
sensors

Review

Label-Free Bioelectrochemical Methods for
Evaluation of Anticancer Drug Effects at a
Molecular Level

Francesco Tadini-Buoninsegni * and Ilaria Palchetti *

Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
* Correspondence: francesco.tadini@unifi.it (F.T.-B.); ilaria.palchetti@unifi.it (I.P.)

Received: 14 February 2020; Accepted: 21 March 2020; Published: 25 March 2020
����������
�������

Abstract: Cancer is a multifactorial family of diseases that is still a leading cause of death worldwide.
More than 100 different types of cancer affecting over 60 human organs are known. Chemotherapy
plays a central role for treating cancer. The development of new anticancer drugs or new uses
for existing drugs is an exciting and increasing research area. This is particularly important since
drug resistance and side effects can limit the efficacy of the chemotherapy. Thus, there is a need
for multiplexed, cost-effective, rapid, and novel screening methods that can help to elucidate the
mechanism of the action of anticancer drugs and the identification of novel drug candidates. This review
focuses on different label-free bioelectrochemical approaches, in particular, impedance-based methods,
the solid supported membranes technique, and the DNA-based electrochemical sensor, that can be
used to evaluate the effects of anticancer drugs on nucleic acids, membrane transporters, and living
cells. Some relevant examples of anticancer drug interactions are presented which demonstrate the
usefulness of such methods for the characterization of the mechanism of action of anticancer drugs
that are targeted against various biomolecules.

Keywords: anticancer drugs; bioelectrochemistry; impedance-based methods; solid supported
membranes; DNA-based biosensor; drug–protein interactions; drug–DNA interactions;
drug–cell interactions

1. Introduction

Cancer is a family of complex diseases that can start in almost any organ or tissue of the body.
Cancer is the second cause of mortality in economically developed countries, accounting for an
estimated 9.6 million deaths, in 2018 [1]. Lung, prostate, colorectal, stomach, and liver cancers are the
most common types of cancer among men, while breast, colorectal, lung, cervical, and thyroid cancers
are the most common in women [1]. It has been estimated that by the year 2050, 27 million new cancer
cases will be diagnosed [2]. Currently, cancer treatment involves surgery, chemotherapy, radiotherapy,
immunotherapy, hormone therapy, and other targeted therapies, with chemotherapy playing a central
role. Anticancer drugs that treat different types of tumors are available, and can be used as a single
agent or in combination with a wide range of other drugs. Traditional anticancer drugs cause several
undesired side effects and despite the fact that cancer initially responds to chemotherapy, cancer
cells can gain resistance and they can adapt to survive. Furthermore, while primary cancer tumors
are treatable with chemo- and radiotherapies, metastatic cancer is difficult to treat with available
chemotherapies [3].

Hence, a pressing demand has directed researchers towards the development of rapid and simple
techniques for the investigation of interactions of cancer cells with drugs at different molecular levels
and at different stages of the disease. Currently, following the 3R principle: “reduction, replacement,
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and refinement” of animal use [4], anticancer screening tests are performed by using in silico and
in vitro approaches, selecting the most reliable candidates before evaluating the behavior in vivo.
Many in vitro advanced methods can be used to study drug interactions in a cell population or in a
tissue both in a label or label-free approach. In terms of time, cost, and ease of the analysis, label-free
methods are preferable in both high-throughput and low-throughput screening tests. High-throughput
tests are devoted to monitor drug–cell interactions in order to elucidate pathways and to characterize
metabolic, pharmacokinetic, and toxicological data about new drugs [5], whereas low-throughput
tests which are based on individual receptors are useful to define kinetics and thermodynamics of the
drug–receptor interactions. Some recent review papers describe the main important in vitro tests for
anticancer drug screening and we ask the reader to refer to these papers for a detailed description of
the different methods for in silico and in vitro assays [3,4].

This present paper focuses on the use of bioelectrochemistry for evaluating the effects of anticancer
drugs at the molecular level. Three different label-free bioelectrochemical strategies are presented,
i.e., impedance-based methods, electrical technique which makes use of a solid supported membrane,
and electrochemical nucleic acid-based sensors. These experimental methods have been used to
investigate the mechanism of action of certain anticancer drugs and their effects on living cells,
on membrane transport proteins, and on nucleic acids. Some relevant examples of anticancer drug
interactions with DNA, membrane transporters, and cells are presented. The reported data qualify such
bioelectrochemical approaches as robust and simple assays that could represent attractive analytical
tools in drug development and evaluation.

