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ABSTRACT: Despite the central role of lipids in many
biophysical functions, the molecular mechanisms that dictate
macroscopic lipid behavior remain elusive to both exper-
imental and computational approaches. As such, there has
been much interest in the development of low-resolution,
implicit-solvent coarse-grained (CG) models to dynamically
simulate biologically relevant spatiotemporal scales with
molecular fidelity. However, in the absence of solvent, a key
challenge for CG models is to faithfully emulate solvent-mediated forces, which include both hydrophilic and hydrophobic
interactions that drive lipid aggregation and self-assembly. In this work, we provide a new methodological framework to
incorporate semiexplicit solvent effects through the use of virtual CG particles, which represent structural features of the
solvent-lipid interface. To do so, we leverage two systematic coarse-graining approaches, multiscale coarse-graining (MS-CG)
and relative entropy minimization (REM), in a hybrid fashion to construct our virtual-site CG (VCG) models. As a proof-of-
concept, we focus our efforts on two lipid species, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-
glycero-3-phosphocholine (DPPC), which adopt a liquid-disordered and gel phase, respectively, at room temperature. Through
our analysis, we also present, to our knowledge, the first direct comparison between the MS-CG and REM methods for a
complex biomolecule and highlight each of their strengths and weaknesses. We further demonstrate that VCG models
recapitulate the rich biophysics of lipids, which enable self-assembly, morphological diversity, and multiple phases. Our findings
suggest that the VCG framework is a powerful approach for investigation into macromolecular biophysics.

■ INTRODUCTION

Cellular membranes are crucial biological components that
regulate many essential biological activities through processes
that include compartmentalization, signaling, and transport.1,2

The main constituent of membranes are lipids, which are
amphiphilic molecules with hydrophilic head groups and
hydrophobic tails. Collectively, these lipids serve as building
blocks for noncovalently assembled fluid membranes.3 As a
diverse array of lipid species exists in nature, the properties of
these membranes are also highly variable. Hence, we can
expect molecular-scale fluctuations to influence the structure
and function of these membranes, which, in turn, affect the
large-scale macroscopic properties. Understanding the funda-
mental connection between the microscopic and macroscopic
behavior of membranes has widespread implications, which
include biophysical insight into cellular activity and design
inspiration for biomimetic soft materials.4−6 However, atom-
istic insight into membrane biophysics has been difficult to
probe using experimental techniques, especially at the scales
associated with molecular fluctuations. Instead, one may turn
toward computer simulation for a detailed investigation of
these behaviors, e.g., using classical molecular dynamics (MD).
The use of MD simulations to study membranes contains its

own set of challenges. The primary obstacle is to access
sufficiently large length- and time-scales in order to capture
lipid reorganization and membrane fluctuation, which are

inherently slow. In fact, the use of specialized hardware such as
the Anton supercomputer has previously been used to study
multicomponent lipid bilayers.7 An alternative approach is to
use coarse-grained (CG) models, in which molecules are
represented with reduced (i.e., less than atomistic) detail; here,
CG particles correspond to a collective of several or many
atoms. The most attractive CG models for studying
membranes and a number of other systems are solvent-free
as water typically constitutes the majority of the computational
burden. Several such CG models already exist, and they are
generally categorized into two main groups: top-down and
bottom-up CG models. Top-down models are fitted to
reproduce macroscopic properties. For example, models for
high-resolution CG lipids (∼10−15 CG sites per lipid) have
been generated based on experimental partition coefficients,8

while low-resolution CG lipids (i.e., 3−6 sites per lipid) have
been parametrized to easily tune bending rigidity.9−12 Bottom-
up models use rigorous statistical mechanics to parametrize
models that reproduce microscopic properties. Most models in
the bottom-up space are in the high-resolution regime,13−16

although some have been reported in the low-resolution
regime as well.17,18 In the case of both top-down and bottom-
up CG models, however, the questions of so-called
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representability and transferability remain important open
problems.19 In particular, the key challenge for implicit-solvent
CG models is to faithfully recapitulate the CG physics
produced by solvent-mediated effects (i.e., both hydrophilic
and hydrophobic interactions) since solvent degrees of
freedom are explicitly removed. These missing degrees of
freedom represent an inherently many-body lipid-solvent
interaction that is the primary driver for lipid self-assembly.20,21

The ability of a CG model to capture all of the relevant
physics of lipids is largely contingent on the expressiveness of
the underlying interactions, i.e., based on the CG representa-
tion and effective force field. For a variety of CG mappings,
some bottom-up methods have been suggested to reproduce
the many-body potential of mean force (PMF) in the limit of
infinite sampling (i.e., from an all-atom (AA) reference
trajectory) when they are allowed to return any possible CG
force field.22,23 However, practical use-cases of these methods
necessarily involve limited sampling and finite CG force-field
basis sets due to computational cost. An example of a finite
basis set is the classical description of molecular energetics
using pairwise (i.e., two-body) nonbonded interactions in
conjunction with bonded interactions (e.g., two- to four-body).
It is informative to consider an analysis from Rudzinski and

Noid, in which two well-known variational bottom-up
methods, multiscale coarse-graining24−27 (MS-CG) and
relative entropy minimization28−30 (REM), are compared in
this context.23 Using a general information measure that
discriminates the AA and CG ensembles, they showed that
REM minimizes the average of this quantity, while MS-CG
minimizes the average of its squared gradient. Hence in
complex systems, one can expect that effective CG interactions
derived from MS-CG or REM may yield considerably different
behavior if the CG interaction basis set is not sufficiently
descriptive (i.e., fully complete). Conversely, sufficiently
descriptive (but not infinite) basis sets that are used for MS-
CG and REM have been shown to result in equivalent CG
behavior in select cases.23 Therefore, a comparison between
CG models derived from MS-CG and REM may indirectly
provide insights into CG force-field expressiveness.
A rich variety of basis sets that describe nonbonded CG

interactions have recently been reported. For example, one
general direction has been to incorporate many-body effects
through higher-order potential energy terms, such as through
density- or order-parameter-based interactions; these complex
models have been shown to be quite effective for aqueous
polymers and simple liquids.31−34 Nonetheless, one should be
mindful of the additional computational cost of these CG
force-field variants. Another body of work has been to
introduce virtual sites, which are additional particles that
have been used for a variety of purposes. In multiresolution
simulations, for example, domains that are defined on an
atomistic level (with atomistic interactions) may also evolve
according to a coupled CG interaction model, in which the
simultaneous representation of the atomistic domain as a CG
particle may be considered a virtual site.35 Virtual sites have
also been used as fictitious particles that impart subtle
anisotropic projections of forces acting upon real sites; one
prototypical example of this idea is the atomistic TIP4P water
model.36 In the context of CG models, these types of virtual
sites have been useful for sterols and for aromatic hydro-
carbons.37,38 Overall, virtual sites can be thought of as
relatively inexpensive augmentations to conventional pairwise
force fields. However, in systems without straightforward

