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Abstract: Lactation persistency and milk production are among the most economically important
traits in the dairy industry. In this study, we explored the association of over 6.1 million imputed
whole-genome sequence variants with lactation persistency (LP), milk yield (MILK), fat yield (FAT),
fat percentage (FAT%), protein yield (PROT), and protein percentage (PROT%) in North American
Holstein cattle. We identified 49, 3991, 2607, 4459, 805, and 5519 SNPs significantly associated
with LP, MILK, FAT, FAT%, PROT, and PROT%, respectively. Various known associations were
confirmed while several novel candidate genes were also revealed, including ARHGAP35, NPAS1,
TMEM160, ZC3H4, SAE1, ZMIZ1, PPIF, LDB2, ABI3, SERPINB6, and SERPINB9 for LP; NIM1K,
ZNF131, GABRG1, GABRA2, DCHS1, and SPIDR for MILK; NR6A1, OLFML2A, EXT2, POLD1,
GOT1, and ETV6 for FAT; DPP6, LRRC26, and the KCN gene family for FAT%; CDC14A, RTCA,
HSTN, and ODAM for PROT; and HERC3, HERC5, LALBA, CCL28, and NEURL1 for PROT%. Most
of these genes are involved in relevant gene ontology (GO) terms such as fatty acid homeostasis,
transporter regulator activity, response to progesterone and estradiol, response to steroid hormones,
and lactation. The significant genomic regions found contribute to a better understanding of the
molecular mechanisms related to LP and milk production in North American Holstein cattle.

Keywords: dairy cattle; extended lactation; genetic variants; genomewide association study; GWAS; QTL

1. Introduction

Milk production and composition are the most intensively selected traits in dairy cattle
breeding programs around the world due to their direct economic impact to the industry
and close link with nutritional properties [1,2]. Additionally, lactation persistency (LP),
defined as the ability of a cow to maintain milk production at a high level after reaching the
milk production peak, greatly impacts the economic return of the dairy sector [3]. Different
indicators of LP have been proposed over time [4–7], with heritability estimates ranging
from 0.14 to 0.24 [8,9]. Heritability estimates in Holstein cattle for milk (MILK), fat (FAT),
and protein (PROT) yields usually range from 0.24 to 0.52, and from 0.36 to 0.68 for fat
percentage (FAT%) and protein percentage (PROT%) [10–13].

Identifying genomic regions and candidate genes related to milk production traits
is crucial to better understand the biological mechanisms underlying their phenotypic
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expression and to optimize genomic evaluation of milk-related traits [14]. In this context,
genomewide association studies (GWAS) have been extensively performed in recent years
to find associations between genomic polymorphisms and economically important traits in
dairy cattle populations [15–17]. The large majority of these studies have been performed
based on medium-density genotyping arrays. However, the identification of variants
associated with target traits is highly dependent on the extent of linkage disequilibrium
(LD) between the SNPs and the causal variants. Thus, an alternative to increase the ability
to identify key genomic regions is the use of whole-genome sequence (WGS) data. More
accurate quantitative trait loci (QTL), causative mutations, and consequently, candidate
genes, are expected to be identified based on WGS [18]. Generating WGS data for a large
number of animals is still expensive, but a technique known as genotype imputation can
be employed to impute missing markers from animals genotyped with medium- or high-
density genotyping arrays to WGS with accuracies greater than 90–95% [19]. The potential
of imputed WGS (iWGS) data to discover genetic variants in GWAS has been shown in
previous studies of dairy cattle [20,21] and other species [22–24].

New genomic regions associated with milk production traits in dairy cattle have been
recently reported based on iWGS studies. For instance, Teissier et al. [25] identified 493 QTL
for MILK, FAT, PROT, FAT%, and PROT% in Holstein, Montbéliarde, and Normande cattle
breeds, demonstrating that a large number of genomic regions influence milk production
traits. Furthermore, meta-analyses studies have reported pleiotropic effects of genes related
to milk production traits and other dairy traits such as mammary system conformation
and milking temperament [26,27]. In this context, genomewide fine mapping has been well
explored for milk yield and milk solids [28–30]. However, to the best of our knowledge,
there are no reports of LP-related genes identified using WGS or iWGS.

The LP reflects the cow’s ability to maintain milk production after the lactation peak,
and may be an indicative of postcalving development of the mammary gland [31]. Improv-
ing LP can potentially increase cow health and welfare [9,32,33]. Despite the importance
of LP to dairy cattle production, few studies have investigated its genomic background.
Moreover, to our best knowledge, all previous studies used medium- to high-density SNP
panels [34–37] instead of WGS or iWGS. Therefore, the main objectives of this study were
to perform: (1) iWGS-based GWAS for LP, MILK, FAT, PROT, FAT%, and PROT% aiming
to identify key genomic regions and candidate genes influencing these traits in North
American Holstein cattle; and (2) functional genomic analysis to better understand the
biological pathways associated with LP and milk production traits.

2. Materials and Methods
2.1. Animals and Phenotypes

All datasets (i.e., pedigree, phenotypes, and genotypes) were provided by the Cana-
dian Dairy Network (CDN), a member of Lactanet (Guelph, ON, Canada). A range of
8264 (MILK) to 3447 (LP) animals with pseudo-phenotypes (de-regressed breeding values,
dEBVs), for MILK, FAT, PROT, FAT%, PROT%, and LP traits were used in this study
(Table 1). The phenotypes used in the genetic evaluations were obtained by the Dairy
Herd Improvement (DHI, Canada) field staff in milk recording and posterior laboratory
analyses. Official genetic evaluations for all evaluated traits and their associated reliabil-
ities were provided by CDN (www.cdn.ca, accessed on 30 October 2021) based on their
routine genetic evaluation models. The EBVs of LP were computed using the solutions
from the Canadian test-day model, where an EBV for milk yield at day 60 and day 280 was
calculated for each animal individually for each lactation (1, 2, and 3). Then, the EBVs were
standardized to relative breeding values and combined into a single EBV (mean of 100 and
standard deviation of 5), in which a higher EBV indicated a more persistent animal. The
dEBVs were computed as in VanRaden et al. [38], and only dEBVs with a reliability greater
than 0.28 (accuracies greater than 0.50) were kept for this study.

www.cdn.ca
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Table 1. Summary of the pseudo-phenotypes (de-regressed estimated breeding values, dEBVs)
for milk (MILK), fat yield (FAT), protein yield (PROT), fat percentage (FAT%), protein percentage
(PROT%), and lactation persistency (LP) in North American Holstein cattle.

