of conservationists is preventing the extinction of species
and the subsequent reduction of biodiversity. For a phylogenetic tree, an extinction is
represented by the removal of that species’ leaf from the tree. This also removes the

Fig. 1 The minimal subtree
connecting species x3, x4 and x7
has a PD score of 16
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edge which connected that species to the rest of the tree, lowering the PD score. In the
case where more than one species becomes extinct, the combined effect can be much
larger than the sum of individual extinctions. We can interpret Fig. 1 as representing
the extinction of x1, x2, x5, and x6. Notice that the simultaneous extinction of x1 and
x2 has caused the removal of a third edge, that connecting their least common ancestor
to the rest of the tree. These types of dependencies can lead to large differences in PD
scores among sets of equal size.

Research has been conducted to assess the usefulness of the PD measure to inform
conservation strategy. To this end, sets of species which attain the maximum value of
PD (for a given number of species) have been used as a benchmark against a measured
response, to be contrasted with random selections of species (Tucker et al. 2019).
However, the sets of a given size which maximise PD are not unique. In applications
of PD, we see the algorithms which generate such sets being run multiple times to
account for this. For example, Molina-Venegas et al. (2021)[p. 586] and Mazel et al.
(2018)[p. 7] both performed ten runs on each phylogenetic tree under consideration
because:

“There are multiple subsets of size S that maximises PD in a phylogeny”

and

“For a given tree there are likelymultiple, and possibly verymany, sets of species
with the same [maximum] PD”,

respectively. Furthermore, Mazel et al. (2017)[p. 1021] noted that:

“this numberwill vary across simulations and could, in some case, be very large.”

Although the non-uniqueness of these sets is known and accounted for, their total
number is not well understood. This leaves open questions about the most appropriate
number of runs to perform in the above trials, and what the chances are that random
selections of species also happen to form sets which maximise PD. In this paper, we
investigate mathematical questions concerning the enumeration of maximum PD sets
of given size, as well as identifying the sets of species of given size whose extinction
would result in the largest loss of phylogenetic diversity.

1.1 Outline of the paper

We begin by stating in the next section the key mathematical definitions required in
the paper. In Sect. 3, we present a new characterisation of those sets which maximise
PD for each possible size (Theorem 1). This characterisation allows us to count the
number of such sets on any rooted phylogenetic tree,which previousmethods could not
achieve concisely. Theorem2 sets out how this processmaybe achieved efficiently. The
conceptual approach from Theorem 1 is continued in Sect. 4, leading to Algorithm 1,
which selects, in polynomial time, one of these maximising sets that is optimal against
a second measure. In Sect. 5, we consider a dual problem: determining the greatest
possible loss of PD if a certain number of species becomes extinct (this turns out to be
equivalent to minimising PD for a given number of species). A dynamic programming
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approach is used to solve this problem in polynomial time for binary (or degree-
bounded) rooted phylogenetic trees.

2 Preliminaries

Phylogenetic trees. Let X be a non-empty set of taxa (e.g. species), with |X | = n. A
rooted phylogenetic X -tree is a rooted tree T = (V , E), where X is the set of leaves,
and all edges are directed away from a distinguished root vertex ρ, and every non-leaf,
non-root vertex has out-degree at least 2. In addition, when |X | = 1, the tree consisting
of a single vertex is a rooted phylogenetic X -tree. All edges drawn in this paper will
be directed down the page. If all non-leaf vertices of T have out-degree 2, we say that
T is binary.

Three types of restrictions on T will be useful. For A ⊆ X , the A-subtree of T is
the minimal tree which connects the leaves of A to the root vertex ρ. In order for an
A-subtree to be a phylogenetic tree, we suppress any non-root vertices with out-degree
1 which arise during its construction. For a set of vertices V ′ ⊆ V (T ), the forest T [V ′]
is the restriction of T to those vertices in V ′ and (directed) edges (u′, v′) ∈ E(T ),
where u′, v′ ∈ V ′. A subtree of T is pendant if it can be disconnected from ρ by
deleting a single edge of T . As shorthand, for an arbitrary set A and element x , we
write A ∪ x in place of A ∪ {x} and A − x in place of A\{x}.

For any vertex v ∈ V (T ), we write x ∈ cT (v) if x ∈ X and the unique path from ρ

to x includes v. That is, cT (v) is the set (cluster) of leaves descended from v in T . For
the (directed) edge e = (u, v), we define cT (e) = cT (v). If a cluster has size two or
three, we call it, respectively, a cherry or a triple. A cluster of size four which contains
two distinct cherries is called a fork. In the rooted phylogenetic tree T1 of Fig. 1 the set
{x1, x2, x3} is a triple, the set {x4, x5, x6, x7} is a fork, and each of {x1, x2}, {x4, x5}
and {x6, x7} is a cherry.
Phylogenetic diversity. The edges of every rooted phylogenetic tree considered in
this paper are positively weighted. Let T be a rooted phylogenetic X -tree, and let
� : E(T ) → R

>0 be a function which assigns a positive real-valued length �(e) to
each edge e ∈ E(T ). Suppose that u, v ∈ V (T ) are two vertices of T connected by a
directed path from u to v (this path is unique if it exists). Then the distance from u to
v, denoted d(u, v), is the sum of the lengths of the edges in this path. If an edge e is
subdivided into two edges e1 and e2, we require �(e1)+ �(e2) = �(e). If � is such that
for any two distinct leaves x and y we have d(ρ, x) = d(ρ, y), we say that � satisfies
the ultrametric condition.

For a non-empty subset Y of X , we define the phylogenetic diversity of Y on T ,
denoted by PD(T ,�)(Y ), to be the sum of the edge lengths of the Y -subtree. That is,

PD(T ,�)(Y ) =
∑

e∈E(T ):
cT (e)∩Y 	=∅

�(e).

It will be usual for us to remove the subscript notation and write PD(Y ) when it is
clear which rooted phylogenetic tree and edge length function we refer to. We also
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Fig. 2 A size-3 maxPD set {x2, x3, x6} and a size-3 minPD set {x5, x6, x7} for T1. Solid lines indicate
the {x2, x3, x6}- and {x5, x6, x7}-subtrees respectively. Hence PD({x2, x3, x6}) = 16, and
PD({x5, x6, x7}) = 11

write PD(T ) to denote the phylogenetic diversity of the entire X -tree T , in place of
PD(T ,�)(X).