2. Impedance-Based Methods for Cell Monitoring

Impedance-based cell monitoring, pioneered by Giaever and Keese, in the 1980s [6], has become a
label-free, robust, minimally-invasive, nondestructive, cost-effective technology for real-time anticancer
drug screening [7–9] and cytotoxicity evaluation [10], which can be easily multiplexed [11]. Compact
instrumentations for multiplexed analysis are commercially available such as the xCELLigence®tools
from ACEA Biosciences Inc. (San Diego, CA, USA), recently acquired by Agilent, or ECIS®from
Applied BioPhysics (Troy, NY, USA).

When cells are immobilized on the surface of microelectrodes, they impede electrical current
flowing due to the interference of the anchored insulating bilayer lipid membrane over the
microelectrode surface (Figure 1). In impedance spectroscopy, a voltage and a small sinusoidal
alternating voltage (Eac) perturbation (5 to 10 mV amplitude) are applied between the working
electrode and the reference electrode of an electrochemical cell. The impedance is monitored versus
time. Impedance depends on conductance, capacitance, and inductance of an electrochemical system.
Due to their effect on the electrical current flow, cells can be modeled by basic impedance elements
including capacitors (plasma membrane) and resistors (the combination of all ion channels for the
exchange of ions across the membrane) [8]. The growth of a cell culture can be monitored by evaluating
the electrode impedance, which changes with cell surface coverage. Moreover, as a reaction to a toxicant,
impedance dynamically fluctuates with cell motility or in response to cellular metabolism. The death
of the cells causes their detachment from the electrode surface. This phenomenon causes a drop in the
recorded impedance, which indicates a reduction in the number of viable cells. Thus, impedimetric
measurements provide a continuous, real-time, label-free approach of cell count, cell morphology,
cell motility and viability.

Impedimetric assays were performed to investigate the effects of anticancer drugs on different
tumor-derived cell lines. Doxorubicin (DOX), an anthracycline-based antibiotic widely used in the
treatment of a broad range of solid tumors, as well as acute leukemia and malignant lymphoma, has been
used in many reports as a model molecule for studying the effect of dose or time dependency on a specific
cell population density [12–14], as well as to distinguish cell models of acquired drug resistance [15].
Table 1 summarizes some examples of anticancer drugs that have been evaluated by impedance-based
methods. Single cell or few cell populations [16], large cell populations, and three-dimensional (3D)



Sensors 2020, 20, 1812 3 of 16

cell aggregates, such as cell spheroids [17,18], have been tested. A recent report by Seidel et al. [19]
focused on the evaluation of derived two-dimensional (2D) and 3D cell cultures with original patient
undissociated melanoma tissues in order to develop cell model data of combined targeted cancer
therapy and to transfer these data to an in vivo situation [19]. Figure 2 shows the correlation of
chemosensitivity and drug kinetics obtained by cell impedance and by standard ATP assay on the
different cell cultures. The drug potency (IC50 value) and efficacy (maximum inhibitory effect) were
determined and plotted over time to reveal drug activity. Concentration-response curves showed a
similar trend for ATP assay and impedance data. No significant difference was observed between
efficacy and IC50 values evaluated by the two methods (Figure 2a–c). Moreover, the viability staining
(Figure 2b) shows a decrease of viable cells and an increase of dead cells in a concentration-dependent
manner. As reported in Figure 2b,c, reduced comparability of the ATP assay and EIS data with 3D
culture size is shown for the tumor microfragments chemosensitivity analysis. Even with high drug
effects that caused complete cell destruction, 3D structures did not change size, probably because of
the substantial fraction of extracellular matrix in patient-derived non-dissociated tissue. This result
was also shown in the concentration-response curves, where ATP data and impedance data showed a
similar trend, but regression was not possible for size measurement.
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membrane properties. At high frequencies, the plasma membranes are minimally polarized, and 
information regarding the dielectric properties of the cell interior can be obtained. Impedance-based 
flow cytometry analyzes a single cell instead of a population of cells. Portable, easy to use 
instrumentations are commercially available, such as the Amphasys’ AmphaTM Z32 impedance flow 
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Figure 1. Impedance-based method for cell monitoring. The cells are deposited over gold
microelectrodes in a culture medium. The resistance components are due to the current flow under the
cells and the resistance is due to the current flow between the cells. The capacitive component is due to
current flow through the cell membranes (from [10] with permission).

Thus, substantial differences in drug response patterns between artificial in vitro and organotypic
ex vivo cell cultures highlight the importance of in vivo-like cell models in drug development.
New classes of personalized detection devices to study drug-induced cellular events and optimize the
drug treatment of a patient during chemotherapy have opened new avenues in personalized medicine.
Impedance-based cell analysis combined with real-time imaging could represent a useful technique for
identification of cancer cells at different stages and their interaction with drugs during the disease.