Traits Sample Size
dEBVs Reliability

Mean Min Max SD Mean SD

MILK 8264 −1507.99 −58,315.8 89,084.9 13,218.18 63.3 9.5
FAT 8262 −57.62 −3416.98 5254.22 893.60 64.7 9.9

PROT 8263 −55.87 −2124.84 2479.37 526.11 60.2 8.9
FAT% 8262 0.27 −37.47 40.01 9.61 64.7 9.9

PROT% 8263 0.11 −17.91 17.96 4.86 60.2 8.9
LP 3447 95.68 −810.60 1008.61 486.37 36.7 6.8

Min: minimum; Max: maximum; SD: standard deviation.

2.2. iWGS and Genomic Quality Control

Imputed WGS data from 9131 Holstein cows, with 29,548,077 SNPs were available
for this study. Genotype imputation was performed first from medium-density SNP
panels (MD, 9131 cows and 56,955 or 60,914 SNPs; Illumina, San Diego, CA, USA) to
a high-density panel (HD, 311,725 SNPs; Illumina, San Diego, CA, USA); and secondly,
from HD to WGS, resulting in the iWGS datasets. The HD reference population had
2397 animals (from the North American Holstein population), and there were 1147 animals
with WGS data (from the 1000 Bull Genomes Project, which also included North American
Holstein animals). Imputation was performed using the FImpute software [39]. Imputation
accuracies greater than 95% have been achieved for Holstein and other North American
dairy cattle breeds [19,40].

Before imputation, SNPs with a call rate lower than 0.95, extreme departure from
Hardy–Weinberg equilibrium (p < 10−8), located in nonautosomal chromosomes or with
unknown position, and excess of heterozygosity greater than 0.15 were removed from the
dataset. Only SNPs present in both MD and HD files were retained in the MD dataset.
After quality control (QC), 38,955 SNPs remained in the MD dataset to be used in the
imputation analyses. A total of 297,114 SNPs (from the initial 311,725 SNPs) remained in
the HD panel dataset after QC. Subsequently, imputation from HD to WGS was performed
for all autosomal chromosomes.

After imputation to WGS, an additional QC was performed to remove the individuals
and SNPs with a missing rate greater than 0.1, minor allele frequency (MAF) lower than
0.01, and extreme deviation from Hardy–Weinberg equilibrium (p < 10−8; e.g., [41–43].
Finally, a range of 5,108,861 to 6,101,357 SNPs remained for the GWAS analyses of LP and
milk production traits. The PLINK software [44] was used to perform all the QC applied.
All these analyses were done following Chen et al. [21].

2.3. Association Analyses, Statistical Models, and Significance Testing

Association analyses were performed using the GCTA package [45], fitting a mixed
linear model (MLM), including a polygenic effect. Therefore, SNP effects were estimated
using the following statistical model:

y = 1µ+ Xb + Zu + e,

where y is a vector of pseudo-phenotypes (dEBVs); 1 is a vector of ones; µ is the overall
mean; b is the fixed effect of the SNP tested for association with each trait, X is a vector
containing the genotype score for the tested SNP; u is a vector of polygenic effects with
u ∼ N

(
0, Gσ2

u
)
, where G is the genomic-based relationship matrix (GRM) and σ2

u is the
additive genetic variance of polygenic effects; Z is the incidence matrix of u; and e is a
vector of residual effects with e ∼ N

(
0, Iσ2

e
)
, where I is an identity matrix and σ2

e is the
residual variance.
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To avoid double-fitting candidate SNPs [46], GRMs were alternatively constructed
by randomly sampling 50,000 SNPs from all chromosomes, except the one in which the
analyzed SNPs were located. After the GWAS analyses, all SNPs were ranked based on
their p-values and clumped according to their LD pattern (r2 > 0.90), as suggested by
Prive et al. [47]. The genomic inflation factor (λ) was calculated as the ratio of the median of the
observed distribution of the X2 statistic to the expected median (λ̂ = median

(
X2)/0.4549),

for which a 95% confidence interval (CI) of λ value was further derived.
To avoid the occurrence of excessive false-negative results by using the Bonferroni

adjustment, as a large number of variants were tested [48], we alternatively calculated the
threshold of significant testing as 0.05 divided by the number of independent chromosomal
segments (Me) at chromosome-wise levels [49]. Me is a function of the effective population
size (Ne) and chromosome length (L, in centi-Morgans—cM), and was calculated as [50]:

Me =
2NeL

log(NeL)

Ne was considered to be equal to 58 [51] and one cM equivalent to 1 Mb [52]. The
SNPs were considered as statistically significant if their − log10(P) was higher than the
chromosome-wide threshold.

2.4. Functional Genomic Analyses

The SNP coordinates were based on the ARS-UCD1.2 assembly of the cattle refer-
ence genome (GCA_002263795.2). The annotation information was obtained from the
National Center for Biotechnology Information (NCBI; www.ncbi.nlm.nih.gov, accessed
on 30 October 2021). The GALLO R package [53] was used to detect genes located within
±100 Kb of the significant SNPs and QTL regions previously cited in the Animal QTLdb [54].
The Variant Effect Predictor (VEP) tool from Ensembl [55] was utilized to identify novel
variants associated with the main peaks observed in the Manhattan plots. Functional en-
richment analyses of the candidate genes identified were performed using the DAVID plat-
form [56]. Gene network joint analyses were performed using the STRING database [57].