geometric symmetry, the general parametrization and use of
virtual sites remains unexplored.
In this work, we investigate the use of bottom-up methods to

derive CG models for lipids. We consider two lipid species,
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-
dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), which
adopt liquid-disordered (Ld) and gel-II (Lβ) phases at room
temperature, respectively.39,40 We restrict ourselves to low-
resolution (i.e., highly CG) mappings that still resolve the two
hydrophobic tails as tail-ordering has been implicated for phase
behavior.41 In addition and most importantly, we introduce
virtual sites that represent semiexplicit aspects of solvent. As
these virtual sites correspond to a nonlinear mapping of
solvent, we propose a hybridization of the REM and MS-CG
approaches to construct our CG models; given their nature,
these virtual sites should be considered a distinct variant from
the aforementioned classes of virtual sites. We first compare
implicit-solvent (or solvent free) CG models that are derived
using either MS-CG or REM in order to emphasize and
explore their native differences. These models are then
compared to CG models that are augmented by virtual sites
(our so-called “VCG” models). In particular, we argue that the
virtual representation of structural features at the water−lipid
interface greatly enhances the expressivity of our CG models
and enables rich behavior, including phase discrimination,
robust self-assembly, and morphological diversity, that
otherwise cannot be captured, especially at the level of a
highly CG model. We anticipate that the proposed method-
ology may be generalized to other complex macromolecules in
the future.

■ THEORY AND METHODOLOGY
The construction of CG models requires two steps: mapping
from atomistic to CG and parametrization of the effective CG
interactions. In this work, we utilize six-site center-of-mass
mappings of DOPC and DPPC, as depicted in Figure 1(a) and
described in detail in Table S1 and Figure S1. The mapping is
motivated by physically intuitive groupings: the phosphate and
choline groups are represented by the headgroup (HG) CG
“bead”, the glycerol backbone and ester group are represented
by the middle-group (MG) bead, and the two hydrocarbon
tails are represented by the first tail-group (T1) and second
tail-group (T2) beads. We select this mapping resolution in an
attempt to construct low-resolution CG models (see Figure
1(b)) that maintain tail fidelity, as tail packing and
reorganization are likely important for lipid phase behavior.41

We also introduce a seven-site CG model, in which an
additional site is identified and attached to the six-site model in
order to represent a feature of the solvent, namely the solvent-
lipid interface, as the SL bead. We hypothesize that the
presence of solvent microstructure at the solvent-lipid interface
is suggestive of interactions that should be expressed in our
VCG model. As depicted in Figure 1(b), we choose to
represent the center-of-masses (CoM) of water molecules that
are strongly correlated with the hydrophilic region of each
lipid, i.e., the HG bead, as the SL bead. This structural
correlation can be seen in the radial distribution function
(RDF), shown in Figure 2, between HG and the CoM of
nearby water molecules; the two peaks (seen below a distance
of 6.0 Å) are indicative of preferential aggregation of water
molecules, which may arise, for instance, from hydrogen
bonding between water and lipid phosphate groups (see inset
of Figure 2). These two features may further correspond to
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recent experimental identification of so-called tightly bound
water regimes at the interface of lipid bilayers.42 Hence, we
identify all water molecules within the first two coordination
shells around each HG site, corresponding to a radial cutoff of
6.0 Å (the second minima in the RDFs), and construct the SL
site at their CoM; we extended our cutoff to the second
coordination shell due to the low coordination number of
water molecules within the first shell (∼2 or fewer molecules).
We note, however, that adjacent SL beads share water
molecules as the hydration shells around adjacent lipids are
overlapping. Furthermore, the number of water molecules
within the bound regime is inherently dynamic (see Figure
S2). These aspects introduce important new challenges for CG
interaction parametrization, which we describe next.
To parametrize our CG interactions based on our

aforementioned mapping, we focus on two variational methods
as mentioned earlier, i.e., MS-CG and REM. While full details
on both methods can be found elsewhere, we include a brief
summary of the two methods as posed in the canonical
ensemble.27,30 The MS-CG method uses the variational
principle to find a CG force field (UCG) based on minimization
of the following force-based functional

∑χ [ ] = | − | |
=

R RU
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which is the least-squares residual of forces (χ2) with N as the
number of CG sites, RN as the CG-mapped atomistic
configuration, f I as the CG-mapped atomistic forces on site
I, FI as CG-forces on site I given UCG, and ⟨⟩ indicating an
ensemble average over the atomistic ensemble. While this
expression is general, it is important to note that defining f I,
i.e., to ensure that global minimization of eq 1 implies phase-
space consistency, is trivial only for select choices of mapping
operators:26 center-of-mass mappings are a quintessential
example as the positions and forces of mapped CG sites are
expressed by a linear combination of atomistic positions and
forces, respectively, which are commonly assigned to unique
CG sites. Generalizations of MS-CG theory for nonlinear
mapping functions have also been proposed yet remain difficult
to implement in practice.43 Our proposed SL sites fall within
the category of nonlinear mappings, e.g., from overlapping water
molecules and from variability in the number of water
molecules, and a closed form expression for f I has, to our
knowledge, not yet been derived.
The REM method uses a variational procedure to find UCG

based on minimization of the following functional
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which is known as the relative entropy (Srel) (i.e., Kullback−
Leibler divergence), a measure of the distance between two
probability distributions, e.g., the probability of an atomistic
configuration (i.e., p) and that of a CG configuration given
UCG (i.e., P); the first term, Smap, only depends on the mapping
operator, i.e., rendering Smap effectively constant and negligible
with respect to UCG optimization. Again, while eq 2 is general,
it is practical to reformulate this expression in terms of

Figure 1. Schematic of the coarse-grained mapping procedure for
DOPC and DPPC. (a) The CG model consists of six sites that
together represent all lipid atoms, while the virtual SL site represents
local structural features of solvent near lipid head groups. (b) The red
path indicates conventional implicit-solvent CG mapping procedures,
while the green path indicates the procedure used in this work: water
is first mapped to single-site particles and used to construct virtual SL
sites. Explicit details on mapping can be found in Table S1 and Figure
S1.