Impedance-based measurements can also be performed on a flow of cell suspension. In impedance
flow cytometry, the electrical properties of single cells can be measured [11,20]. The cells are polarized
using an alternate current electric field. At low frequencies, the cell membrane impedes the current
flow and the measurement of current amplitude indicates the cell volume or size. At intermediate
frequencies, the capacitance of the suspension is decreased as the amount of plasma membrane
polarization decreases. Measurements in this range of frequency are correlated to plasma membrane
properties. At high frequencies, the plasma membranes are minimally polarized, and information
regarding the dielectric properties of the cell interior can be obtained. Impedance-based flow cytometry
analyzes a single cell instead of a population of cells. Portable, easy to use instrumentations are
commercially available, such as the Amphasys’ AmphaTM Z32 impedance flow cytometer.
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Figure 2. Comparison of potency and efficacy of Vemurafenib (a BRAF inhibitor) using different 
BRAF mutated melanoma models. (a) Normalized concentration-response curves of a two-
dimensional (2D) cell line (left). Potency and efficacy plotted over time (right); (b) Concentration-
response curves in three-dimensional (3D) cell cultures (left) and tumor microfragments (TMF, right) 
obtained with EIS, ATP assay, and size detection (cross-section area). Viability staining visualizes 
drug effects. Scale bar 200 µm; (c) Correlation analysis. Highest correlation (black framed boxes). 
Reprinted with permission from [19]. 

 

Figure 2. Comparison of potency and efficacy of Vemurafenib (a BRAF inhibitor) using different BRAF
mutated melanoma models. (a) Normalized concentration-response curves of a two-dimensional (2D)
cell line (left). Potency and efficacy plotted over time (right); (b) Concentration-response curves in
three-dimensional (3D) cell cultures (left) and tumor microfragments (TMF, right) obtained with EIS,
ATP assay, and size detection (cross-section area). Viability staining visualizes drug effects. Scale bar
200 µm; (c) Correlation analysis. Highest correlation (black framed boxes). Reprinted with permission
from [19].
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Table 1. Some examples of anticancer drugs studied by impedance-based methods in cancer cell lines.

Anticancer
Drug

Tumor Derived
Cell Lines

Observed Effect Specific Comments Comparison
Biochemical Assay

Ref

Carboplatin,
Paclitaxel

Breast cancer,
melanoma and
human prostate

cancer cells

Cell viability Microfluidic platform.
Dynamic delivery of the drug

to cancer cells seeded in a
chamber containing

interdigitated microelectrodes.

MTT assay [21]

Cisplatin Oral cancer Cell viability High concentration of nicotine
exhibited inhibitory effect on

20 µM cisplatin-induced
apoptosis.

- [22]

Cisplatin Brest cancer Cell attachment,
spreading and
drug-induced

apoptosis

Time dependent behavior. Morphological
analysis

[16]

Cisplatin Esophageal cancer Cell morphology Morphology changes of cells
adhesion, spreading, and

proliferation can be detected
by impedimetric analysis.

Fluorescence
imaging

[23]

Doxorubicin Neuroblastoma
and glioblastoma

Cell viability Time dependent IC50.
IC50 at 48 h for neuroblastoma

cells: 1.77 nM
IC50 at 48 h for glioblastoma

cells: 4.04 nM

Tunel assay, Flow
cytometry

[17]

Doxorubicin Laryngopharynx
cancer

Cell viability Microfluidic platform
enabling both electrochemical

and optical detection.

Fluorescence-based
cytotoxicity assay

(annexin
V/propidium iodide
end point staining).

[13]

Doxorubicin Breast cancer Cell morphology Drug resistant breast cancer
cells have been differentiated
from their parental cells based
on their dielectric properties.

Drug response at different
stages of the disease is

described.

Fluorescence
microscopy

[15]

Etoposide Neuroblastoma
and glioblastoma

Cell viability Time dependent IC50.
IC50 at 48 h for neuroblastoma

cells: 3.83 nM

Tunel assay, flow
cytometry

[17]

Fluorouracil Cancer microtissue
spheroids

Cell viability Evaluation of a multiplexed
EIS platform analysis in a

microfluidic setting.

- [24]

Nicotine,
Antrodia

Camphorata
ext.