Let T be a rooted phylogenetic X -tree whose edges are assigned a positive real-
valued weighting, and let A ⊆ X . If |A| = k and PD(A) ≥ PD(Y ) for all Y ⊆ X
with |Y | = k, then we call A a size-k maxPD set. Similarly, if |A| = k and PD(A) ≤
PD(Y ) for all Y ⊆ X with |Y | = k, then we call A a size-k minPD set. To illustrate,
Fig. 2 shows an example of a size-3 maxPD and an example of a size-3 minPD sets
for the same rooted phylogenetic tree.

3 The number of maxPD sets on rooted phylogenetic trees

Given a rooted phylogenetic X -tree T , with |X | = n and a weighting on E(T ), a
natural question is to find a subset Y of X of size t whose extinction minimises PD
loss. The solution to this question is to take Y to be X − W , where W is a subset of
X of size n − t that maximises PD(W ). It turns out that a greedy algorithm provably
constructs such setsW of k = n−t leaves (Pardi andGoldman 2005; Steel 2005). This
result relies on an underlying combinatorial ‘strong exchange property’ that induces
a greedoid structure on maximal PD sets of given size.

Although a greedy algorithm will output a maxPD set, it does not give a clear
indication of how many distinct maxPD sets exist for T . Such an algorithm begins
with an empty set of leaves and iteratively adds k leaves, based on which leaf adds
most to the running total of PD at each iteration. There may be multiple steps at which
a choice has to be made between equally-good options. By altering the procedure
for breaking ties when they occur, it is possible to discover numerous size-k maxPD
sets. This effect is most pronounced for rooted phylogenetic X -trees satisfying the
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ultrametric condition. For example, Fig. 1 and Fig. 2 show two of the 20 different
size-3 maxPD sets for the rooted phylogenetic tree T1.

All possible maxPD sets can be obtained by using a greedy algorithm, by taking
each option separately when presented with ties (Steel 2005, Theorem 1). However,
this process can become quite involved even for small phylogenetic trees. Moreover,
each maxPD set could be counted multiple times, as greedy algorithms sometimes
select the same set of leaves in different orders.

In this section, we present a more straightforward method for determining exactly
howmanymaxPD sets exist on a given rooted phylogenetic X -tree whose edge lengths
satisfy the ultrametric condition. Firstly, by deleting certain edges near the root vertex,
we partition the leaf set into disjoint subsets. Then we use a generating function which
takes the sizes of these subsets and outputs the number of maxPD sets as a coefficient.

3.1 CountingmaxPD sets in an ultrametric context

We restrict our attention to the problem of counting maxPD sets on a rooted phy-
logenetic X -tree T whose edge lengths satisfy the ultrametric condition. Suppose
T = (V , E), and let 1 ≤ k ≤ |X |. It turns out that the minimal subtrees of T connect-
ing size-k maxPD sets to the root all contain particular subsets of edges. Furthermore,
these common edges induce a subtree of T containing the root vertex. Our approach
is to determine which edges of T will be in common to all size-k maxPD sets. From
there, we can enumerate these maxPD sets by analysing the forest that results from
deleting the common edges.

For example, all twenty size-3 maxPD sets of T1 from Fig. 1 (with a score of 16)
can be found by checking the 35 possible sets of 3 leaves. Comparing these, we see
that all of the minimal subtrees of T1 that connect a size-3 maxPD set to the root of
T1 contain both edges incident with the root, as well as exactly 3 out of the 4 edges
descending from the two highest non-root vertices.

We extend the metaphor that the ultrametric condition produces clock-like trees
and consider time to run down the page. Vertices at the same height are therefore
contemporary and, in particular, the leaves are in the present. Let d be a non-negative
real number and let

R(d) = {v ∈ V : d(v, x) ≤ d for some x ∈ X}

be the set of recent vertices of T that are at most d units of time from the present. Let
c(d) be the number of connected components in T [R(d)]. If there exists a distance d
such that c(d) = k, we define dk = min{d ∈ R : c(d) = k}. Note that dk may not be
defined for all k < n. However, if dk is defined, we call k a branching value, and dk
a branching distance. In other words, dk is the most recent time for which T [R(d)]
has exactly k connected components, if such a time exists. For example, the rooted
phylogenetic tree T2 in Fig. 3 has {1, 2, 4, 7, 9, 11} as its set of branching values. The
forests T2[R(d4)] and T2[R(d7)] are shown below T2 in the same figure.

If k is not a branching value, we will be interested in the nearest integers which are.
We write k+ to denote the smallest branching value of at least k, and k− to denote the
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Fig. 3 A rooted phylogenetic tree T , and the forests T [R(d4)] and T [R(d7)] corresponding to the branching
values 4 and 7. The branching distances d4 and d7 are indicated by horizontal dotted lines

largest branching value of at most k. Note that k = 1 and k = |X | are branching values,
so that k+ and k− are well-defined. If k is a branching value, then k− = k = k+.
Theorem 1 gives a characterisation of maxPD sets of a rooted phylogenetic tree T in
terms of the forests T [R(dk−)] and T [R(dk+)].
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We first prove Lemma 1. Let X = {x1, . . . , xn}. We define T ′
k = (V ′, E ′) to be the

rooted tree derived from T (by adding vertices to subdivide edges as necessary) where,
for each xi ∈ X , there is a vertex vi on the path ρ to xi for which d(vi , xi ) = dk− .
Since T ′

k is derived from T solely by subdivision of edges, PDT (A) = PDT ′
k
(A). Let

V ′
Top(k) = {v ∈ V ′ : d(ρ, v) ≤ d1 − dk−}, and let T̂k be the rooted tree T ′

k [V ′
Top(k)].

Lemma 1 Let T be a rooted phylogenetic X-tree whose edge lengths satisfy the ultra-
metric condition, and let A ⊆ X with |A| = k. Then

PDT (A) ≤ PD(T̂k) + kdk− .

Proof Let A = {x1, . . . , xk} be a size-k subset of X . Each element xi of A contributes
at most d(ρ, xi ) to the total of PDT ′

k
(A). We separate the path from ρ to xi within T ′

k
into two parts at vertex vi . Hence

d(ρ, xi ) = d(ρ, vi ) + d(vi , xi ) = d(ρ, vi ) + dk− .