Figure 2. Radial distribution function (RDF) for coarse-grained
single-site water around lipid HG (i.e., headgroup) sites. The dashed
line indicates the radial distance cutoff that is used to construct the
virtual SL sites. The inset shows a representative snapshot of water
coordinating between two lipid phosphate groups through hydrogen
bonding interactions, which corresponds to the first peak of the RDF.
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structural or energetic properties. In the canonical ensemble,
eq 2 can be formulated as30

β β[ ] = [ ⟨ − ⟩ − − ] + ⟨ ⟩S U E E A A S( )rel CG CG AA AA CG AA map

(3)

where EAA (ECG) is the atomistic (CG) internal energy
(evaluated under AA ensembles), AAA (ACG) is the AA (CG)
configurational free energy, and β is the Boltzmann factor. In
doing so, iterative schemes such as Newton−Raphson
minimization can be used to optimize UCG.

30

Both methods yield the correct many-body PMF in a general
sense, i.e., in the limit of infinite sampling of reference data and
infinite expressivity in the basis set for the CG interactions.
However, it is informative to understand the behavior of these
two methods in the frame of limited basis sets, which are
necessarily employed in molecular simulations. In the infinite
sampling limit, it has been shown that n-body potentials that
are determined using REM exactly recapitulate specific n-body
statistics.29 As an example, two-body potentials, such as
Lennard-Jones (LJ) interactions, reproduce particular pairwise
structural correlations; in the case of 12-6 LJ, perfect
reproduction of pairwise r−12 and r−6 correlations is expected.
For comparison, two-body potentials that are determined using
MS-CG are found to incorporate both two- and three-body
correlations based on connections to Yvon-Born-Green liquid-
state theory.44 Taken further, these subtle differences can be
summarized by the following dictum: while the REM method
provides a complete fit to reduced statistics, the MS-CG
method provides a reduced fit to complete statistics. Hence,
CG potentials with finite basis sets that result from these two
methods may yield complementary behavior, and one might
wish to take advantage of features from both.
In this work, we report the results of four different CG lipid

models, each for two different lipid species (DOPC and
DPPC), for a total of eight CG lipid models. Each of the four
models is generated using the successive framework shown in
Figure 3, which ultimately combines model features from both
REM and MS-CG. First, a six-site model is constructed using

the MS-CG method, which we denote MSCG-6. The resultant
CG potentials are then used as an initial guess for iterative
REM optimization for another six-site model, which we denote
REM-6. We next turn toward seven-site models by introducing
the SL virtual particle (see Figure 1). Recall that a mapping
function for mean forces that retains thermodynamic structural
consistency is unknown (albeit progress is underway).38

Hence, we use the REM method to optimize a seven-site
model, i.e., REM-7V, using the REM-6 model as an initial
guess (see the SI for additional details). We then use the
generated REM-7V potentials associated with the SL site as a
proxy to compute the previously unknown mean forces acting
on each SL site in the CG-mapped atomistic trajectory. This,
in turn, enables the generation of another seven-site model
using the MS-CG method, i.e., MSCG-7V, since the mean
forces on both real and virtual CG sites are now defined.
To summarize, our final CG-mapped forces are obtained

from the following two expressions
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where I and J denote CG-mapped sites, i denotes atomistic
sites, and UIJ|REM7 represents the REM-7V pairwise potential
between I and J. Note that the final two steps of this procedure
can be performed independently of the first two steps; we only
use the six-site CG models to accelerate training. Details of
each operation are described below.

MS-CG. All calculations were performed using the publicly
available MS-CG 1.8 code (https://github.com/uchicago-
voth/MSCG-release).45 Pairwise nonbonded, bonded, and
angle interactions were described by third-order B-splines
using resolutions of 0.01 nm, 0.005 nm, and 0.5 degrees,
respectively; a radial cutoff of 2.5 (3.0) nm was used for DOPC
(DPPC) nonbonded interactions. A down-sampled set of
7,500 MD frames was used for least-squares regression and

Figure 3. Flowchart depicting the parametrization strategy used to construct each of the coarse-grained lipid models, which rely on two variational
methods: multiscale coarse-graining (MS-CG) and relative entropy minimization (REM). The right block shows the REM optimization
subprocedure based on Newton−Raphson minimization, in which a two-part strategy is adopted: initially, stochastically chosen subsets of
parameters are refined for each iteration, followed by refinement of all parameters at each iteration.
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validated against holdout sets of 7,500 frames. Bayesian
regularization for a maximum of 250 iterations was also
used.46 For nonbonded interactions, the repulsive forces in the
exclusion portion of the CG potentials were extrapolated
linearly toward r = 0; as this region is rarely sampled, the
functional form does not appear to affect the overall behavior
of the CG model. All MS-CG calculations are single-iteration
computations.
REM. All calculations were again performed using the

publicly available MS-CG 1.8 code.45 Pairwise nonbonded
interactions were described using third-order B-splines using a
resolution of 0.03 nm with a radial cutoff of 2.5 (3.0) nm for
DOPC (DPPC) models; for simplicity, bond and angle
interactions generated by MS-CG were used and held
constant. To accelerate training, and due to fast convergence,
only 100 frames from the CG trajectory were used. Given the
stochastic nature of the optimization and the complexity of the
model, we found that unphysical intermediate solutions for the
CG potentials were sometimes explored, thereby leading to
either divergent behavior or unstable simulations. To mitigate
this problem, we adopted a stochastic procedure in which a
random subset of the nonbonded interactions was chosen for
optimization at every iteration for 50 to 100 iterations. To
improve stability, we also used a mixing coefficient of 0.35
during the update step for Newton’s method.30 The entire set
of nonbonded interactions was subsequently optimized for 50
to 100 iterations. This procedure was then repeated if
convergence was not achieved; convergence was assessed
based on a relative tolerance of 0.05 for Srel, which typically
required no more than 400 iterations. A summary of the total
required iterations is tabulated in Table S2. Given the
stochastic nature of this procedure, we repeated the procedure,

which converged to similar solutions. We also repeated the
procedure using initial potentials derived from the Cooke-
Deserno model.9,10 Both solution sets are shown in Figure S3
and exhibit consistent potentials. However, it should be noted
that other solutions may exist within the same numerical
tolerance for Srel, which would likely depend upon the initial
trial potentials.