Different cell lines Cell morphology - SEM imaging [25]

Vemurafenib
and other

MAPK-targeting
therapeutics

Melanoma Cell viability Comparability of
chemosensitivity performed

by correlation analysis,
showing that impedance and
ATP assay data were highly

correlative (0.8 < r2 < 1.0)

ATP assay [19]

Vincristine Neuroblastoma
and glioblastoma

Cell viability IC50 at 48 h for neuroblastoma
cells (3D cultures): 1.16 nM
IC50 at 48 h for glioblastoma
cells (3D cultures): 1.54 nM

Tunel assay, flow
cytometry

[17]

ZD6474 Breast cancer Cell viability Time and drug concentration
dependent behavior

MTT assay [26]

3. Solid Supported Membranes for Functional Analysis of Membrane Transporters

An electrical method based on a model membrane system, the so-called solid supported membrane
(SSM), has been widely used to investigate membrane transport proteins. Membrane transporters
move charged substrates across a biological membrane while going through their transport cycle
and are responsible for the generation and maintenance of ion gradients, the transport of metabolites
and signaling molecules, the uptake of nutrients, and the disposal of toxic compounds. Membrane



Sensors 2020, 20, 1812 6 of 16

transporter dysfunction is related to various disease states, which include cardiovascular, neurological,
metabolic, and inflammatory diseases. Because of their relevance to a wide range of cellular functions,
membrane transporters are drug targets of increasing importance to the pharmaceutical industry.

The SSM method allows label-free direct electrical measurements of charge movement across
the membrane transporter immobilized on the SSM surface, yielding useful information about the
transport activity and protein function. Thanks to its robustness and potential for automation, the
SSM technique can be conveniently used to evaluate pharmacological agents affecting membrane
transport proteins.

SSMs are usually formed by a hybrid alkanethiol/phospholipid bilayer supported by a gold
electrode [27–31]. To obtain the SSM, the gold surface is covered by a densely packed alkanethiol
monolayer, typically an octadecanethiol monolayer. A phospholipid monolayer is then self-assembled
on the gold-supported thiol layer, so that the alkyl chains of the phospholipid are in contact with
those of the alkanethiol (Figure 3A) [29,32]. Membrane fragments and proteoliposomes incorporating
the membrane transporter are adsorbed to the SSM surface (Figure 3A), and the protein is, then,
activated by a substrate concentration jump. Following protein activation, a current signal is measured
which is related to charge movement across the membrane transporter [33]. As an example, an ATP
concentration jump on sarcoplasmic reticulum (SR) vesicles containing Ca2+-ATPase induces a current
signal (Figure 3B) that is connected with ATP-dependent Ca2+ translocation by the enzyme [34].
We point out that the charge movement across the transport protein is transmitted to the measuring
circuit via the SSM capacitance and the resulting capacitive current is recorded as a function of time
(current transient) [35,36]. Typical current amplitudes range from 0.1 to 10 nA.
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Reprinted from [36] with permission from Elsevier; (B) Current signal after an ATP concentration 
jump on SR vesicles incorporating Ca2+-ATPase. The ATP jump induces a current transient (current 
amplitude of 4.5 nA at ~1.2 s) that is related to charge movement across the protein. ATP removal 
determines a small signal of negative amplitude (at ~3.3 s), which is due to the discharge of SSM 
capacitance. Solution exchange into the cuvette containing the SSM sensor is controlled by 
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The SSM method has been employed in basic research to study various membrane transport 
proteins that belong to different families. Most transporters studied are P-type ATPases (ion pumps) 
[36] and secondary active transporters [37–41]. In the case of P-type ATPases, which are a very 
important class of drug targets [42], SSM-based current measurements have been performed to 
investigate the transport mechanism of Na+,K+-ATPase [32,43], SR Ca2+-ATPase [34,44], H+,K+-ATPase 
[45], Cu+-ATPases [46,47], and very recently a P4-ATPase phospholipid flippase [48].  

It is worth noting that the SSM electrode combined with robotized instrumentation is an 
attractive tool for screening applications in drug discovery [45,49]. Commercial semiautomatic and 
automatic analysis systems for SSM-based electrical measurements are available. A single channel 
semi-automated analysis device (SURFE2R N1, Nanion Technologies, Munich, Germany) is currently 
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industry for a higher throughput and a lower reagent consumption, SSM-based devices capable of 
performing fully automated measurements have been introduced. The SURFE2R 96SE device (Nanion 
Technologies) is especially suitable for drug screening purposes. This instrument is able to measure 
electrical currents simultaneously from 96 individual SSM sensors in a standard 96-well plate, 
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interest on the activity of various membrane transporters. Some relevant examples of drug–protein 
interactions investigated by the SSM technique are here reviewed. 