3. Results
3.1. GWAS

After QC and LD-based clumping [47], the remaining number of informative SNP
ranged from 1,673,052 (FAT) to 2,117,121 (LP). The Manhattan plots illustrate the chromo-
somal distribution of SNPs significantly associated with each trait (Figure 1). Additionally,
Manhattan plots with a y-axis truncated at a lower level for the milk production traits are
available as Figure S1 for a better visualization of peaks other than those found on BTA14.
For the milk production traits, the significant peaks were higher and sharper, suggesting
a more precise detection of narrower QTL regions distributed across the whole genome.
A strong association was found in BTA14 (Tables 2 and 3), with ARHGAP39, bta-mir-2308,
C14H8orf82, LRRC24, LRRC14, RECQL4, MFSD3, GPT, PPP1R16A, FOXH1, KIFC2, CYHR1,
TONSL, VPS28, ENSBTAG00000053637, SLC39A4, CPSF1, and ADCK5 harboring the most
significant SNPs for MILK, FAT, FAT%, and PROT%; and with MAF1, SHARPIN, CYC1,
GPAA1, EXOSC4, OPLAH, SPATC1, GRINA, PARP10, PLEC, and bta-mir-2309 being the
most significant candidate genes for PROT. Milk production traits were highly associated
with the diacylglycerol O-acyltransferase 1 (DGAT1) gene (Tables S1–S5), contributing to
the highest peak found in BTA14. For LP, significant SNPs were spread across various chro-
mosomes and with less-defined peaks. The most significant regions for LP were observed
in BTA28 (p-value = 5.28 × 10−7) and BTA18 (p-value = 8.56 × 10−7), in which, for the
BTA28 peak, the most significant SNPs were associated with ZMIZ1 and PPIF; and for the
BTA18 peak, with ARHGAP35, NPAS1, TMEM160, ZC3H4, and SAE1 (Table 2). Moreover,
the genes presented in Tables 2 and 3 were previously reported in the Animal QTLdb to
be associated with a large number of QTL regions. Most of these QTL are related to milk

www.ncbi.nlm.nih.gov
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production traits, but there are some others linked to reproduction, health, production, and
exterior (conformation and appearance).
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Figure 1. Manhattan plots of the GWAS results for milk yield (MILK), fat yield (FAT), fat percentage (FAT%), protein yield
(PROT), protein percentage (PROT%), and lactation persistency (LP) based on imputed whole-genome sequence data.
Statistically significant SNPs are represented by red dots.
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Table 2. Description of SNPs, most significant genes, and number of QTLs significantly associated with milk yield (MILK),
fat yield (FAT), and fat percentage (FAT%) in North American Holstein cattle.

TRAIT N 1 Chr 2 Position (bp) p-Value Genes (Within ±100 Kb) QTL 3 QTL_Type 4

MILK 8 1 141,861,836 2.69 × 10−6
ENSBTAG00000050235,
ENSBTAG00000045771,
ENSBTAG00000046015

1 Meat/Carcass

MILK 2 2 80,496,336 9.86 × 10−6 CAVIN2 0 -
MILK 6 3 26,833,328 2.52 × 10−6 CD58, ATP1A1 3 Reproduction
MILK 16 4 116,598,211 2.28 × 10−5 DPP6 4 Milk
MILK 871 5 93,545,576 3.62 × 10−12 MGST1, SLC15A5 357 Milk
MILK 579 6 86,348,368 2.27 × 10−10 MOB1B, DCK, SLC4A4 69 Milk

MILK 28 7 5,452,360 7.17 × 10−6 B3GNT3, FCHO1, MAP1S, UNC13A,
COLGALT1 10 Reproduction

MILK 24 8 36,048,320 1.30 × 10−7 bta-mir-2285bg, PTPRD 1 Meat/Carcass
MILK 91 9 61,950,514 1.39 × 10−7 SPACA1 0 -
MILK 20 10 87,491,769 5.67 × 10−8 GPATCH2L 1 Reproduction
MILK 769 11 103,587,292 5.24 × 10−8 NACC2, TMEM250, LHX3 4 Milk
MILK 1 12 72,628,679 1.02 × 10−5 ENSBTAG00000023309 0 -
MILK 37 13 6,976,693 2.95 × 10−10 ISM1, TASP1 15 Exterior

MILK 5564 14 465,742 5.98 × 10−196

ARHGAP39, bta-mir-2308, C14H8orf82,
LRRC24, LRRC14, RECQL4, MFSD3,

GPT, PPP1R16A, FOXH1, KIFC2,
CYHR1, TONSL, VPS28,

ENSBTAG00000053637, SLC39A4,
CPSF1, ADCK5

765 Milk

MILK 1012 15 54,030,861 2.13 × 10−9
POLD3, CHRDL2, RNF169, U6,

ENSBTAG00000054207,
ENSBTAG00000042319

3 Milk

MILK 308 16 64,637,424 9.60 × 10−9 SMG7, NCF2, ARPC5, APOBEC4 1 Health

MILK 35 18 56,457,916 5.07 × 10−6
IZUMO2, ENSBTAG00000053322,

MYH14, KCNC3, NAPSA,
ENSBTAG00000048283, NR1H2, POLD1

37 Milk

MILK 132 19 8,625,414 1.77 × 10−6
CCDC182, ENSBTAG00000045351,
ENSBTAG00000051336, MRPS23,

CUEDC1
15 Reproduction

MILK 1867 20 31,609,872 3.36 × 10−32

NIM1K, ENSBTAG00000042376,
ZNF131, ENSBTAG00000054352,

ENSBTAG00000052195,
ENSBTAG00000051111

27 Milk

MILK 27 21 33,151,073 6.13 × 10−6 ENSBTAG00000051111, ODF3L1,
CSPG4, SNX33 2 Health

MILK 6 22 21,859,149 4.59 × 10−6 bta-mir-2285am, U6, SUMF1 0 -
MILK 436 23 12,589,558 6.37 × 10−8 GLO1, DNAH8 0 -
MILK 6 24 21,019,665 7.60 × 10−6 MOCOS, ELP2, SLC39A6, RPRD1A 0 -
MILK 40 28 18,592,444 1.03 × 10−6 ZNF365 5 Milk
MILK 16 29 9,512,241 6.55 × 10−6 PICALM 9 Milk

FAT 30 1 126,143,578 8.14 × 10−8 ENSBTAG00000038111, PCOLCE2 3 Reproduction
FAT 46 2 67,353,179 3.19 × 10−6 DPP10, ENSBTAG00000050341, 0 -

FAT 15 4 28,468,986 5.19 × 10−8 POLR1F, ENSBTAG00000050341,
TMEM196 0 -

FAT 1580 5 93,627,511 8.00 × 10−26 SLC15A5 167 Milk
FAT 31 6 36,205,216 1.00 × 10−7 HERC3, PIGY, HERC5 202 Milk

FAT 18 7 21,215,200 5.74 × 10−6
GADD45B, LMNB2, TIMM13,

TMPRSS9, SPPL2B, LSM7, LINGO3,
PEAK3, OAZ1

23 Reproduction

FAT 8 8 42,176,903 6.89 × 10−6 ENSBTAG00000051041 7 Milk
FAT 26 10 86,711,416 4.16 × 10−6 JDP2, bta-mir-10162, BATF, FLVCR2 3 Health
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Table 2. Cont.