For all 1 ≤ i ≤ k, the path from ρ to vi lies within T̂k . Therefore the total contribu-
tion of these paths to PDT ′

k
(A) cannot exceed PD(T̂k). This means PDT ′

k
(A) must

be less than or equal to PD(T̂k) plus a contribution of (at most) dk− from each of the
k elements of A. Thus PDT ′

k
(A) ≤ PD(T̂k) + kdk− , and the lemma holds. 
�

Lemma 2 Let T be a rooted phylogenetic X-tree whose edge lengths satisfy the ultra-
metric condition. Let A ⊆ X with |A| = k, and let d be a branching distance of T . If
one component of T [R(d)] contains no members of A, while a second component of
T [R(d)] contains two or more distinct members of A, then A is not a size-k maxPD
set.

Proof Assume some component of T [R(d)] contains two (distinct) leaves, say x1, x2,
of A. The PD contribution of adding x1 to A − x1 cannot exceed d because all edges
of T in the path from ρ to x2 have already been counted towards PD(A − x1). In
particular, PD(A) − PD(A − x1) ≤ d.

Now let y be a leaf in a component of T [R(d)] which contains no member of A.
The shortest defined distance from a vertex in the (A − x1)-subtree to y must exceed
d. (If not, there would be some vertex of the (A− x1)-subtree in the same component
of T [R(d)] as y.) Hence PD((A − x1) ∪ y) > PD(A). Since |(A − x1) ∪ y| = |A|,
the set A is not a size-k maxPD set. 
�
Theorem 1 Let T be a rooted phylogenetic X-tree whose edge lengths satisfy the
ultrametric condition. Let A ⊆ X, and let |A| = k. Then A is a size-k maxPD set if
and only if A contains at least one leaf from each component of T [R(dk−)], and at
most one leaf from each component of T [R(dk+)].
Proof First suppose that A is a size-k maxPD set. Assume some component of
T [R(dk+)] contains two (distinct) leaves, say x1,x2, of A. Since k+ ≥ k, there must
be some component of T [R(dk+)] which has no leaf in A. Then, by Lemma 2, the set
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A cannot be a maxPD set, contradicting our initial supposition. Thus A contains at
most one leaf from each component of T [R(dk+)].

Next, assume that some component of T [R(dk−)] contains no element of A. Since
k− ≤ k, there is a component of T [R(dk−)] that contains two or more leaves of A.
Then, by Lemma 2, the set A cannot be a maxPD set, again contradicting our initial
supposition. Thus A contains at least one leaf from each component of T [R(dk−)].

Now suppose that A = {x1, . . . , xk} contains at least one leaf from each component
of T [R(dk−)], and at most one leaf from each component of T [R(dk+)]. By Lemma 1,
the value PD(T̂k) + kdk− is an upper bound for the PD score of size-k sets. We show
that PD(A) achieves this bound.

Notice that the components of T [R(dk−)] match those of T ′
k [R(dk−)], and the

components of T [R(dk+)] match those of T ′
k [R(dk+)], in terms of their constituent

leaves. For each xi ∈ A there exists a vertex vi ∈ V ′ for which d(vi , xi ) = dk− . Since
each component of T ′

k [R(dk+)] contains at most one leaf, the paths from vi to xi , and
from v j to x j contain no common edges, for any distinct 1 ≤ i, j ≤ k. So in total, the
collection of all paths vi to xi for all i contributes exactly kdk− to PD(A). Furthermore,
since A contains at least one leaf from each component of T [R(dk−)], every edge of
T̂k is included in the A-subtree of T . Thus PDT (A) = PDT ′

k
(A) = PD(T̂k) + kdk− ,

the maximum possible value, and hence A is a size-k maxPD set. 
�
When k is a branching value for a rooted phylogenetic X -tree T , then k− = k =

k+ and T [R(dk−)] = T [R(dk)] = T [R(dk+)]. Hence, as a direct consequence of
Theorem 1, we obtain the following result.

Corollary 1 Let T be a rooted phylogenetic X-tree whose edge lengths satisfy the
ultrametric condition. Let A ⊆ X with |A| = k. If k is a branching value of T , then A
is a size-k maxPD set if and only if A contains exactly one leaf from each component
of T [R(dk)].

Theorem 1 can be used to count the number of size-k maxPD sets for a rooted
phylogenetic X -tree T whose edge lengths are ultrametric. Note that this result does
not require T to be binary. Let m(T , k) denote the number of size-k maxPD sets on
T . The next proposition derives m(T , k) when k is a branching value of T . The case
when k is not a branching value of T is covered separately. We express the forest
T [R(dk)] as a union of components κi (k) for i ∈ {1, 2, . . . , k}, and write λ(κi (k)) for
the number of leaves in κi (k).

Proposition 1 Let T be a rooted phylogenetic X-tree whose edge lengths satisfy the
ultrametric condition. If k is a branching value for T , then

m(T , k) =
∏

i∈{1,...,k}
λ(κi (k)).

Proof By Corollary 1, each maxPD set contains exactly one leaf from component
κi (k), for all i ∈ {1, 2, . . . , k}. There are exactly λ(κi (k)) ways to choose one leaf
from component κi (k). Since the choice in each component is independent of the
choices in all other components, m(T , k) = ∏

i∈{1,...,k}
λ(κi (k)). 
�
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Fig. 4 A phylogeny of 32 mammalian families, appearing originally as Fig. 3a in Mazel et al. (2018)

Example. Mazel et al. (2018) exhibit a phylogeny of 32 mammal families (reprinted
as Fig. 4). Let us call this phylogeny P . We calculate the number of size-8 and size-16
maxPD sets for P .

The family Leporidae appears as a single vertex component in both P[R(d8)]
and P[R(d16)]. For P[R(d8)], the components appearing clockwise, starting from
Leporidae, have sizes 1, 8, 3, 2, 7, 3, 5, and 3. The product of these values gives a total
of 15120 size-8 maxPD sets for P . Note that this represents 0.14% of the possible
sets of 8 leaves. For P[R(d16)], the components appearing clockwise, starting from
Leporidae, have sizes 1, 2, 4, 1, 1, 3, 1, 1, 2, 1, 4, 3, 5, 1, 1, and 1. This gives a total
of 2880 size-16 maxPD sets for P .

If k is not a branching value for a rooted phylogenetic X -tree T , calculating the
number of size-k maxPD sets is not as immediate. In this case, we use a generating
function to determine m(T , k). The following lemma is presented for a more general
context.