SSM-based current measurements were carried out to study the effects of anticancer drugs on 
two P-type ATPases, i.e., Na+,K+-ATPase and SR Ca2+-ATPase. The Na+,K+-ATPase is found in the 
plasma membrane of animal cells. This enzyme transports three Na+ ions out of and two K+ ions into 
the cell using energy from ATP hydrolysis, thereby generating electrochemical potential gradients of 
Na+ and K+ ions that are crucial for a number of cell functions [51]. The Ca2+-ATPase that is present in 
the SR of muscle cells hydrolyzes one ATP molecule to transport two Ca2+ ions against their 
electrochemical potential gradient from the cytoplasm to the SR lumen, thereby inducing muscle 
relaxation [52]. The interaction of cisplatin with these two prominent enzymes was recently 
characterized [53]. Cisplatin, a well-established platinum-containing drug, is used to treat several 

Figure 3. (A) Schematic diagram of a sarcoplasmic reticulum (SR) vesicle containing Ca-ATPase
adsorbed to an solid supported membrane (SSM) and subjected to an ATP concentration jump (not
drawn to scale). If the ATP jump induces a net charge movement across the protein, a compensating
current is generated along the external circuit (the red spheres represent electrons) to keep constant
the potential difference ∆V across the whole metal/solution interface. RE is the reference electrode.
Reprinted from [36] with permission from Elsevier; (B) Current signal after an ATP concentration jump
on SR vesicles incorporating Ca2+-ATPase. The ATP jump induces a current transient (current amplitude
of 4.5 nA at ~1.2 s) that is related to charge movement across the protein. ATP removal determines
a small signal of negative amplitude (at ~3.3 s), which is due to the discharge of SSM capacitance.
Solution exchange into the cuvette containing the SSM sensor is controlled by electromechanical valve
opening/closing (at 1 s and 3 s). Reprinted by permission from [33]. Copyright 2016 Springer Nature.

The SSM method has been employed in basic research to study various membrane transport
proteins that belong to different families. Most transporters studied are P-type ATPases (ion pumps) [36]
and secondary active transporters [37–41]. In the case of P-type ATPases, which are a very important
class of drug targets [42], SSM-based current measurements have been performed to investigate
the transport mechanism of Na+,K+-ATPase [32,43], SR Ca2+-ATPase [34,44], H+,K+-ATPase [45],
Cu+-ATPases [46,47], and very recently a P4-ATPase phospholipid flippase [48].

It is worth noting that the SSM electrode combined with robotized instrumentation is an attractive
tool for screening applications in drug discovery [45,49]. Commercial semiautomatic and automatic
analysis systems for SSM-based electrical measurements are available. A single channel semi-automated
analysis device (SURFE2R N1, Nanion Technologies, Munich, Germany) is currently used in academia
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for basic research purposes. To address the requirements of the pharmaceutical industry for a higher
throughput and a lower reagent consumption, SSM-based devices capable of performing fully
automated measurements have been introduced. The SURFE2R 96SE device (Nanion Technologies) is
especially suitable for drug screening purposes. This instrument is able to measure electrical currents
simultaneously from 96 individual SSM sensors in a standard 96-well plate, allowing determination of
the dose dependence of 100 compounds in less than 30 min [50].

Anticancer Drug–Protein Interactions Monitored on SSMs

The SSM method has been employed to evaluate the effects of compounds of pharmacological
interest on the activity of various membrane transporters. Some relevant examples of drug–protein
interactions investigated by the SSM technique are here reviewed.