All-Atom Molecular Dynamics. All atomistic simulations
were performed using GROMACS 5.0.7.47 An initial
configuration of 1152 DOPC (1296 DPPC) lipids in a bilayer,
surrounded by around 45,000 (51,000) water molecules and
0.15 M concentration of NaCl, was generated in a periodic box
using the CHARMM-GUI membrane builder.48−50 Standard
equilibration procedures were employed.49,50 After energy
minimization to a force tolerance of 1000 kJ mol−1 nm−1,
simulations in the constant NPT ensemble were performed
using a Nose−́Hoover thermostat51 at 300 K and a semi-
isotropic Parrinello−Rahman barostat52 at 1 atm with coupling
times of 2 and 10 ps, respectively. Hydrogen atoms were
constrained using LINCS, and electrostatics was calculated
using particle-mesh Ewald summation. An integration timestep
of 2 fs was used. The CHARMM36 force field53 was used for
lipids, and the TIP3P force field36 was used for water; forces
were computed up to a radial cutoff of 1.2 nm with a smooth
switching function beginning at 1.0 nm. After 300 ns of
equilibration under the conditions described above, simu-
lations were run in the constant NVT ensemble (using the
average volume over the last 100 ns) for 100 ns and statistics
captured every 1 ps.

CG Molecular Dynamics. All CG simulations were
performed using LAMMPS 11Aug1754 with tabulated CG
potentials (accessible from https://github.com/uchicago-

Figure 4. Coarse-grained DOPC interactions. (a) Comparison between seven-site (DOPC-7V) and six-site (DOPC-6) pair potentials for a
representative subset of all nonbonded interactions. Models generated using multiscale coarse-graining (MS-CG) and relative entropy minimization
(REM) are also denoted by solid and dashed lines, respectively, yielding a total of four different models. Note the emergence of the SL-MG
attraction in the DOPC-7V model, which appears to mediate MG-MG attraction (i.e., to maintain surface tension). (b) Bond and angle potentials
were computed using MS-CG in the DOPC-7V case (solid) and DOPC-6 case (diamond symbols). For simplicity, the DOPC-6 bonded potentials
were used for the two REM models.
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voth/MSCG-models). Initial configurations of 1152 DOPC
(1296 DPPC) lipids in a bilayer were generated using
Moltemplate with a uniform lateral (or xy) spacing of 2.0
nm in a periodic box with vacuum z-spacing of 10 nm. During
REM iterations, the simulation domain was rapidly relaxed in
the xy-dimensions using a Berendsen barostat55 and Langevin
thermostat56 over 50,000 timesteps, followed by linear
deformation to the reference atomistic xy-dimensions over
another 50,000 timesteps; here, a timestep of 2 fs was used
with coupling constants of 5 and 2 ps, respectively. Simulations
were subsequently run for 200,000 timesteps in the constant
NVT ensemble with statistics gathered over the final 50,000
timesteps every 500 timesteps; these trajectories were used
during the REM optimization procedure.
For CG model validation and characterization, independent

simulations were run using a 10 fs timestep and a Langevin
thermostat (Nose−́Hoover barostat) with a coupling constant
of 10 ps (50 ps); different initial configurations are described
throughout the main text. Simulations were run for 750,000
timesteps in the constant NVT ensemble with statistics
gathered over the final 500,000 timesteps every 500 timesteps;
the analysis performed on these trajectories is described in the
main text. Subsequently, constant NPT ensemble simulations
were integrated for 300,000 timesteps with statistics from the
final 150,000 timesteps (gathered every 150 frames) used for
additional analysis (i.e., area per lipid characterization). For all
DOPC (DPPC) cases, a radial cutoff of 2.5 (3.0) nm was used
with a neighbor-list skin-depth of 0.8 nm.

■ RESULTS AND DISCUSSION
Comparison of Coarse-Grained DOPC Interactions.

We first examine the effective CG potentials that are
determined by MS-CG and REM for the six-site (DOPC-6)
and seven-site (DOPC-7V) DOPC models. For simplicity, we
will restrict our discussion to the subset of pairwise nonbonded
interactions that are shown in Figure 4(a), which depicts the
four self-interactions among lipid sites and, in the case of
DOPC-7V, two key SL interactions.
It is worth noting the general trends that emerge with

respect to the partitioning of attractive and repulsive
interactions. It appears that attractive interactions are
associated with the MG bead at close range (e.g., a minima
of −0.48 kcal/mol when r = 8.7 Å for MSCG-6) and T1 and
T2 beads at longer range (e.g., a minima of −0.35 and −0.32
kcal/mol when r = 10 and 12 Å for MSCG-6). Meanwhile, the
HG bead is primarily repulsive. We would expect attraction of
the MG beads as these are associated with the hydrophobic−
hydrophilic interface and are responsible for maintaining the
surface tension of the lipid bilayer in the absence of explicit
solvent.11 In fact, our results appear to validate certain aspects
of previous design principles used for phenomenological CG
models, such as that of Brannigan and Brown,11 that adopt this
intuition during model construction; these previous models
assign repulsion to the headgroup and strong (weak) attraction
to the middle (tail) groups. As discussed later, this
combination of HG repulsion and MG (and to a lesser extent,
T1/T2) attraction effectively enables lipid self-assembly by
mimicking hydrophobicity as an enthalpic effect.15,16

There are a few subtle differences between the CG
interactions determined by MS-CG and REM in the DOPC-
6 case that are important to mention. The first is that the MG
interaction, the primary attraction, appears slightly deeper and
longer-range in the REM model (e.g., a minima of −0.54 kcal/

mol when r = 9.3 Å for REM-6) compared to that of MS-CG.
In contrast, and seemingly to compensate, the REM model also
exhibits softer, longer-ranged HG repulsion and weaker tail
attraction (e.g., a minima of −0.10 and −0.40 kcal/mol when r
= 10.7 and 13.7 Å for T1 and T2, respectively, in REM-6). The
implications of these features will be discussed later.
We also find that the inclusion of the virtual SL site has an

important effect on the relative partitioning of attractive CG
interactions. Both the MS-CG and REM models for DOPC-7V
predict slightly weaker and shorter-range MG attraction (e.g., a
minima of −0.34 and −0.22 kcal/mol when r = 8.6 and 9.3 Å
for MSCG-7V and REM-7V, respectively) compared to that of
the DOPC-6 models. Instead, this attraction is now mediated
by the presence of the SL bead, i.e., the SL-MG interaction.
Hence, while the SL bead is self-excluding, e.g., to represent
the space occupied by solvent, the collective aggregation of SL
and MG beads is now required to maximize attraction and
serves as the primary driver for lipid aggregation. Interestingly,
the discrepancy between the interactions determined by MS-
CG and REM, and most notably for the MG interactions,
appears to be smaller than that of the DOPC-6 case; we
evaluate this difference between MS-CG and REM potentials
using the relative entropy for the MG interactions which we
compute to be 0.0016 and 0.0028 for DOPC-7V and DOPC-6,
respectively. As we expect both methods to converge to the
same CG model in the limit of infinite basis, we are
encouraged by this observation as it suggests that the simple
addition of our virtual SL site enhances the expressiveness of
our limited (finite) force-field basis set.23