TRAIT N 1 Chr 2 Position (bp) p-Value Genes (Within ±100 Kb) QTL 3 QTL_Type 4

FAT 1275 11 95,801,995 2.86 × 10−9
NR6A1, bta-mir-181a-2, bta-mir-181b-2,

OLFML2A, U6, WDR38, RPL35,
ARPC5L, GOLGA1

1 Production

FAT 12 12 69,122,129 1.67 × 10−5 ENSBTAG00000051519, 5S_rRNA,
TGDS, GPR180, U2, SOX21 1 Exterior

FAT 322 13 54,614,993 1.43 × 10−7

DIDO1, TCFL5, COL9A3, OGFR,
MRGBP, NTSR1, SLCO4A1,

ENSBTAG00000051754,
ENSBTAG00000051012

3 Milk

FAT 4490 14 465,742 2.08 × 10−183

ARHGAP39, bta-mir-2308, C14H8orf82,
LRRC24, LRRC14, RECQL4, MFSD3,

GPT, PPP1R16A, FOXH1, KIFC2,
CYHR1, TONSL, VPS28,

ENSBTAG00000053637, SLC39A4,
CPSF1, ADCK5

765 Milk

FAT 181 15 74,165,872 1.09 × 10−9 ACCSL, ACCS, EXT2 6 Reproduction
FAT 260 16 61,287,081 9.53 × 10−9 CEP350, QSOX1 0 -

FAT 12 18 60,972,942 2.06 × 10−5 bta-mir-371, NLRP12, MGC157082,
ENSBTAG00000014953 50 Milk

FAT 35 19 34,952,167 1.85 × 10−6 NT5M, COPS3, FLCN, PLD6, MPRIP 7 Production
FAT 18 22 27,251,453 4.27 × 10−6 CNTN3 3 Health

FAT 13 23 11,102,541 3.20 × 10−6
ENSBTAG00000048838, PIM1,

ENSBTAG00000045936, TMEM217,
TBC1D22B

0 -

FAT 639 26 21,354,112 1.07 × 10−9 PKD2L1, SCD, bta-mir-12016, WNT8B,
SEC31B, NDUFB8, HIF1AN 296 Milk

FAT 6 28 34,969,442 7.51 × 10−6 ZMIZ1, PPIF, ZCCHC24 2 Production
FAT 20 29 49,353,940 1.30 × 10−6 TSPAN32, ASCL2, TH, INS, IGF2 8 Milk

FAT% 8 1 1,025,407 1.89 × 10−5

RCAN1, KCNE1,
ENSBTAG00000026259,

ENSBTAG00000051226, FAM243A,
SMIM11A, KCNE2

6 Milk

FAT% 47 2 128,607,054 8.79 × 10−7 STPG1, GRHL3, U6 2 Milk

FAT% 29 4 106,456,105 6.10 × 10−6

ENSBTAG00000049510,
ENSBTAG00000048380,

ENSBTAG00000053286, OR6V1,
ENSBTAG00000052365, PIP,

ENSBTAG00000050494

0 -

FAT% 2070 5 93,627,511 3.55 × 10−34 SLC15A5 167 Milk
FAT% 41 6 36,205,216 5.31 × 10−12 HERC3, PIGY, HERC5 202 Milk

FAT% 19 7 21,215,200 2.60 × 10−5
GADD45B, LMNB2, TIMM13,

TMPRSS9, SPPL2B, LSM7, LINGO3,
PEAK3, OAZ1

23 Reproduction

FAT% 11 8 88,461,261 8.40 × 10−8 GADD45G 10 Reproduction
FAT% 20 9 61,950,514 9.91 × 10−7 SPACA1 0 -
FAT% 3 10 77,587,306 4.17 × 10−6 FUT8 4 Meat/Carcass

FAT% 2365 11 105,500,024 6.21 × 10−6 COL5A1, FCN1, ENSBTAG00000054425,
OLFM1, ENSBTAG00000052600 15 Milk

FAT% 6 12 70,194,006 2.47 × 10−6 ENSBTAG00000047383 0 -

FAT% 161 13 47,813,637 3.64 × 10−7 GPCPD1, ENSBTAG00000054005,
ENSBTAG00000051557 7 Milk

FAT% 6274 14 465,742 2.82 × 10−317

ARHGAP39, bta-mir-2308, C14H8orf82,
LRRC24, LRRC14, RECQL4, MFSD3,

GPT, PPP1R16A, FOXH1, KIFC2,
CYHR1, TONSL, VPS28,

ENSBTAG00000053637, SLC39A4,
CPSF1, ADCK5

765 Milk

FAT% 789 15 51,993,618 9.14 × 10−9 CLPB, PDE2A, ENSBTAG00000050827 2 Production
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Table 2. Cont.

TRAIT N 1 Chr 2 Position (bp) p-Value Genes (Within ±100 Kb) QTL 3 QTL_Type 4

FAT% 714 16 61,059,994 7.32 × 10−10 FAM163A, TOR1AIP2, TOR1AIP1, U6 11 Reproduction

FAT% 33 17 65,230,489 1.97 × 10−6 KIAA1671, 7SK, ENSBTAG00000053952,
CRYBB3, CRYBB2 18 Reproduction

FAT% 215 19 35,457,767 2.41 × 10−7 KCNJ12, UTP18, MBTD1 0 -
FAT% 1293 20 29,991,518 2.95 × 10−23 ENSBTAG00000054476, MRPS30 179 Milk
FAT% 6 25 11,488,475 4.73 × 10−6 CPPED1 0 -

FAT% 8 26 51,156,653 5.45 × 10−6 INPP5A, ENSBTAG00000051139, BNIP3,
ENSBTAG00000050527 2 Reproduction

FAT% 3 27 36,400,257 1.07 × 10−5 5S_rRNA, GOLGA7, GINS4 27 Milk

FAT% 13 28 26,978,779 1.00 × 10−5 ADAMTS14, TBATA, SGPL1,
ENSBTAG00000054819, PCBD1 18 Milk

1 Number of genes present in each chromosome; 2 Chr = chromosome; 3 QTL = number of QTL previously reported in Animal QTLdb;
4 QTL_type = main type of QTL trait group previously identified.