SSM-based current measurements were carried out to study the effects of anticancer drugs on two
P-type ATPases, i.e., Na+,K+-ATPase and SR Ca2+-ATPase. The Na+,K+-ATPase is found in the plasma
membrane of animal cells. This enzyme transports three Na+ ions out of and two K+ ions into the cell
using energy from ATP hydrolysis, thereby generating electrochemical potential gradients of Na+ and
K+ ions that are crucial for a number of cell functions [51]. The Ca2+-ATPase that is present in the SR
of muscle cells hydrolyzes one ATP molecule to transport two Ca2+ ions against their electrochemical
potential gradient from the cytoplasm to the SR lumen, thereby inducing muscle relaxation [52].
The interaction of cisplatin with these two prominent enzymes was recently characterized [53].
Cisplatin, a well-established platinum-containing drug, is used to treat several human cancers [54].
However, it is well known that severe side effects, for example, nephrotoxic, ototoxic, and neurotoxic
effects are associated with cisplatin therapy. It has been shown that cisplatin strongly interferes with
ATP-dependent cation translocation by SR Ca2+-ATPase and Na+,K+-ATPase [53], which have been
proposed as potential cisplatin targets. The SSM measurements indicated that cisplatin inhibition
of SR Ca2+-ATPase activity is stronger (IC50 = 1.3 µM, Figure 4) than that observed in the case of
Na+,K+-ATPase (IC50 = 11.1 µM). Therefore, cisplatin inhibition of the transport activities of these two
enzymes could be relevant to the mechanisms underlying the different side effects of cisplatin.
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Development of cell resistance to cisplatin-based therapies represents a critical issue that 
considerably reduces the efficacy of platinum anticancer drugs. Interaction of cisplatin with 
mammalian Cu+-ATPases, ATP7A and ATP7B, also known as Menkes and Wilson disease proteins, 
has been associated with resistance of cancer cells to platinum drugs [55–57]. ATP7A and ATP7B, 
which are localized in the trans-Golgi network (TNG), perform active transfer of copper across the 
membrane into the TGN lumen by ATP utilization and are responsible for regulating intracellular 
copper levels [58]. It was reported that cisplatin is a substrate for ATP7B and the enzyme can 
translocate cisplatin at a slower rate than copper [59]. In order to gain insights, at a molecular level, 
into translocation of platinum drugs by Cu+-ATPases we employed the SSM method to investigate 
the mechanism of interaction of cisplatin and oxaliplatin, a third-generation platinum analogue that 
is active in patients with colorectal cancer, with human ATP7A and ATP7B [60]. SSM measurements 
on vesicles containing ATP7A or ATP7B indicated that cisplatin and oxaliplatin activate the ATPase 
cycle and, in the presence of ATP, can be translocated across the vesicle membrane. NMR 
spectroscopy and ESI-MS were used to determine the binding mode of these platinum drugs to the 
ATP7A amino-terminal extension [60,61]. It was suggested that translocation of platinum drugs by 
ATP7A and ATP7B and sequestration of these drugs in the ATPase amino-terminal extension are 
likely to contribute to drug resistance of cancer cells. 

The SSM method was also employed to investigate the interaction of anticancer ruthenium-
based compounds, i.e., NAMI-A, RAPTA-C, and KP1019, with SR Ca2+-ATPase [62]. Preclinical 
studies showed that NAMI-A could act as an effective antimetastatic drug, whereas KP1019 was 
found to be active against colorectal cancers [63]. The SSM measurements indicated that KP1019, in 
contrast to the other Ru(III) complexes, was capable of interfering strongly with SR Ca2+-ATPase 

Figure 4. SR Ca2+-ATPase current signals induced by 100 µM ATP concentration jumps in the presence
of 10 µM Ca2+ and in the absence (control measurement, black line, a) or in the presence of 5 µM
cisplatin (red line, b). Inset: Normalized charges (QN) related to ATP concentration jumps as a function
of cisplatin concentration. The charges were normalized with reference to the maximum charge
attained in the absence of cisplatin (control measurement). The solid line represents the fitting curve
to the ATP-induced charges (IC50 = 1.3 ± 0.1 µM). The error bars represent S.E. of three independent
measurements. Reproduced by permission of The Royal Society of Chemistry from [53].

Development of cell resistance to cisplatin-based therapies represents a critical issue that
considerably reduces the efficacy of platinum anticancer drugs. Interaction of cisplatin with mammalian
Cu+-ATPases, ATP7A and ATP7B, also known as Menkes and Wilson disease proteins, has been
associated with resistance of cancer cells to platinum drugs [55–57]. ATP7A and ATP7B, which are
localized in the trans-Golgi network (TNG), perform active transfer of copper across the membrane into
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the TGN lumen by ATP utilization and are responsible for regulating intracellular copper levels [58].
It was reported that cisplatin is a substrate for ATP7B and the enzyme can translocate cisplatin at
a slower rate than copper [59]. In order to gain insights, at a molecular level, into translocation of
platinum drugs by Cu+-ATPases we employed the SSM method to investigate the mechanism of
interaction of cisplatin and oxaliplatin, a third-generation platinum analogue that is active in patients
with colorectal cancer, with human ATP7A and ATP7B [60]. SSM measurements on vesicles containing
ATP7A or ATP7B indicated that cisplatin and oxaliplatin activate the ATPase cycle and, in the presence
of ATP, can be translocated across the vesicle membrane. NMR spectroscopy and ESI-MS were used to
determine the binding mode of these platinum drugs to the ATP7A amino-terminal extension [60,61].
It was suggested that translocation of platinum drugs by ATP7A and ATP7B and sequestration of these
drugs in the ATPase amino-terminal extension are likely to contribute to drug resistance of cancer cells.