Lemma 3 Suppose that C = (Xi j : i = 1, . . . , n j ; j = 1, . . . , r) is an array of
disjoint sets, and let ni j denote the size of set Xi j . Let NC(k) be the number of sets of
size k that can be obtained by selecting at most one element from each set Xi j but in
such a way that at least one element is selected from

⋃
i Xi j for each value of j . Then

NC(k) is the coefficient of xk in the polynomial
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pC,k(x) =
r∏

j=1

(
−1 +

n j∏

i=1

(1 + ni j x)

)
. (1)

Proof For each integer j ≥ 1, let p j (x) = −1 + ∏n j
i=1(1 + ni j x), and for each

l ≥ 0, let cl j denote the coefficient of xl in p j (x). Then c0 j = 0 for each j , and for
l > 0, the coefficient cl j is the number of ways of selecting l elements from

⋃n j
i=1 Xi j

in such a way that at most one element is selected from the (pairwise-disjoint) sets
(Xi j : i = 1 . . . , n j ) and at least one element is selected (since l > 0).

Now pC,k(x) = ∏r
j=1 p j (x) and so the coefficient of xk in pC,k(x) is the sum

(call it Sk) of the terms cl1,1cl2,2 · · · clr ,r across all choices of (l1, l2, . . . , lr ) for which
l1 + l2 + · · · + lr = k, and lm > 0 for all m (this second condition holds because
c0 j = 0 for all j). Since the sets Xi j are pairwise-disjoint (across all choices of i, j),
we have Sk = NC(k) as required. 
�

Let T be a rooted phylogenetic X -tree, and let k be a positive integer such that
k ≤ |X |. We write pT ,k(x) instead of pC,k when C is constructed from component-
connected clusters of T , using the branching values k− and k+. If k is a branching
value of T , we have n j = 1 for all j , and the result coincides with Proposition 1. In
the general case, Lemma 3 gives a polynomial-time algorithm to compute m(T , k).

Theorem 2 Let T be a rooted phylogenetic X-tree whose edge lengths satisfy the
ultrametric condition. Let |X | = n, and let k ≤ n. The components of T [R(dk−)] and
T [R(dk+)] can be determined in time O(n2). The value m(T , k) can be computed in
time O(n3).

Proof There are at most n different branching values for T (one for every non-leaf
vertex, and the value n) from which to select the appropriate k− and k+ values.
Determining the components of a forest can be achieved in O(n2) time. Once the
components have been determined, the polynomial pT ,k(x) is calculated, and the
coefficient of xk is extracted.With a naïve approachof sequentiallymultiplying factors,
this can be completed in time O(n3). 
�

The following example highlights a nice property of the generating function pT ,k(x)
for a rooted phylogenetic tree T . Calculating the number of size-k maxPD sets for
some non-branching value k also gives the number of size-m maxPD sets for every
positive integer m in the interval [k−, k+].
Example. Consider the rooted phylogenetic tree T2 in Fig. 3. Firstly, 4 is a branching
value for T2. Thus the number of its size-4 maxPD sets is the product of the number of
leaves in each of the four components of T2[R(d4)]. That is,m(T2, 4) = 3·1·4·3 = 36.

However, 5 is not a branching value for T2, so we use the generating function
approach to find m(T2, 5). First note that the greatest branching value less than
5 is 4 and the least branching value greater than 5 is 7. The forests T2[R(d4)]
and T2[R(d7)] are shown in Fig. 3. We then construct an array of disjoint sets
C(T2), with a view to using Eqn. 1. Each entry of C(T2) consists of a set of
leaves contained in one component of T2[R(d7)]. That is, the entries of C(T2) are
{x1, x2}, {x3}, {x4}, {x5, x6}, {x7, x8}, {x9, x10}, {x11}.
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Lastly, we arrange the entries of C(T2) so that each column contains precisely those
leaves that share a component of T2[R(d4)]. Thus we have 4 columns in C(T2), and
set r = 4 in Eqn. 1. As T2 is binary, there are at most two components of T2[R(d7)]
contained in any component of T2[R(d4)]. We use an empty set as a placeholder, if
required, to ensure that C(T2) is a rectangular array. As such, we are able to set n j = 2
for all j in Eqn. 1. The completed array is

C(T2) =
[{x1, x2} {x4} {x5, x6} {x9, x10}

{x3} ∅ {x7, x8} {x11}
]

.

The generating function for T2, when k = 5, is calculated below.

pT2,5(x) =
4∏

j=1

(
−1 +

2∏

i=1

(1 + ni j x)

)

= [−1 + (1 + 2x)(1 + x)]2[−1 + (1 + x)(1)][−1 + (1 + 2x)2]
= x4(2x + 3)2(4x + 4)

= 16x7 + 64x6 + 84x5 + 36x4

Hence T2 has 84 maxPD sets of size 5. We have also determined that T2 has 64 size-6
maxPD sets, 16 of size 7, and confirmed that there are 36 maxPD sets of size 4.

3.2 Boundingm(T, k), and its value for a certain family of trees

The shape of a rooted phylogenetic tree impacts the components at each branching
distance, and hence the number of maxPD sets which exist. In this section we restrict
ourselves to rooted binary phylogenetic trees with the ultrametric constraint on edge
lengths. By ‘shape’, we refer to both the particular branching structure of a tree and
the relative distances of the vertices from its leaves (see Steel 2016, Ch. 3). Here, we
begin to address the question of which tree shapes and values of k give the most size-k
maxPD sets across a fixed number of leaves. First we consider the lower and upper
bounds for the number of size-k maxPD sets when k is a branching value.

Proposition 2 Let T be a rooted binary phylogenetic X-tree whose edge lengths satisfy
the ultrametric condition, and let |X | = n. If k is a branching value for T , then

n − k + 1 ≤ m(T , k) ≤
(n
k

)k
.

Moreover, these bounds are sharp.