Table 3. Description of SNPs, most significant genes, and number of QTLs significantly associated with protein yield
(PROT), protein percentage (PROT%), and lactation persistency (LP) in North American Holstein cattle.

TRAIT N 1 Chr 2 Position (bp) p-Value Genes (Within ±100 Kb) QTL 3 QTL_Type 4

PROT 236 1 117,208,394 1.39 × 10−7 CLRN1 1 Reproduction
PROT 12 2 1,465,207 8.33 × 10−6 AMER3 3 Reproduction

PROT 16 3 42,939,326 8.31 × 10−8 CDC14A, ENSBTAG00000054319,
ENSBTAG00000015759, RTCA 0 -

PROT 61 4 106,606,419 8.84 × 10−6
ENSBTAG00000050494, TAS2R39,

TAS2R40, GSTK1, TMEM139, CASP2,
CLCN1

0 -

PROT 72 5 91,526,305 5.46 × 10−6 PIK3C2G, ENSBTAG00000046178 23 Milk
PROT 65 6 86,795,218 4.49 × 10−7 SLC4A4 278 Milk
PROT 6 7 93,911,428 1.49 × 10−5 KIAA0825, SLF1 0 -
PROT 30 8 948,000 6.96 × 10−7 PALLD, 5S_rRNA 16 Production

PROT 21 10 10,774,713 1.37 × 10−6 CMYA5, SNORA72,
ENSBTAG00000049054 0 -

PROT 121 11 77,730,244 1.57 × 10−7 TDRD15 4 Production
PROT 8 12 77,353,297 8.04 × 10−6 TMTC4, ENSBTAG00000053717 0 -
PROT 489 13 33,556,356 2.02 × 10−9 ARHGAP12 5 Reproduction

PROT 1541 14 827,938 3.24 × 10−22

MAF1, ENSBTAG00000051469,
SHARPIN, CYC1, GPAA1, EXOSC4,

OPLAH, ENSBTAG00000015040,
SPATC1, GRINA, PARP10, PLEC,

bta-mir-2309

670 Milk

PROT 32 15 41,254,106 5.23 × 10−7 GALNT18 1 Milk

PROT 22 17 65,001,641 5.01 × 10−6 ENSBTAG00000054184, PIWIL3,
SGSM1, TMEM211 3 Reproduction

PROT 48 18 36,657,423 1.48 × 10−6 CYB5B, ENSBTAG00000052086, NFAT5 0 -

PROT 37 19 42,052,275 6.05 × 10−6
JUP, P3H4, FKBP10, NT5C3B, KLHL10,
KLHL11, ACLY, ENSBTAG00000050335,

TTC25, CNP, DNAJC7
2 Milk

PROT 7 21 10,379,606 2.70 × 10−6 ENSBTAG00000049351 8 Reproduction
PROT 30 22 23,112,217 3.53 × 10−6 CRBN, TRNT1, IL5RA 4 Milk
PROT 628 23 5,551,604 3.67 × 10−7 FAM83B 2 Milk
PROT 31 24 21,507,281 1.32 × 10−6 GALNT1, INO80C 0 -

PROT 9 25 10,257,579 5.43 × 10−6 ENSBTAG00000050716,
ENSBTAG00000050363, LITAF 2 Milk

PROT 8 26 15,946,065 5.94 × 10−6
PLCE1, NOC3L, U6, TBC1D12,

ENSBTAG00000051299,
ENSBTAG00000049089, HELLS, 7SK

13 Milk

PROT 15 28 1,284,944 1.04 × 10−6 RAB4A, CCSAP, ENSBTAG00000048654,
ENSBTAG00000050985 7 Milk
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Table 3. Cont.

TRAIT N 1 Chr 2 Position (bp) p-Value Genes (Within ±100 Kb) QTL 3 QTL_Type 4

PROT% 56 1 142,907,564 3.41 × 10−6 SLC37A1, PDE9A 98 Milk
PROT% 106 3 9,965,020 5.49 × 10−10 FCRL6, DUSP23, CRP 9 Milk
PROT% 39 4 9,165,220 3.80 × 10−6 ENSBTAG00000052341, MTERF1 0 -
PROT% 828 5 93,655,680 1.81 × 10−12 SLC15A5 172 Milk
PROT% 696 6 36,205,216 1.28 × 10−18 HERC3, PIGY, HERC5 202 Production
PROT% 6 7 104,076,138 1.10 × 10−5 U6 0 -

PROT% 16 8 1,868,612 2.86 × 10−6 MFAP3L, ENSBTAG00000051098,
AADAT 6 Reproduction

PROT% 61 9 26,103,917 4.56 × 10−8 TPD52L1, RNF217 0 -
PROT% 36 10 40,647,347 2.08 × 10−6 ENSBTAG00000034580 3 Reproduction
PROT% 1309 11 63,476,482 1.52 × 10−10 SLC1A4, CEP68, RAB1A 26 Milk

PROT% 5 12 76,184,908 2.08 × 10−5 UBAC2, GPR18, GPR183,
ENSBTAG00000038268 4 Milk

PROT% 100 13 46,366,498 2.96 × 10−7
ADARB2, ENSBTAG00000054346,

WDR37, IDI1, GTPBP4, U6, LARP4B,
ENSBTAG00000051962

15 Milk

PROT% 5949 14 465,742 2.75 × 10−122

ARHGAP39, bta-mir-2308, C14H8orf82,
LRRC24, LRRC14, RECQL4, MFSD3,

GPT, PPP1R16A, FOXH1, KIFC2,
CYHR1, TONSL, VPS28,

ENSBTAG00000053637, SLC39A4,
CPSF1, ADCK5

765 Milk

PROT% 2221 15 51,232,796 1.85 × 10−13 STIM1, RHOG, PGAP2, NUP98 14 Health
PROT% 749 16 60,724,655 2.34 × 10−9 SOAT1, AXDND1, NPHS2, TDRD5 4 Milk
PROT% 997 19 35,457,767 4.58 × 10−9 KCNJ12, UTP18, MBTD1 0 -