The SSM method was also employed to investigate the interaction of anticancer ruthenium-based
compounds, i.e., NAMI-A, RAPTA-C, and KP1019, with SR Ca2+-ATPase [62]. Preclinical studies
showed that NAMI-A could act as an effective antimetastatic drug, whereas KP1019 was found to be
active against colorectal cancers [63]. The SSM measurements indicated that KP1019, in contrast to the
other Ru(III) complexes, was capable of interfering strongly with SR Ca2+-ATPase function. In particular,
an IC50 value of 1 µM was determined for inhibition of calcium translocation by KP1019. It was
hypothesized that KP1019 interaction with SR Ca2+-ATPase determines uncoupling of ATP hydrolysis
with transport of Ca2+ ions, thereby decreasing calcium translocation across the SR membrane.

The examples described above (see Table 2) demonstrate the usefulness of the SSM technique
to investigate the activity and mode of action of anticancer drugs that are targeted against various
membrane transporters, and qualify the SSM method as a robust, flexible, and reliable assay for drug
screening applications.

Table 2. Interactions of anticancer drugs with P-type ATPases studied by the SSM technique.

Anticancer Drug Observed Effect Specific Comments Ref

Cisplatin
Inhibition of
Na+,K+-ATPase and SR
Ca2+-ATPase

Strong and irreversible
inhibition of SR
Ca2+-ATPase activity.
Reversible inhibition of
Na+,K+-ATPase activity.

[53]

Cisplatin and Oxaliplatin
Translocation by
Cu+-ATPases (ATP7A
and ATP7B)

Binding and
translocation of Pt-drugs
across the vesicle
membrane.

[60]

NAMI-A, RAPTA-C and
KP1019

Inhibition of SR
Ca2+-ATPase

Strong inhibition of Ca2+

translocation by SR
Ca2+-ATPase.

[62]

4. Electrochemical Nucleic Acid-Based Sensors

The interaction of anticancer drugs with DNA is among one of the most important aspects of
biological studies in drug discovery and pharmaceutical development processes.

Electrochemical nucleic acid-based sensors are other bioelectrochemical platforms for studying
the interaction of drugs with DNA. An electrochemical nucleic acid-based sensor is defined as a
device that integrates nucleic acids (natural and biomimetic forms of oligo- and polynucleotides)
as the biological recognition element and an electrode as the physicochemical transducer [64].
According to the biomolecular interactions, nucleic acid-based sensors can be classified as affinity
biosensors (i.e., genosensors [65–67] and aptasensors [68]), catalytic biosensors (i.e., aptazyme-based
sensors), and nucleic acid-based sensors for monitoring of chemically-induced DNA structure
modification [69–71]. The latter configuration allows the evaluation of DNA–molecule interactions
and DNA damage assessment [72–74]. Small molecules, including drugs, can interact with DNA
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in different modes, classified as a noncovalent association, i.e., electrostatic interactions, binding at
major or minor grooves of the DNA double helix and intercalation between the stacked base pairs of
double stranded DNA (ds DNA) [75]. Some other compounds (such as mitomycin C) form covalent
bonds with nucleic acid bases to create adducts. Synthetic oligonucleotides, genomic DNA [69,76],
or stem loop structures [77] can be used to assess the alterations induced by the molecule on DNA.
Altered structural, chemical, and physicochemical properties of DNA are reflected in its behavior at
the electrochemical transducer, since the binding of drug molecules to DNA causes a change in the
intrinsic electrochemical signal of the DNA, i.e., adenine and guanine redox signals (Figure 5). Thus,
this kind of DNA-electrochemical biosensor directly monitors the changes in the DNA bases oxidation
peaks before and after the interaction with the drug and it can be classified as a label-free biosensor.
Moreover, this kind of biosensor has also been proposed to monitor the level of anticancer drugs in
biological fluids.

 10
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The biomolecular interactions between DNA and the anticancer drug dacarbazine (DCB),
a molecule frequently used for the treatment of metastatic malignant melanoma, was investigated
using a single-walled carbon nanotube modified disposable pencil graphite electrode [78]. DCB acts
as alkylating agent and its binding to DNA strands affects the intrinsic electrochemical activity of
DNA; moreover, it is an electroactive molecule itself. Thus, the oxidation signals of both DCB and
guanine can be measured using differential pulse voltammetry. The voltammetric results reported
in [78] were found in good agreement with gel electrophoresis analysis. A decrease of ethidium
bromide (EtBr) luminescence intensity was observed in contrast to the control in PCR samples while
increasing the incubation time of DCB. The binding of DCB to DNA was claimed to impede EtBr
binding. Furthermore, this DNA sensor was proposed to be a sensitive method for DCB determination
in urine or other biological fluids with a detection limit of 1.1 µM within 5 min.