Proof If k is a branching value for T , then, by Proposition 1, the value m(T , k)
is the product of the number of leaves in the k components. Let S be the multiset
{λ(κi (k)) : 1 ≤ i ≤ k}, that is, the multiset containing the number of leaves of each
component.
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To find the lower bound for m(T , k), note that if a and b are positive integers with
1 < a ≤ b, then (a − 1)(b + 1) < ab. Hence the product of elements of the multiset
(S − {a, b}) ∪ {a − 1, b + 1} will be less than the product of elements of S. This
exchange of elements can continue until only one element is greater than 1. Thus the
minimum product of k positive integers which sum to n is n−k+1, achieved with one
value of n − k + 1 and k − 1 values of 1. This bound is achieved by rooted caterpillar
trees (i.e. rooted phylogenetic X -trees with exactly one cherry).

On the other hand, the maximum such product is bounded above by ( nk )k . This
follows from the fact that the arithmeticmean, AM(S), of amultiset of positive integers
S is greater than or equal to the geometric mean, GM(S), of the same multiset. Thus

m(T , k) =
∏

s∈S
s = (GM(S))k ≤ (AM(S))k =

(n
k

)k
.

This maximum is obtained when k is a divisor of n and all components contain n
k

leaves. 
�
Let T be a rooted binary phylogenetic X -tree. If k is not a branching value, it is

possible that m(T , k) exceeds the upper bound given in Proposition 2. For example,

the tree T2 from Fig. 3 has n = 11, and m(T2, 5) = 84 ≥ ( 11
5

)5 ≈ 51.5.
We have seen above that if T is a rooted caterpillar tree, then m(T , k) is as small

as possible. The highly asymmetric structure of caterpillar trees restricts the possible
maxPD sets they contain. In contrast, we now consider m(T , k) values across the
family of fully symmetric rooted trees (with constant edge lengths) and include cases
when k is not a branching value.

We say T is a perfect unit-length tree if the edge lengths of T satisfy the ultrametric
condition, and all edges of T have length 1. Perfect unit-length trees have 2α leaves,
where α ∈ N is the height of the tree (the number of edges between the root and any
leaf).

Proposition 3 Let T be a perfect unit-length tree of height α ∈ N, and let n denote
the number of leaves of T . Let k be a positive integer such that k ≤ n, and let β be the
unique non-negative integer such that 2β−1 < k ≤ 2β . Then

m(T , k) =
(

2β−1

k − 2β−1

)
· 22β+(α−β−1)k . (2)

The values of k that maximise m(T , k) are k = � 2n
3 � for all n and, additionally,

k = � 2n
3 � + 1 when n ≡ 1 (mod 3).

Proof Firstly, if k is a branching value, then k = 2β and each component has size
2α−β . Thus, by Proposition 1, m(T , k) = (2α−β)k , which coincides with Eqn. 2.

Furthermore, if k is not a branching value, we have k− = 2β−1 and k+ = 2β . Then
by Lemma 3, m(T , k) is the coefficient of xk in the polynomial

pT ,k(x) = (−1 + (1 + 2α−βx)2)2
β−1 = (22(α−β)x2 + 2α−β+1x)2

β−1
.
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Table 1 Number of size-k
maxPD sets for a perfect
unit-length tree T with n leaves

n k m(T , k)

4 1,2,3 4

8 3,5 32

16 10,11 1,792

32 21 8,945,664

64 42,43 ∼ 2.7 × 1014

Taking the binomial expansion of the last expression we determine that
( 2β−1

k−2β−1

) ·
22

β+(α−β−1)k is the coefficient of xk in pT ,k(x). This establishes Eqn. 2.
To find the value of k which maximises m(T , k), we first show that m(T , k) ≤

m(T , n−k)when k ≤ n
2 . Let A be a size-k maxPD set for some k ≤ n

2 . By Theorem 1,
A contains at most one leaf from each cherry of T . Then X − A contains at least one
leaf from every cherry (which are the components of T [R(d(n−k)−)]), and at most one
leaf from each component of T [R(d(n−k)+)], as these are all single-leaf components.
This implies X − A is a size-(n − k) maxPD set by Theorem 1, and thus there are
at least as many size-(n − k) maxPD sets as size-k ones. Hence the value of k that
maximises m(T , k) will be greater than or equal to n

2 .
In the case when k ≥ n

2 , since 2
α = 2β = n, the expression in Eqn. 2 simplifies to

m(T , k) = ( n
2

k− n
2

) · 2n−k . Computing the ratio m(T ,k+1)
m(T ,k) , we have

m(T , k + 1)

m(T , k)
=

( n
2

k− n
2+1

) · 2n−k−1

( n
2

k− n
2

) · 2n−k
= n − k

2k − n + 2
.

This ratio is monotonically decreasing as k increases, and equals 1 when 3k =
2n − 2. Our maximal value of m(T , k) will be found at the smallest k ≥ n

2 for

which m(T ,k+1)
m(T ,k) ≤ 1, namely when k = � 2n

3 �. Note that when n ≡ 1 (mod 3) and

k = � 2n
3 �, we have m(T ,k+1)

m(T ,k) = 1, so we get an equal number of maxPD sets for the
two consecutive values k and k + 1. 
�

Table 1 shows the growth of m(T , k) as n increases. We note that for n = 16,
the perfect unit-length tree does not provide the largest value of m(T , k). Figure 5
shows a rooted binary phylogenetic X -tree T3 on 16 leaves which contains 1809 size-
8 maxPD sets (thus having 17 more maxPD sets than the perfect unit-length tree on
16 leaves can achieve for its optimal value of k = 10 or k = 11). For T3 we have
pT3,8(x) = (x2 + 2x)2(2x2 + 3x)4.

4 Finding amaxPD set that maximises a linear function on the leaves

Section 3 presented methods for determining the number of size-k maxPD sets for
a given rooted phylogenetic tree. These methods confirmed the observations in the
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T3

ρ

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Fig. 5 A rooted binary phylogenetic tree with more maxPD sets (for its optimal value of k = 8) than the
perfect unit-length tree with the same number of leaves (for its optimal value of k = 10, 11) 
�

literature that, in general, maxPD sets are far from unique. This provides scope for
evaluating the collection ofmaxPDsets against other strategic considerations. In devel-
oping strategies for conservation planning, PD is often seen as one measure to be used
in conjunction with others (for examples of this, see Cadotte and Tucker 2018; Isaac
et al. 2007; Kling et al. 2019). For instance, we may wish to incorporate benefit-cost
ratios of focussed conservation spending, or employ IUCN categorisations into the
analysis. This section provides an algorithm to optimise a further measure across the
collection of maxPD sets.