PROT% 2201 20 31,391,058 5.47 × 10−45

PAIP1, ENSBTAG00000049623,
C20H5orf34, TMEM267, CCL28,

HMGCS1, ENSBTAG00000048672,
NIM1K

72 Milk

PROT% 40 22 54,244,267 3.21 × 10−6 CLEC3B, EXOSC7, ZDHHC3, TMEM42,
GHRL, SEC13 3 Milk

PROT% 554 23 47,176,195 8.66 × 10−10 SLC35B3 0 -
PROT% 25 24 56,331,031 3.77 × 10−6 WDR7 0 -
PROT% 5 25 14,923,140 2.20 × 10−6 ENSBTAG00000051040 6 Milk

PROT% 281 26 23,088,324 2.56 × 10−8
GBF1, NFKB2, PSD, FBXL15, CUEDC2,

bta-mir-146b, MFSD13A, ACTR1A,
SUFU

40 Milk

PROT% 26 28 35,624,139 1.40 × 10−5
ENSBTAG00000048082, SFTPD, MBL1,

SFTPA1, ENSBTAG00000052322,
MAT1A, DYDC1

2 Health

PROT% 686 29 40,803,159 4.78 x10−10 ASRGL1, ENSBTAG00000042287,
SCGB1A1, AHNAK 19 Milk

LP 2 4 19,848,832 1.74 × 10−6 THSD7A 2 Milk
LP 23 6 104,139,800 6.86 × 10−6 STK32B, 5S_rRNA, CYTL1 8 Milk

LP 3 7 2,852,946 9.20 × 10−6
ENSBTAG00000051744,
ENSBTAG00000052719,
ENSBTAG00000049190

1 Milk

LP 3 8 59,108,254 1.81 × 10−6 ENSBTAG00000042498,
ENSBTAG00000049991, FAM205C 0 -

LP 2 9 11,532,901 2.65 × 10−5 RIMS1 1 Reproduction

LP 5 12 68,955,769 1.48 × 10−5
ENSBTAG00000054671,

ENSBTAG00000051263, DCT,
ENSBTAG00000051519, 5S_rRNA

8 Milk

LP 0 14 10,086,164 9.93 × 10−6 - 17 Milk
LP 2 15 17,222,016 1.88 × 10−5 ELMOD1, SLN 3 Reproduction
LP 0 17 35,605,687 1.69 × 10−5 - 0 -

LP 26 18 54,117,753 8.56 × 10−7 ARHGAP35, NPAS1, TMEM160,
ZC3H4, SAE1 4 Production
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Table 3. Cont.

TRAIT N 1 Chr 2 Position (bp) p-Value Genes (Within ±100 Kb) QTL 3 QTL_Type 4

LP 25 19 36,768,672 5.36 × 10−6

DLX4, ENSBTAG00000045805, U6,
ENSBTAG00000053450,

ENSBTAG00000049677, KAT7,
ENSBTAG00000052793

20 Milk

LP 4 21 31,125,876 2.14 × 10−5 UBE2Q2, ENSBTAG00000048528,
FBXO22, ENSBTAG00000043187 0 -

LP 3 22 48,814,749 1.19 × 10−6 POC1A, DUSP7 4 Milk

LP 16 23 15,502,651 1.39 × 10−5 FOXP4, MDFI, TFEB, PGC, FRS3,
ENSBTAG00000038916, TOMM6 3 Milk

LP 15 26 51,053,430 5.16 × 10−6 INPP5A, ENSBTAG00000054967 0 -
LP 2 27 35,948,511 3.46 × 10−5 ZMAT4 1 Meat/Carcass
LP 2 28 34,869,857 5.28 × 10−7 ZMIZ1, PPIF 5 Milk
LP 1 29 22,382,652 2.17 × 10−5 SLC17A6 0 -

1 Number of genes identified in each chromosome; 2 Chr = chromosome; 3 QTL = number of previously QTL reported in Animal QTLdb;
4 QTL_type = main type of QTL trait group previously identified.(a).

3.1.1. GWAS for Milk Yield, Fat Yield, and Fat Percentage

For MILK, 3991 SNPs, located on 25 chromosomes, were significantly associated with
1098 genes within ±100 Kb genomic regions. The genomic regions located on BTA5, BTA6,
BTA13, BTA14, and BTA20 were the most significant ones (p-value < 10−10), where MGST1
and SLC15A5 (BTA5); MOB1B, DCK, and SLC4A4 (BTA6); ISM1 and TASP1 (BTA13); and
NIM1K, ZNF131, ENSBTAG00000042376, ENSBTAG00000054352, ENSBTAG00000052195,
and ENSBTAG00000051111 (BTA20), were the top candidate genes associated with those
regions, in addition to those already mentioned above for the BTA14. For FAT, 2607 SNPs,
located on 21 chromosomes, were significantly associated with 989 genes. Of those,
the key candidate genes were SLC15A5 (BTA5); NR6A1, bta-mir-181a-2, bta-mir-181b-2,
OLFML2A, WDR38, RPL35, ARPC5L, and GOLGA1 (BTA11); ACCSL, ACCS, and EXT2
(BTA15); CEP350 and QSOX1 (BTA16); and PKD2L1, SCD, bta-mir-12016, WNT8B, SEC31B,
NDUFB8, and HIF1AN (BTA26), where the genomic regions located on BTA5, BTA11,
BTA14, BTA15, BTA16, and BTA26 were the most significant ones (p-value < 10−9). Fur-
thermore, for FAT%, 4459 SNPs, located on 22 chromosomes, were significantly associated
with 2016 genes within ±100 Kb genomic regions. For this trait, the chromosomes with the
most significant regions (p-value < 10−10) were BTA5, BTA6, BTA11, BTA14, BTA16, and
BTA20. The top candidate genes located in those regions were SLC15A5 (BTA5); HERC3,
PIGY, and HERC5 (BTA6); GADD45G (BTA11); FAM163A, TOR1AIP2, TOR1AIP1 (BTA16);
and ENSBTAG00000054476 and MRPS30 (BTA20). The top candidate genes located on
BTA14 for MILK, FAT, and FAT% were ARHGAP39, bta-mir-2308, C14H8orf82, LRRC24,
LRRC14, RECQL4, MFSD3, GPT, PPP1R16A, FOXH1, KIFC2, CYHR1, TONSL, VPS28, ENS-
BTAG00000053637, SLC39A4, CPSF1, and ADCK5. VEP analysis confirmed FOXH1 as a
gene containing variants strongly related to MILK, FAT, and FAT%. Furthermore, VEP
analysis indicated OLFML2A (BTA11) as a possible novel candidate variant associated with
FAT (Table S6).