Finally, we show the predicted bond and angle potentials for
DOPC-7V in Figure 4(b). Here, we only show the results from
MS-CG, which we found to be nearly indistinguishable from
that of DOPC-6. Overall, all of the calculated bond and angle
potentials appear to be anharmonic; the use of B-splines is
therefore critical to describe these bonded interactions at the
CG level. The stiffest segments of the lipid, as indicated by the
potentials with the largest curvature, are predicted to be the
HG-MG bond and the T1-MG-T1 splay angle. In addition, the
predicted potentials are found to be similar to the bonded
potentials that are computed from Boltzmann Inversion (BI),
which was the strategy used in previous work on solvent free
lipid models.13,14 Hence, in the absence of explicit CG-mapped
forces for the SL bead, we approximated the SL-HG bond and
SL-HG-MG angle potentials from BI. We should also mention
that these bond and angle potentials were used for all REM
optimizations, as we only used REM to optimize nonbonded
interactions for simplicity.

Evaluation of Coarse-Grained DOPC Behavior. To
assess our CG models for DOPC, we consider several
illustrative metrics with respect to both reference AA and
experimental data. We first investigate structural correlations.
Lipid bilayers, by nature, are structurally anisotropic as lateral
(i.e., in-plane) lipid packing is distinguishable from normal
(i.e., out-of-plane) packing into its two leaflets. As such, we
compare the lateral and normal lipid number densities in
Figure 5 and restrict ourselves to the five self-pair correlations.
In Figure S4, we also provide a comparison of RDFs generated
from the two 7V models and the reference AA trajectory; here,
we note that the REM-7V model shows expectedly excellent
agreement (with an average relative entropy of 0.018 ± 0.007)
with our reference data (indicating successful optimization),
while the MSCG-7V model exhibits close agreement (with an
average relative entropy of 0.076 ± 0.010) with some
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overstructured features, as indicated by peaks with larger
heights and narrower widths.
The primary differences between the four CG models are

observed when comparing MS-CG against REM results. In the
lateral direction (left of Figure 5), good agreement between
MS-CG, REM, and the reference AA trajectory is generally
seen for all of the profiles, although the MS-CG (REM) model
tends to predict overstructuring in the HG (T1/T2) region as
evident by the increased maximum density by up to 25%
(10%), especially in the DOPC-7V case. In the normal
direction (right of Figure 5), more striking differences are seen
between MS-CG and REM results. The peak positions
predicted by REM in the DOPC-6 model correspond to that
of the reference AA trajectory yet also tend to be larger (and
narrower) with maximum densities increased by up to 50%;
interestingly, the introduction of the virtual SL particle also
appears to broaden these peaks and reduces the discrepancy in

maximum peak densities to within 15%, thereby indicating a
softening effect. On the other hand, the height (and width) of
the peaks predicted by both MS-CG models corresponds to
that of the reference AA trajectory to within 10% of the
maximum peak density, while the peak positions tend to be
further away from the midplane by up to 2 Å. This disparity in
lateral and normal density profiles is perhaps most
representative of the difference between the two methods.
While the REM models expectedly match the average radial
correlations (e.g., the RDFs in Figure S4), the lateral density
distributions appear to be emphasized at the expense of
narrower normal density distributions; we speculate that this
behavior arises since the lateral pair correlations dominate the
radial pair correlations (recall that REM attempts to fit
averages of target information). Meanwhile, the MS-CG
models have no such guarantee. Instead, the MS-CG models
appear to emphasize the shape and curvature of the
distributions, especially for the normal density distributions,
at the expense of matching the radial distributions (recall that
MS-CG attempts to fit gradients of target information).
Our CG models can be assessed further by considering

standard membrane properties, summarized in Table 1, which
include the area per lipid (APL), bilayer thickness, tail-order
parameter (STT), head-order parameter (SHM), and bending
modulus (κbend). To approximate the bilayer thickness, we
laterally divide the membrane into bins with lengths of 1.0 nm
and compute the average normal distance between interleaflet
HG beads within each grid element; this value is then averaged
over the grid and trajectory, which is then reported as dHG‑HG.
Order parameters were calculated using the second order
Legendre polynomial for cos(θ)57

θ θ= −| |S ( )
1
2

(3 cos ( ) 1)TT HM TT
2

TT HM (6)

in which θTT|HM denotes the angle formed between the bilayer
normal and the bond vector that connects T1-T2 (or HG-
MG); recall that STT|HM is 1.0 when the two bond vectors
prefer parallel orientation, −0.5 when they prefer orthogonal
orientation, and 0.0 when preferential orientation is absent.
Area-normalized fluctuation spectra (Hz) were calculated, as
described previously,58 using large CG simulations that were
around 60 × 60 nm2 (with 10,368 lipids) and run for 106

timesteps. The spectra (Figure S5) were used to approximate
κbend by fitting the low-frequency modes with the following:

κ= −H q k T q( ) ( )z B bend
4 1

(7)

The stiffness of the flexural modes of the bilayer is a critical
descriptor of membrane physics, such as for membrane-
mediated protein interactions.59,60 For comparison, an
alternative method is used to compute κbend for the reference
AA systems as these simulations are not large enough to
reliably sample low-frequency modes.61 We use the relation-

Figure 5. Comparison of structural correlations in coarse-grained
DOPC lipid bilayers between mapped all-atom trajectories, multiscale
coarse-graining models (MS-CG), and relative entropy minimization
(REM) models; here, both DOPC-7V (solid lines) and DOPC-6
(dashed lines) models are shown. The left and right panels are lateral
(i.e., xy-direction) and perpendicular (i.e., z-direction) number
density profiles between the listed sites. Each of the profiles was
averaged over both leaflets and used a bin size of 0.01 nm.