Here, we frame the further measure in terms of a real-valued linear function on
the leaves. Each leaf is assigned a function value, and the linear function score of
a set of leaves is the weighted sum of the function values of the constituent leaves.
We seek a size-k set which has as large a linear function score as possible among
the size-k maxPD sets. By suitably modifying the linear function, the problem can be
rephrased as maximising the unweighted sum across maxPD sets. Thus, for a function
φ : X → R we want to determine

max

{
∑

x∈A

φ(x) : A is a size-k maxPD set

}
.

We note that it is not always possible to achieve this result by simply adding the
function score of each leaf to the length of its incident pendant edge, and then finding
a size-k maxPD set of the resulting rooted phylogenetic tree. We provide a counterex-
ample using the tree T1 from Fig. 2. Consider the function

f (x) =
{
1, if x ∈ {x1, x2, x3, x4};
100, if x ∈ {x5, x6, x7}.

Adding the function values to appropriate pendant edges, results in a tree with a unique
size-3 maxPD set {x5, x6, x7}. However this set is not a maxPD set of the original tree
T1.

For a rooted phylogenetic tree T ,MaximiseLinearSum selects a set A consisting
of k leaves of T in the following manner. Initially, it determines the components
of T [R(dk−)] (‘tall’ components) and those of T [R(dk+)] (‘short’ components). For
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every short component, it keeps (in the set of ‘potential’ leaves P) one leaf x such that
φ(x) is maximal for that short component. It then discards all other leaves from further
consideration. In every tall component, it adds one leaf x to A from the leaves retained
in P such that φ(x) is maximal for that tall component. Finally, from the remaining
k+ − k− leaves under consideration, it chooses k − k− with the largest φ values. In
presenting the algorithm, wemake use of the following notation. For a pendant subtree
C of T , write XC for the set of leaves in C . For S ⊆ X , let φ(S) = {φ(x) : x ∈ S}.

Algorithm 1: MaximiseLinearSum
Input: a rooted phylogenetic X -tree T whose edge lengths satisfy the

ultrametric condition,
a positive integer k ≤ |X |,
φ : X → R

Output: a size-k maxPD subset A ⊆ X , with the largest linear function score
among all maxPD sets

1 determine T [R(dk−)] and T [R(dk+)];
2 P ← ∅ ; /* Potential leaves to include */
3 A ← ∅ ; /* Output set */
4 foreach component C in T [R(dk+)] do
5 choose one leaf m from the set {x ∈ X : φ(x) = max φ(XC )};
6 P ← P ∪ m
7 end
8 foreach component C in T [R(dk−)] do
9 choose one leaf m from the set {x ∈ P : φ(x) = max φ(XC ∩ P)};

10 A ← A ∪ m;
11 P ← P − m
12 end
13 for each of the k − k− largest elements φ(x) of φ(P) add x to A;
14 return A

Proposition 4 Let T be a rooted phylogenetic X-tree whose edge lengths satisfy the
ultrametric condition. The MaximiseLinearSum algorithm outputs a maxPD set of
T .

Proof The for-loop from Lines 4 to 7 ensures that A cannot contain more than one leaf
from any short component. The for-loop from Lines 10 to 13 ensures that A contains
at least one leaf from every large component. Since Line 15 ensures that |A| = k, it
follows by Theorem 1, that A is a maxPD set of T . 
�
Proposition 5 Let T be a rooted phylogenetic X-tree whose edge lengths satisfy the
ultrametric condition, and let φ : X → R be a function on the leaves of T . Let k be
a positive integer such that k ≤ |X |. Then MaximiseLinearSum applied to T , φ,
and k correctly outputs a size-k maxPD set with the largest function score among all
maxPD sets.
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We give a proof of this result shortly, but first give a short description of our
approach. The algorithm MaximiseLinearSum was designed to construct a set con-
taining the largest possible values of φ while obeying the constraints imposed by
Theorem 1 to ensure the selection of a maxPD set. Suppose that A is a size-k maxPD
set of T . The proof considers two possible cases when A is not a valid output of the
algorithm, and exhibits a size-k maxPD set with a greater linear function score in each.
Finally, outside of these two cases we prove that the linear function score of A must
be at least as large as that of any other size-k maxPD set.

Proof Suppose that A is a size-k maxPD set of T . For the result to hold, either A is a
valid output of MaximiseLinearSum or there is a size-k maxPD set B, distinct from
A, such that

∑
x∈A φ(x) <

∑
x∈B φ(x). One of the following three conditions holds:

1. There is a component of T [R(dk+)] (a short component) which contains leaf a ∈ A
and leaf b ∈ B, where φ(a) < φ(b). In this case, a would not be selected in Line
5 of MaximiseLinearSum, meaning A cannot be a valid output of this algorithm.
However, the set A′ = (A − a) ∪ b is a size-k maxPD set with

∑
x∈A φ(x) <∑

x∈A′ φ(x).
2. Condition 1 fails, and there is a component of T [R(dk−)] (a tall component) which

contains leaves {a1, a2, . . . , as} ⊆ A, and {b1, b2, . . . , bt } ⊆ B where, for some
j ∈ {1, 2, . . . , t}, the inequality φ(b j ) > φ(ai ) holds across all i ∈ {1, 2, . . . , s}.
In particular, the strictness of this inequality means that b j /∈ A. In this case, the
leaf b j would always be selected by Line 9 of MaximiseLinearSum, precluding
A from being a valid output of this algorithm. Moreover, since Condition 1 fails
to hold, no element of {a1, a2, . . . , as} shares a short component with b j . Thus
A′ = (A − a1) ∪ b j is a size-k maxPD set with

∑
x∈A φ(x) <

∑
x∈A′ φ(x).