3.1.2. GWAS for Protein Yield, Protein Percentage, and Lactation Persistency

A total of 805 SNPs, located on 24 chromosomes, were significantly associated with 898
genes for PROT. Of those, BTA3, BTA13, and BTA14 contained the most significant regions
(p-value < 10−8), where CDC14A, ENSBTAG00000054319, ENSBTAG00000015759, and RTCA
(BTA3); ARHGAP12 (BTA13); and MAF1, ENSBTAG00000051469, SHARPIN, CYC1, GPAA1,
EXOSC4, OPLAH, ENSBTAG00000015040, SPATC1, GRINA, PARP10, PLEC, and bta-mir-
2309 (BTA14) were the candidate genes related to the most significant SNPs identified for
PROT. Moreover, for PROT%, 5519 SNPs were located on 24 chromosomes, significantly
related to 2739 genes within ±100 Kb genomic regions. The top significant genes for PROT%
(p-value < 10−12) were SLC15A5 (BTA5); HERC3, PIGY, and HERC5 (BTA6); ARHGAP39,
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bta-mir-2308, C14H8orf82, LRRC24, LRRC14, RECQL4, MFSD3, GPT, PPP1R16A, FOXH1,
KIFC2, CYHR1, TONSL, VPS28, ENSBTAG00000053637, SLC39A4, CPSF1, and ADCK5
(BTA14); STIM1, RHOG, PGAP2, NUP98 (BTA15); and PAIP1, ENSBTAG00000049623,
C20H5orf34, TMEM267, CCL28, HMGCS1, ENSBTAG00000048672, and NIM1K (BTA20).
Finally, for LP, 49 SNPs located on 18 chromosomes were significantly associated with 85
genes (Table S7). The most significant genes (p-value < 10−7) were located on BTA18 and
BTA28, represented by ARHGAP35, NPAS1, TMEM160, ZC3H4, SAE1 (BTA18); and ZMIZ1
and PPIF (BTA28) (Table 3). The VEP analysis indicated the genes GRINA and PARP10 for
PROT, CCL28 for PROT%, and the genes ZC3H4 and ZMIZ1 for LP (Table S6), all of which
were located in the main observed GWAS peaks.

3.2. Commonly Identified Genes for Two or More Traits

Similar genomic regions were detected to be associated with different LP and milk
production traits (Figure 2), indicating potential pleiotropic effects. LP presented com-
mon candidate genes with MILK, FAT, FAT%, and PROT%, where 15 candidate genes
were concurrently associated with LP and the mentioned production traits: CXCL13 and
LDB2 (MILK); ZMIZ1, bta-mir-371, NLRP12 and PPIF (FAT); INPP5A (FAT%); and SER-
PINB6, SERPINB9, IGF2BP1, and DLX4 (PROT%). Additionally, LP, FAT%, and PROT%
showed common candidate genes between the three traits simultaneously: ABI3, GNGT2,
B4GALNT2, and PHOSPHO1, demonstrating their importance not only in the genetic
background of milk solids production, but also in the duration of the lactation peak.

As a result of the high genetic correlation existing between the milk production traits,
98 genes were commonly associated with the five milk production traits (MILK, FAT, FAT%,
PROT, and PROT%), as demonstrated in Figure 2. All those common genes were located
on BTA14, reinforcing the impact of this genomic region on milk production traits. The
candidate genes located closer to genomic region linked to the top SNP found (BTA14:
465,742 bp) among MILK, FAT, FAT%, and PROT% were PPP1R16A, FOXH1, KIFC2, and
CYHR1. In addition, the closer common genes related to the top SNP found for PROT
(BTA14, BP= 827,938) were GRINA, PARP10, and PLEC.

The gene interaction network analysis revealed a strong connection between LP
and milk production traits (Figure 3). Genes such as ARHGAP35, TMEM160, and SAE1
(BTA18), which were highly associated with LP, demonstrated to be linked with ARHGAP39,
PPP1R16A, FOXH1, and CYHR1 (BTA14), which were significantly associated with milk
production. Three big clusters were formed rounding ARHGAP39, TONSL, ADCK5, rein-
forcing that the molecular interactions among these three genes seem to be related to the
control of the gene expression and protein regulation of milk traits.

3.3. Functional Analyses of Candidate Genes

Gene ontology (GO) enrichment analyses were performed to better understand the
functional role of the candidate genes identified. GO terms for 14 biological processes and
12 molecular functions were significantly enriched, with 44 genes for MILK, 86 genes for
FAT, and 33 for FAT% (Table 4). Furthermore, GO terms for 26 biological processes and nine
molecular functions were significantly related to 41 genes for PROT, 109 genes for PROT%,
and 6 for LP (Table 5). Five GO terms were found to be related to two or more traits. The
GO:1903494 term associated with the response to dehydroepiandrosterone, GO:1903496
linked to the response of 11-deoxycorticosterone, and GO:0032355 associated with the
response to estradiol were commonly identified for MILK, PROT, and PROT%. In addition,
GO:0015125, related to bile acid transmembrane transporter activity, was identified for FAT
and FAT%; and GO:0005149, which is related to the interleukin-1 receptor binding, was
associated with FAT% and PROT%.