Table 1. Comparison of Properties for DOPC from the Listed CG Models: Area Per Lipid (APL), Distance (or Bilayer
Thickness) between HG (dHG‑HG), T1-T2 (STT) and HG-MG (SHM) Order Parameters, and Bending Modulus (κbend) at 300 K

c

property MSCG-6 REM-6 REM-7V MSCG-7V AA exp

APL (nm2) 0.66 0.46 0.53 0.68 0.67 0.72a

dHG‑HG (nm) 4.4 4.1 4.0 4.2 4.0 4.48a

STT [SHM] 0.65 [0.62] 0.63 [0.64] 0.61 [0.62] 0.60 [0.61] 0.56 [0.53] n/a
κbend (kBT) 56.4 ± 2.2 183.9 ± 10.4 88.0 ± 3.1 29.8 ± 1.7 23.4 ± 2.6, 28.8b 18.3a

aReference 39. bReference 61. cStandard errors within the range of listed significant digits are shown.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b01033
J. Chem. Theory Comput. 2019, 15, 2087−2100

2093

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b01033/suppl_file/ct8b01033_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b01033/suppl_file/ct8b01033_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.8b01033


ship between the area compressibility (κA) and κbend as
follows61

κ κ= =
Δ‐ ‐d d

k T A
A

( )Abend HG HG HG HG
B

2

i
k
jjjjj

y
{
zzzzz (8)

where ⟨A⟩ and ⟨ΔA2⟩ are the average membrane area and
mean squared area fluctuation, respectively. Note that eq 8
should not be applied to CG systems due to its reliance on
compressibility.19

Given the previous discussion on the fidelity of normal
density distributions, it is unsurprising that the dHG‑HG
predicted by both REM-6 and REM-7V models agree to
within 3% of values computed from AA simulations. Similarly,
both MSCG-6 and MSCG-7V models overestimate dHG‑HG by
up to 10% compared to AA simulations, yet, coincidentally,
agree better with experiments; given the disparity between
predictions from AA simulations and experimental values, it
would be worthwhile to use sensitivity-based methods62 to
correct CG potentials in future work, e.g., upon changes to the
underlying AA force field. We also find that the APL predicted
by both MS-CG models agree within 3% with that of AA
simulations, which is within the expected difference between
values predicted by simulations and experiments. On the other
hand, both REM models predict an additional 20−30% of
lateral compression. However, as the APL is computed in the
constant NPT ensemble, we must note that the discrepancy
between the two methods most likely arises from the
representability issues related to pressure.19 As there is no
rigorous correspondence between the naiv̈ely computed CG
virial and AA virial, unless the CG interactions are independent
of volume (which they are not), we assume that the success of
the MS-CG method is partially by chance. A more thorough
assessment of APL (and related metrics) would likely require
amendments to eqs 1 and 3, which is an active area of research
and includes recent extensions to MS-CG and REM for
constant NPT ensembles.19,63−65

The final two metrics, STT/SHM and κbend, are particularly
informative about the benefit of virtual solvent sites. We find
that both DOPC-6 models result in STT and SHM values that

are larger by up to 22% compared to our reference AA
simulations. In addition, κbend is considerably stiffer than that of
previous atomistic simulations61 and experiments39 by at least
a factor of 2 (factor of 7) for MSCG-6 (REM-6). We expect
that the origin of this rigidity can be attributed to the absence
of the entropy-driven hydrophobic effect, i.e., due to the lack of
solvent, which is a primary driver for lipid self-assembly.21 To
compensate, both CG models introduce explicit attraction,
which is largely seen in the MG, T1, and T2 interactions (see
Figure 4). The DOPC-7V models, on the other hand, result in
reduced STT and SHM that are within 17% of reference AA
values. A 2-fold reduction in κbend is also observed upon
introduction of the SL bead, such that the stiffness of the
MSCG-7V model recapitulates that of atomistic simulations.61

This suggests that the effective repartitioning of attractive
forces due to the presence of the SL beads (see Figure 4) is
important in order to recapitulate the flexible and fluid nature
of lipid bilayers.
A related but equally important characteristic of lipids is

their ability to self-assemble, especially into morphologically
diverse structures. Interestingly, we find that both of our
DOPC-6 models tend to assemble into various types of
defective structures (see Figure S6) when starting from a
random configuration. While the stability of preassembled
bilayers for both DOPC-6 models suggests that bilayer
configurations are represented, at minimum, as a metastable
state, kinetic barriers may exist that prevent the accessibility of
this state from other configurations, i.e., during self-assembly;
for example, in the case of REM-6, the CG lipids aggregate into
a disordered ball rather than a bilayer. However, we find that
both DOPC-7V models robustly self-assemble into lipid
bilayers (see Figure S6). We attribute the success of both 7V
models to the presence of the semiexplicit solvent SL bead and,
in particular, the effective repartitioning of repulsive and
attractive forces. Given the necessity of SL to mediate lipid
MG attraction, combined with the self-repulsion of both HG
and SL beads and weak attraction at the tail beads, one can
imagine that adjoining lipids are now free to sample many
collective configurations until the combination of weak
interactions is maximized when stacked in a bilayer-like state.

Figure 6.Molecular snapshots of self-assembled MSCG-7V for DOPC starting from random configurations at the listed concentrations with colors
consistent with Figure 1(a). As concentration increases, the DOPC-7V model adopts morphologies that range between vesicles, tubules, bilayers,
and tubule networks. The top row of panels depicts interiors of the same configurations shown in the bottom row of panels through the use of a
clipping plane.
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Relatedly, we observe that the DOPC-7V lipids readily
reorganize, flip flop, and undergo membrane fission during
self-assembly simulations (see Movie S1). As an additional test,
we investigate the self-assembly of MSCG-7V under different
concentrations, in which 9000 lipids are randomly distributed
in cubic domains of varying size and integrated over 2 × 107

timesteps. As seen in Figure 6, the morphologies of the self-
assembled CG lipids vary between vesicles, tubules, bilayers,
and a network of tubules as the concentration increases. The
observed morphological diversity is consistent with expected
behavior from amphiphiles, such as lipids, which are capable of
adopting a hierarchy of topological morphologies that depend
upon concentration, as well as additional factors including
choice of solvent or mixing with other constituents.66 To our
knowledge, while top-down implicit-solvent CG lipid models
have exhibited the ability to robustly self-assemble through
careful design,8−12 it is an uncommon attribute for bottom-up
implicit-solvent CG lipid models. One notable exception is the
CG lipid model from Mirzoev and Lyubartsev,67 which
assembles into both bilayers and vesicles, yet only for
potentials derived from a specific stoichiometric composition
of lipids to solvent. However, it should be noted that the CG
models reported in this work are only expected to approximate
the PMF of lipids when aggregated in a bilayer state, as only
these configurations are sampled in the training data. Hence, at
present, it is unclear if configurational states beyond bilayers,
such as during the observed structural transition from
dispersed to self-assembled lipids, are accurately represented,
and this issue of transferability in bottom-up CG models is an
important subject for future studies.
Extension to Coarse-Grained DPPC. To further test the

importance of virtual solvent sites, we now consider DPPC.
This lipid species is particularly interesting as it adopts a Lβ (or
gel-II) phase at room temperature, although the ripple phase
(Pβ), which is believed to be a pretransition phase between Lβ