Methotrexate (MTX) is one of the earliest anticancer drugs used in some types of leukemia,
lung cancer, sarcoma, etc. MTX is classified as an antimetabolite cancer drug because it targets
the enzyme dehydrofolate reductase, responsible for folic acid production, and plays a supporting,
but essential, role for the synthesis of thymine nucleotide [79]. MTX treatment causes an accumulation
of 8-oxoG in cells. Pontinha et al. showed that the interaction of MTX with DNA leads to modifications
to the DNA structure in a time-dependent manner [80]. The DNA–MTX interaction was evaluated by
AFM at a highly oriented pyrolytic graphite surface and by voltammetry using a nucleic acid-based
sensor. The intercalation of MTX in DNA led to ds DNA unwinding, as shown by the increase of
the purine residues oxidation peaks reported in Figure 6, confirmed by AFM micrographs showing a
reorganization of the DNA self-assembled network upon MTX binding. More recently, a graphene
oxide modified glassy carbon electrode (DNA/GO/GCE) was used to develop an electrochemical
sensor for monitoring MTX–DNA interactions via guanine oxidation [81]. The DNA/GO/GCE sensor
showed a detection limit of 7.6 nM and was tested for MTX determination in spiked urine and blood
serum samples.
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The interactions of EGFR exon 21-point mutant gene with the anticancer drug Gemcitabine was
recently evaluated using a DNA biosensor as reported in [82] and summarized in Table 3. Gemcitabine
is one of the most important therapeutic agents of early and advanced stages of non-small cell lung
cancer. The treatment occurs by activating EGFR mutations, especially the L858R point mutation
and exon 19 deletions. For this reason, the point mutation (L858R) sequence of EGFR exon 21 and its
complementary single-stranded DNA was selected to form the double helix structure as a bioreceptor
for developing the biosensor. EGFR exon 21 acts as an identification probe but also as an electrochemical
indicator via direct monitoring of guanine and adenine oxidation signal before and after the interaction
with the drug. The oxidation signals of adenine and guanine were in a linear range when the device
was subjected to various concentrations of Gemcitabine, from 1.5 to 93 µM, where detection limits of
12.5 nM, and 48.8 nM were recorded by guanine and adenine respectively.

Table 3. Some examples of anticancer drugs studied by nucleic acid-based sensors.

Anticancer Drug Observed Effect Specific Comments Ref

Dacarbazine Guanine oxidation signal

Analysis of PCR
amplicons and

comparison with
Gel electrophoresis

[78]

Methotrexate
Guanine oxidation signal

and MTX oxidation
signal

Analysis of spiked serum
samples and urine

samples
[81]

Gemcitabine Guanine and adenine
oxidation signal

Analysis of spiked serum
samples [82]

5. Other Bioelectrochemical Approaches

Many anticancer drugs interact with redox machinery of the cell and cellular homeostasis including
reactive oxygen or nitrogen species (ROS, RNS) [83]. Indeed, drugs interact with many other different
metabolites and cellular components increasing or lowering their concentration. Electrochemistry offers
many interesting solutions for the monitoring of these metabolites [84], including fast voltammetry and
amperometry at micro- and nanoelectrodes [83,85,86], chip-based electrochemical platforms [87–90],
SECM/SICM configuration for cell imaging and protein, nucleic acid analysis [90,91], electrochemical
biosensor technology [92–94].

An interesting area is the study and simulation of drug metabolism coupling electrochemistry with
mass spectrometry (MS) [95,96]. Electrochemistry coupled to MS can provide increased throughput
and information on short-lived species. To this end, we ask the reader to refer to a recent review [97]
for a description of the metabolism of various substances in the human body and for a summary of
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methods used for prediction of metabolic pathways and biotransformation, with special emphasis on
the coupling of electrochemistry to MS.

Finally, among the different bioelectrochemical approaches, it is worth mentioning that organic
bioelectronics [98–102] is receiving great attention for its potential application in real-time selective
noninvasive detection of chemical biomarkers, including drugs, metabolites, neurotransmitters,
proteins, and hormones, in a variety of body fluids.

6. Conclusions

New anticancer drugs with increased effectiveness, less toxicity, and limited side effects are
needed. To address these pharmaceutical needs, great effort is currently devoted to the development
of multiplexed, reliable, and rapid screening methods to analyze the mode of action of anticancer
drugs and to identify novel drug candidates. In this review, we have discussed different label-free
bioelectrochemical methods that can be conveniently used for the analysis of anticancer drug interactions
with nucleic acids, membrane proteins, and living cells. If cell impedance-based methods present the
features for high-throughput drug screening analysis, SSM- and DNA-based methods in a medium- to
low-throughput approach can be used to evaluate the interaction between the anticancer drug and the
target at a molecular level. Such methods provide robust, flexible, and reliable assays and have potential
for the implementation of simple and cost-effective analytical tools for drug screening applications.
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