3. Conditions 1 and 2 fail. Thus, in every component of T [R(dk−)], the set A contains
a leaf that has themaximalφ value for that component.Assume that k is a branching
value of T . Then A is a valid output of MaximiseLinearSum, as the choice
applied in Line 9 can be the one element of A from within each component.
Additionally, since elements of A have the maximal φ value in each component,∑

x∈A φ(x) ≥ ∑
x∈B φ(x) for any size-k maxPD set B. Thus the proposition

holds when k is a branching value of T .
Now assume that k is not a branching value. Let Ā ⊆ A consist of k− elements
of A which have the maximal φ value in their tall component, one from each tall
component. We construct the set B̄ ⊆ B to include (i) elements of B that share a
short component with some leaf in Ā, and (ii) from tall components where no leaf
in B satisfies Condition (i), one element of B in each such tall component with
the largest φ value. The set B̄ contains exactly one leaf from each tall component.
For a ∈ Ā and b ∈ B̄ in the same tall component, φ(a) ≥ φ(b). Thus

∑

x∈ Ā

φ(x) ≥
∑

x∈B̄
φ(x). (3)

Let P be the set of ‘potential leaves’ as used in Algorithm 1. Then by our con-
struction of B̄, we have B − B̄ ⊆ P − Ā. The set A is a valid output of
MaximiseLinearSum if and only if the elements of A − Ā have the k − k−
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largest φ values among elements of P − Ā. The latter condition is equivalent to∑
x∈A− Ā φ(x) ≥ ∑

x∈B−B̄ φ(x), that is
∑

x∈A φ(x) ≥ ∑
x∈B φ(x).

Hence, under all three conditions, either A is a valid output of MaximiseLinear-
Sum or

∑
x∈A φ(x) <

∑
x∈B φ(x) for some size-k maxPD set B of T , as required.


�
Proposition 6 Let T be a rooted phylogenetic X-tree whose edge lengths satisfy the
ultrametric condition, and let |X | = n. Then MaximiseLinearSum runs in time
O(n2).

Proof By Theorem 2, Line 1 can be completed in O(n2). We show that this subroutine
dominates the time taken for MaximiseLinearSum to run.

Determining which vertices are in each component can be achieved by a depth-
first search in linear time. Both for-loops are completed in O(n2) time, as there are
at most n components and a component contains at most n leaves. Sorting a set
and returning the k − k− largest values can be achieved in O(n log n) time. Hence,
MaximiseLinearSum runs in the same order of time as determining the components
of T [R(dk−)] and T [R(dk+)]. 
�

The algorithm MaximiseLinearSum makes use of the component constraints on
maxPD sets to solve this problem for rooted phylogenetic X -trees whose edge lengths
satisfy the ultrametric condition. For phylogenetic trees whose edge lengths do not sat-
isfy the ultrametric condition, the determination of appropriate connected components
requires a further algorithm (Manson KD, in preparation).

We note that an alternative approach to solving this more general problem comes
from the area of lexicographic multi-objective linear programming (Cococcioni et al.
2018, see Section 2). The optimisation can be phrased as amax-flowmin-cost problem,
in a similar manner to that used in (Bordewich et al. 2009). However this approach
relies on first scaling every length of the phylogenetic tree by a suitably large number.
Determining an appropriate value for the scaling factor can prove difficult unless the
edge lengths are restricted to take only rational values. For some trees with real-valued
edge lengths this step requires a pairwise comparison of the PD scores across all sets
of k leaves (Manson KD, in preparation).

5 Maximum possible loss of PD in a tree if k species become extinct
(‘minPD’)

In Sect. 3, we were interested in finding sets of k species which contained as much
diversity as possible. However, it is also worth considering the dual problem: deter-
mining how must PD could be lost if k extant species were to become extinct (i.e. a
‘worst case scenario’ in biodiversity conservation in the face of widespread extinc-
tion pressure). More precisely, we consider the problem of determining the maximum
possible PD loss if a given number species were to become extinct.

Formally, let T = (V , E) be a rooted phylogenetic X -tree and let the function
� : E(T ) → R

>0 assign a positive real-valued length �(e) to each edge e ∈ E(T ).
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Suppose that each species in a subset Y of the leaf set X of T is removed from the
tree. The resulting loss of PD, which we denote here as Δ(T ,�)(Y ) is given by

Δ(T ,�)(Y ) = PD(T ,�)(X) − PD(T ,�)(X − Y ).

This is equivalent to the concept of ‘exclusive molecular phylodiversity’ as described
in Lewis and Lewis (2005).1

Notice that finding a subset Y of X of size k′ to maximise Δ(T ,�)(Y ) is equivalent
to finding a subset W (= X − Y ) of X of size k = |X | − k′ to minimise PD(T ,�)(W ).
Unlike the max-PD question, this minimisation question is not solved by the greedy
algorithm (Moulton et al. 2007). However, as discussed in Sect. 6 of (Spillner et al.
2008), minimal PD scores can be found using dynamic programming. In particular,
(Blum et al. 1994, Sect. 3.1) describe an algorithm for an equivalent problem (referred
to as the i-tree problem). Here we present a detailed description of this algorithm using
the terminology of phylogenetic trees.

We call a set of k leaves which has the smallest PD score across all sets of size k, a
size-k minPD set. In this section, we present a polynomial-time dynamic programming
approach to finding minPD scores. For simplicity, we initially restrict our attention
to rooted binary phylogenetic trees; however, we show that the same idea extends to
rooted phylogenetic trees for which each vertex has bounded out-degree. Note that in
this section, we do not require the branch lengths to satisfy the ultrametric condition.

Given a rooted phylogenetic X -tree T , and an integer 0 ≤ k ≤ |X |, let ϕT (k) be the
minimum PD score across all size-k subsets of X . When k > |X |, ϕT (k) is undefined,
and when k = 0, we set ϕT (0) = 0. For the case when T is a single vertex, we define
ϕT (k) = 0. Proposition 7 gives the dynamic programming equation when T is binary.

Proposition 7 Let T be a rooted binary phylogenetic X-tree and let e1 and e2 be the
two edges of T incident with the root. Let e1 have length �1 and e2 have length �2.
Finally, let T1 and T2 denote the (maximal) pendant subtrees formed by the deletion
of e1 and e2 respectively.
For all k ∈ {1, 2, . . . , |X |},

ϕT (k) = min
k1,k2≥0,
k1+k2=k

{ϕT1(k1) + ϕT2(k2) + �1 · Ik1>0 + �2 · Ik2>0}, (4)

where Ik j>0 takes the value 1 if k j > 0; otherwise, Ik j>0 = 0.

Proof We proceed by induction on the number of vertices in T . For the base case, take
the tree T consisting of a single vertex. Since T has no edges, it has a PD score of 0,
which corresponds to ϕT (k) for all k ≥ 0 by definition.