and Ld phases, may also emerge if cooled starting from the Ld
phase.40 Our AA simulations appear to emulate this latter case;
starting from initially disordered configurations, we observed
the formation of the Pβ phase in two independent AA
simulations. It is possible that with either subcooling or
exceptionally long simulation time scales, a slow relaxation to
the Lβ phase may occur. Nonetheless, as our focus is on
systematic CG procedures and the utility of virtual solvent
sites, we will consider the prediction of the Pβ phase to be
sufficient for our purposes as it is distinct from the Ld phase
that DOPC adopts at room temperature.
Intriguingly, our early attempts to construct six-site DPPC

models revealed significant deficiencies in the absence of a
virtual solvent bead. For instance, our MSCG-6 model results
in unstable lipid aggregates (i.e., a bilayer is not formed), while
our REM-6 model results in stable yet flat bilayers with no
evidence of the ripple phase (see Figure S7). In contrast, both
MSCG-7V and REM-7V models yield stable bilayers that also
spontaneously self-assemble, which we discuss further below.
A comparison between the DPPC-6 and DPPC-7V

potentials, as shown in Figure 7, provides insightful hints to
understand the notable discrepancy between model behavior.
We find that the partitioning of attractive and repulsive
potentials is qualitatively similar between the two model
resolutions. However, the interfacial bead attraction (i.e., MG-
MG) is considerably weaker in the DPPC-7V case, as observed
similarly in the DOPC-7V case; the minima in the MG
interaction, for example, is around −0.64 and −0.32 kcal/mol

at r = 9 Å for the MSCG-6 and MSCG-7V models,
respectively. Instead, the presence of virtual solvent beads
(i.e., SL-MG) appears to mediate lipid attraction. The effective
tail bead interactions (i.e., T1-T1 and T2-T2) are also slightly
redistributed such that the T1 (T2) interaction is less (more)
attractive in the DOPC-7V case; the minima in the T1 (T2)
interaction is around −0.44 and −0.38 (−0.30 and −0.53)
kcal/mol at r = 9.6 (12.7) Å for the MSCG-6 and MSCG-7V
models, respectively. The observed changes to tail interactions
are likely coupled to a similar redistribution of intermolecular
forces, which is notably seen in the T1-MG-T1 angle shown in
Figure 7(b). Hence, we find that the emergence of SL-
mediated attractive interactions is essential for stable bilayer
formation, which we further confirm upon observation of
bilayer disassembly when the SL interactions are switched to a
noninteracting state (see Figure S8).
Unlike the DOPC-7V case, we observe several distinct

qualitative differences between the effective tail interactions
predicted by the MSCG-7V and REM-7V models. The MSCG-
7V tail interaction profiles exhibit a greater degree of concavity
changes (i.e., commensurate with local minima in the force
profiles) compared to that of REM-7V, which is most distinctly
seen in the T2-T2 interaction at r = 5.1 Å. Recall that the
observed difference between the effective interactions
predicted by these two methods suggests that our simple
pairwise nonbonded basis is still insufficient for complete
convergence. In fact, the T2-T2 interaction predicted by
MSCG-7V bears resemblance to previous work on simple CG
liquids, in which minimum expressed at short-range (i.e., at 0.5
nm in this case) has been prescribed as a two-body
approximation to three-body correlations.44 On the other

Figure 7. Coarse-grained DPPC interactions. (a) Comparison
between seven-site (DPPC-7V) and six-site (DPPC-6) pair potentials
for a representative subset of all nonbonded interactions. Models
generated using multiscale coarse-graining (MS-CG) and relative
entropy minimization (REM) are also denoted by solid and dashed
lines, respectively, yielding a total of four different models. Similar to
the DOPC-7V case, note the emergence of the SL-MG attraction,
which appears to mediate MG-MG attraction for lipid aggregation.
(b) Bond and angle potentials were computed using MS-CG in the
DPPC-7V case (solid) and DPPC-6 case (diamond symbols). For
simplicity, the DPPC-6 bonded potentials were used for the two REM
models.
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hand, this minimum is absent from the REM-7V model, which
instead attempts to capture up to two-body correlations given
our current basis set. To investigate the consequences from our
choice of a restricted interaction basis, we next turn toward
structural characterization of the CG DPPC lipid bilayers.
We depict the lateral and normal lipid number densities in

Figure 8 and restrict ourselves to the five self-pair correlations.

Here, the predicted behavior of the REM-7V and MSCG-7V
models with respect to the reference AA trajectory appears to
be quite similar to that of DOPC-7V (see Figure 5). In the
lateral direction, both methods seem to recapitulate the
structure of the hydrophilic region, although the MSCG-7V
model results in slight overstructuring, which is evident from
the narrowing of the density peak at a distance of 6.9 (6.0) Å
for HG-HG (MG-MG) and increase in maximum density by
5%. In the normal direction, the MSCG-7V and REM-7V
models both resemble the distribution from the reference AA
trajectory yet consistently overpredict maximum densities by
up to 15% and 30%, respectively. Both models also predict the
mean positions to be within 1 Å of the mean from the
reference AA distributions; as a result, the bilayer thickness
obtained from both REM-7V and MSCG-7V models is in good
agreement with that of the reference AA trajectory, as shown in
Table 2. We also note that the normal density distributions are
quite skewed compared to that of DOPC (see Figure 5). The

skew in these distributions is reflective of the ripple phase that
is adopted by DPPC at 300 K, in contrast to the liquid-
disordered phase adopted by DOPC. These ripples are clearly
seen in the snapshots depicted in Figure 9(a). As depicted in
Figure 9(b), we characterize the ripples using the fast Fourier
transform of the 2D bilayer height fluctuations (around the
mean with respect to the MG bead) using a grid with a 15 Å
bin size. We find that the reference AA trajectory exhibits a
distinct mode around 0.15 nm−1, which suggests that the
characteristic ripple wavelength is around 6.5 nm. Both
MSCG-7V and REM-7V models exhibit a distinct mode
around 0.09 nm−1 (or around 11 nm), which suggests that the
ripples predicted by both CG models are broadened by
comparison. However, it is interesting to note that the REM-6
model (see Figure S7) predicts the formation of a flat bilayer,
as evident by the absence of distinct Fourier modes, and
therefore suggests that the addition of the virtual SL bead
enables partial structural heterogeneity that is commensurate
with the ripple phase.
From Figure 8, it is also clear that recapitulation of the

distinct T1/T2 structuring in the lateral direction, which is
indicative of hexatic ordering seen in both gel and liquid-
ordered phases,7 remains a challenge for both the MS-CG and
REM methods. Given that both models predict a slight
increase in density, and more so by the REM-7V case, in the
three peak positions exhibited by the reference AA trajectory,
we speculate that our use of a pairwise and spherically
symmetric nonbonded basis is simply insufficient to describe
the wide variety of tail packing environments seen in ripple
phases, which include intralayer ordering, interdigitation, and
disordered kinks.68 The loss in lateral structure correlation may
also explain the relative reduction of STT and κbend compared to
reference AA simulations, as seen in Table 2. In fact, given the
more faithful structural correlations exhibited by the REM-7V
model compared to that of MSCG-7V, we similarly find that
the REM-7V model more closely reproduces the APL, dHG‑HG,
STT, and κbend from simulations and experiments,40 although
recall that the fidelity of the APL may instead be coincidental
due to pressure representability.19

Our analysis of the behavior of both DOPC and DPPC CG
models suggests that inclusion of a semiexplicit representation
of the solvent-lipid interfacial microstructure imparts addi-
tional interactions (ascribed to both hydrophobic and
hydrophilic forces) that may improve representation of both
pairwise and higher-order structural correlations in comparison
to implicit-solvent CG models. In addition, as none of the
VCG models offer complete recapitulation of all of the

Figure 8. Comparison of structural correlations in coarse-grained
DPPC lipid bilayers between mapped all-atom trajectories, multiscale
coarse-graining models (MS-CG), and relative entropy minimization
(REM) models; here, only DPPC-7V results are shown. The left and
right panels are lateral (i.e., xy-direction) and perpendicular (i.e., z-
direction) number density profiles between the listed sites. Each of
the profiles was averaged over both leaflets and used a bin size of 0.01
nm.

Table 2. Comparison of Properties for DPPC from the
Listed CG Models: Area Per Lipid (APL), Distance (or
Bilayer Thickness) between HG (dHG‑HG), T1-T2 (STT) and
HG-MG (SHM) Order Parameters, and Bending Modulus
(κbend) at 300 Kd

property REM-7V MSCG-7V AA exp

APL
(nm2)

0.49 0.46 0.51 0.48−0.52a

dHG‑HG
(nm)

4.3 4.4 4.4 4.3b

STT [SHM] 0.66 [0.75] 0.63 [0.76] 0.78 [0.48]
κbend
(kBT)

180.6 ± 5.8 80.4 ± 10.8 210.1 ± 6.9,
∼240c

aReference 77. bReference 40. cReference 78. dStandard errors within
the range of listed significant digits are shown.
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properties analyzed above, we offer some suggestions for their
potential uses. The REM-7V models may be the preferable CG
model when distinctions between lipid microstructure is an
essential factor, such as in the study of lipid phases. On the
other hand, in the context of membrane remodeling in which
physical properties, e.g., bending rigidity, are important, the
MSCG-7V and REM-7V models may be preferable for liquid-
disordered and liquid-ordered/gel-phase species, respectively.
It is also important to note that these recommendations are
presented on the basis of the currently reported strategy for
VCG model generation, and it is unclear if fundamental
limitations from the use of semiexplicit solvent sites prevent
the derivation of CG models with broader utility. Efforts to
both improve VCG model parametrization and to extend VCG
models to other lipid species will be necessary to address this
open question.
We anticipate several potential directions one may pursue to

further improve our VCG models, especially in the context of
highly structured lipid phases. One natural extension is to
consider a more expressive (and more computationally costly)
CG basis set. For example, Gay-Berne potentials have
previously been used to capture anisotropy in lipid tail
interactions.69,70 Alternatively, a return to higher resolution
models may mitigate the need for a higher-order interaction
basis if pairwise nonbonded interactions are preferred due to
computational cost. Finally, one intriguing direction is to adopt
the ultra-coarse-graining (UCG) framework, in which internal
states are associated with CG beads (to represent, for example,
metastable configurations within the collective of coarse-
grained atoms), in order to greatly enhance the expressiveness
of low-resolution CG models.32,71,72 For example, the ripple
phase of DPPC is known to have several types of regions,
which have been labeled the major arm, minor arm, and kink
region.53,73 Each of these regions adopts different character-
istics of the liquid-disordered and gel phase, as the ripple phase
is believed to be a metastable transition between these two
states.74 Conceivably, a UCG-type VCG model could be

constructed that discriminates states based on each of these
regions and allows for discrete state transitions and hence
modulation of the effective CG interactions. Taken one step
further, these types of UCG models may also enable systematic
investigation of multicomponent lipids, which are known to
have quite complex phase behavior.75,76 In both scenarios, we
predict that the use of virtual solvent sites will be essential to
represent solvent-mediated effects, including both hydrophilic
and hydrophobic interactions, and to potentially serve as a
signal for changes in the local chemical environment.

■ CONCLUSIONS

In this work, we introduce a new framework to generate highly
coarse-grained (CG) semiexplicit-solvent lipids through the
use of CG virtual particles. The central idea is to capture
hydrophobic and hydrophilic driving forces by representing the
solvent microstructure at the lipid bilayer interface as explicit
CG particles that remain bound to lipids. To parametrize these
CG models, we utilize two systematic bottom-up methods
known as multiscale coarse-graining (MS-CG) and relative
entropy minimization (REM), which we implement within a
hybrid procedure to generate our so-called virtual CG (VCG)
models. We demonstrate the utility of VCG models for two
lipid species, 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC), which are liquid-ordered and gel phase, respectively,
at room temperature. We show that the introduction of virtual
solvent particles greatly enhances the expressivity of our CG
models, which notably recapitulate a broad spectrum of lipid
properties, including self-assembly, morphological diversity,
and phases, that are difficult to preserve in other systematically
derived CG models.
As this work is the first study of VCG models, we should

briefly mention several aspects of the model generation
procedure that have room for additional improvement. The
detection of features that are represented by virtual sites, for
example, may benefit from classification algorithms and,

Figure 9. (a) Lateral view snapshots of DPPC-7V from the mapped all-atom (AA) configuration, the MSCG-7V model, and the REM-7V model.
Colors are consistent with Figure 1. (b) Comparison of amplitudes from the fast Fourier transform of the bilayer surface morphologies (taken with
reference to the MG bead [red] height) generated by each model.
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relatedly, dimensional reduction procedures. A more rigorous
procedure to parametrize these VCG models would also be of
interest, e.g., through additional development of the current
hybrid methodology or alternative procedures to generate
mappings and energetics. Nonetheless, our findings suggest
that the augmentation of CG models through our VCG
framework offers a powerful yet computationally inexpensive
means to faithfully represent implicit-solvent lipids. Given the
importance of solvent for the function of many biomacromo-
lecules, we anticipate that the VCG approach will have broad
applications, which warrant future investigation.
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