Suppose that Eqn. 4 fails to give the minimum PD score for some rooted binary
phylogenetic X -tree T . We write ϕi as shorthand for ϕTi for i = 1, 2. Furthermore,
suppose that ϕi (k′) equals the size-k′ minPD score in Ti for all k′ ≤ k and i ∈ {1, 2}.
1 The functionΔ(T ,�) is a supermodular (and decreasing) function on the lattice of subsets of X , since PD
is a submodular (and increasing) function on this same lattice (Steel 2016).
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Since Eqn. 4 fails, there must be a set of k leaves of T which has a lower PD score
than any value in the set

{ϕ1(k1) + ϕ2(k2) + �1 · Ik1>0 + �2 · Ik2>0 : k1, k2 ≥ 0, k1 + k2 = k}.

Let A be such a set of k leaves of T , with k1 leaves in T1 and k2 leaves in T2.
If k2 = 0, then PDT (A) = �1 + PDT1(A) ≥ �1 + ϕi (k1) by the inductive

assumption. Thus the PD score of A is not lower than the calculated minimum; hence,
k2 	= 0. Similarly, k1 	= 0. Consequently,

PDT (A) = �1 + �2 + PDT1(A ∩ T1) + PDT2(A ∩ T2).

For A to have a PD score lower than ϕT (k), we must have

PDT1(A ∩ T1) + PDT2(A ∩ T2) < ϕ1(k1) + ϕ2(k2).

This implies that either PDT1(A ∩ T1) < ϕ1(k1) or PDT2(A ∩ T2) < ϕ2(k2), contra-
dicting our inductive assumption. Therefore, no such set A exists, and ϕT (k) calculates
a minPD score of size k in T . 
�

We now present an algorithm which utilises Proposition 7 to calculate a minPD
score for a rooted binary phylogenetic X -tree T = (V , E). For a vertex v ∈ V (T ),
we use the notation ϕv(k) in place of ϕTv (k), where Tv is the pendant subtree of T
for which vertex v has in-degree 0. Additionally, ϕρ(k) = ϕT (k). Note that the root
vertex ρ of T will always appear last in the ordered list L defined in the algorithm.
For a positive integer i , let L[i] denote the i th entry in list L .

Algorithm 2:MinPDScore
Input : a rooted binary phylogenetic X -tree T = (V , E), with root ρ,

an integer 0 ≤ k ≤ |X |.
Output: a real number ϕT (k)

1 foreach x ∈ X do
2 ϕx (0) ← 0;
3 ϕx (1) ← 0
4 end
5 L ← ordered list of vertices in V (T ) − X such that if u is a descendant of v,
then u appears before v;

6 i ← 1;
7 j ← 0;
8 while i < |V (T ) − X | do
9 foreach 0 ≤ j ≤ k do

10 calculate ϕL[i]( j) according to Eqn. 4 in Proposition 7;
11 end
12 i ← i + 1;
13 end
14 return ϕρ(k)
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The algorithmMinPDScore computes theminimumPDscore for a rooted binary phy-
logenetic tree T when selecting k of its leaves. This dynamic programming approach
calculates the minPD score for pendant subtrees of T , which are then combined to
calculate the minPD score for T as a whole. Additionally, by tracking the indicator
function values as we go, a corresponding size-k minPD set can be determined.

Proposition 8 Let T = (V , E) be a rooted binary phylogenetic X-tree, and let 0 ≤
k ≤ n, where n = |X |. The algorithm MinPDScore applied to T and k calculates
the minimum PD score for a size-k set of leaves of T in time O(n4).

Proof Let |X | = n. The ordering of vertices on Line 5 can be completed in O(|V (T )−
X | + |E(T )|) = O(n) (Kahn 1962). The “while" loop from Lines 8 to 13 has order
O(n) · O(n) · O(n2) = O(n4), since |V (T ) − X | = n − 1, and k ≤ n, and we are
comparing k + 1 values in Eqn. 4. 
�

5.1 MinPD scores for non-binary rooted phylogenetic trees

The algorithmMinPDScore can be adapted for a non-binary rooted phylogenetic tree
with bounded out-degree. Specifically, Line 10 of the algorithm is adjusted, and an
upper bound on the out-degree of every vertex is required to ensure that the modified
algorithm runs in polynomial time.

Let {e1, e2, . . . , et } denote the set of edges incident with the root of T , and let Ti
denote the subtree of T descending from ei . Set �i = �(ei ) for i ∈ {1, 2, . . . , t}, and
let

K (k, t) =
{
k = (k1, ..., kt ) : ki ≥ 0 for all i and

t∑

i=1

ki = k

}
.

Then, in place of Eqn. 4, we use Eqn. 5 which applies the same notation as Proposi-
tion 7.

ϕT (k) = min
k∈K (k,t)

{
t∑

i=1

(
ϕi (ki ) + �i · Iki>0

)
}

(5)

6 Concluding remarks

Phylogenetic diversity provides a formal way to quantify recent (and possible future)
biodiversity loss, resulting from the current high rate of species extinction. For exam-
ple, PD has become an integral part of the Zoological Society of London’s ‘EDGE of
Existence’ programme for monitoring biodiversity risk (Isaac et al. 2007). PD is more
nuanced than simply counting species extinctions, since PD explicitly incorporates the
evolutionary relationships among species, and thus provides a proxy for measuring
the richness of features that make species unique (Faith 1992; Wicke et al. 2021).

In this paper, we have investigated new combinatorial questions concerning PD
that arise in its application to large data-sets. In particular, we have described a precise
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way to count the number of maxPD sets of given size on a given tree (in the usual
ultrametric setting) and derived some bounds on the growth rate for these numbers.
We have also described further mathematical results that establish polynomial-time
algorithms to (i) optimise a linear function (across the species at the tips of the tree)
over all maxPD sets and (ii) determine the greatest possible loss of PD on a tree if k
species were to become extinct (this last question amounts to determining minPD sets
of given size).

Our results suggest a number of questions. In future work, we hope to characterise
the tree shapes that have the largest number of maxPD sets (of any given size). A
further question is to count the number of minPD sets in the binary ultrametric setting.
For caterpillars on n leaves (and ultrametric edge lengths), the number of size-kminPD
sets is 1 unless k = 1, in which case there are n min PD sets. To see this, observe
that a size-k minPD set in a caterpillar is the one that contains the k leaves with the
shortest pendant edges (removing any of these leaves to replace it with one of the n−k
unchosen leaves would necessarily add more to the PD score than what was lost by
not counting the removed pendant edge). A related question is to categorise the trees
which have a unique minPD set.
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