The following 26 genes were identified as influencing the phenotypic expression of
two or more traits: CSN1S1, CSN1S2, CSN2, CSN3, CHD7, KCNMB4, SLCO1A2, SLCO1B3,
SLCO1C1, SLCO2B1, HCK, PTK2, SCX, DDX1, TNFRSF1A, LTBR, IL1A, IL1B, IL1F10, IL1RN,
IL36RN, IL36A, IL36B, IL36G, IL37, and SERPINB9. Furthermore, some genes were repeated
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in certain GO terms for the same trait, including the GABR, CSN, and GST gene families,
CLIC5, and MGST1 (MILK); EYA3, DHCR7, PPDPF, and GADD gene family (FAT); the LYSB
gene and the BPI, LYZ, and CSN gene families (PROT), and C1QBP, ID2, JMJD6, LALBA,
MAGOHB, PABPC1, PRLR, PRPF4B, PUF60, SRSF2, SRSF7, STAT5B, WNT11, and ZPR1
genes, as well as CSN, SLC, and RBM gene families (PROT%).
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Figure 3. Gene interaction network for the central genes associated with lactation persistency, milk yield, fat yield, fat
percentage, protein yield, and protein percentage in North American Holstein cattle.

Table 4. Most significantly enriched gene ontology (GO) terms of candidate genes for milk yield (MILK), fat yield (FAT),
and fat percentage (FAT%) in North American Holstein cattle.

Trait GO Term p-Value Genes

MILK GO:0004890 GABA-A receptor activity 2.4 × 10−4 GABRA2, GABRG1, GABRA4, GABRB1,
and GABRD

MILK GO:0006749 Glutathione metabolic process 6.7 × 10−4 OPLAH, ALDH5A1, CLIC5, GSTA2, GSTA3,
GSTA4, GSTK1, and MGST1

MILK GO:0005230 Extracellular ligand-gated ion
channel activity 7.9 × 10−4 GABRA2, GABRG1, GABRA4, GABRB1,

and GABRD

MILK GO:1903496 Response to
11-deoxycorticosterone 1.4 × 10−3 CSN1S1, CSN1S2, CSN2, and CSN3

MILK GO:0007605 sensory perception of sound 3.2 × 10−3
BARHL1, EYA4, FBXO11, NIPBL, USH1G, CLIC5,

CHD7, COL2A1, DCDC2, MYH14, SNAI2,
SLC1A3, and TUB

MILK GO:0005513 Detection of calcium ion 7.0 × 10−3 CALM2, CALM3, KCNMB4, and STIM1

MILK GO:0043950 Positive regulation of
cAMP-mediated signaling 7.0 × 10−3 CXCL10, CXCL11, CXCL9, and PTGIR

MILK GO:0003273 Cell migration involved in
endocardial cushion formation 8.3 × 10−3 DCHS1, NOTCH1, and SNAI2

MILK GO:0071479 Cellular response to ionizing
radiation 9.4 × 10−3 FBXO4, RAD1, CLOCK, EEF1D, SPIDR,

and SNAI2
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Table 4. Cont.

Trait GO Term p-Value Genes

MILK GO:0004364 Glutathione transferase
activity 1.0 × 10−3 CLIC5, GSTA2, GSTA3, GSTA4, GSTA5, GSTK1,

and MGST1

FAT GO:0015125 Bile acid transmembrane
transporter activity 4.1 × 10−4 SLCO1A2, SLCO1B3, SLCO1C1, and SLCO2B1

FAT GO:0055089 Fatty acid homeostasis 5.4 × 10−4 POLD1, DGAT1, GOT1, GPAM, and INS

FAT GO:0030154 Cell differentiation 6.1 × 10−4

DHCR7, EHF, ETV6, EYA3, HCK, SPIB, CREBL2,
EXT2, GADD45B, GADD45G, MGP, NR5A1,
PPDPF, PRRC2B, PTK2, PTK6, RGS19, SCX,
SFRP5, STYK1, SNAPC4, SRMS, TRAPPC9,

and TTF1

FAT GO:0007275 Multicellular organism
development 2.4 × 10−3

ALX4, DDX1, EYA3, SUFU, TNFRSF1A,
TNFRSF6B, GADD45B, GADD45G, LBH, LTBR,
PPDPF, PLCZ1, SFRP5, STRBP, SPRED2, TPI1,

TRIM5,4 and ZFAT

FAT GO:0000978

RNA polymerase II core
promoter proximal region

sequence-specific DNA
binding

2.7 × 10−3

AEBP2, EHF, ETV6, FEZF2, FOSL2, JDP2, MAFA,
MXD1, MEIS1, NACC2, SOX18, TLX1, ASCL2,
BHLHE41, BATF, CHD7, FOXJ2, GMEB2, HSF1,

HHEX, NR1H2, NR6A1, OTX1, TP73, and ZGPAT

FAT GO:0042127 Regulation of cell proliferation 4.3 × 10−3
DHCR7, HCK, NDRG1, NKX2-3, SRC, TNFRSF1A,
TNFRSF6B, APOBEC1, GUCY2C, HHEX, LTBR,

PTGS1, PTK2, PTK6, STYK1, and SRMS

FAT GO:0016509
Long-chain-3-hydroxyacyl-

CoA dehydrogenase
activity

6.5 × 10−3 HADHA, HADHB, and HSD17B12

FAT GO:0036094 Small molecule binding 7.2 × 10−3 LCN2, LCN9, PAEP, and RBP4
FAT GO:0001671 ATPase activator activity 9.9 × 10−3 AHSA2, ATP1B3, TOR1AIP1, and TOR1AIP2

FAT% GO:0005149 Interleukin-1 receptor binding 8.5 × 10−8 IL1A, IL1B, IL1F10, IL1RN, IL36RN, IL36A, IL36B,
IL36G, and IL37

FAT% GO:0007585 Respiratory gaseous exchange 7.6 × 10−4 PBX3, TLX3, CHST11, FUT8, GRIN1, SFTPB,
and SFTPD

FAT% GO:0015125 Bile acid transmembrane
transporter activity 9.1 × 10−4 SLCO1A2, SLCO1B3, SLCO1C1, and SLCO2B1

FAT% GO:0015459 Potassium channel regulator
activity 3.6 × 10−3 DPP6, LRRC26, KCNMB4, KCNIP4, KCNE1,

KCNE2, and KCNE3

FAT% GO:0005031
Tumor necrosis

factor-activated receptor
activity

5.1 × 10−3 RELT, TNFRSF1A, TNFRSF1B, TNFRSF8, LTBR,
and NGFR

Table 5. Most significantly enriched gene ontology (GO) terms of candidate genes for protein yield (PROT), protein
percentage (PROT%), and lactation persistency (LP) in North American Holstein cattle.

Trait GO Term p-Value Genes

PROT GO:0008289 Lipid binding 1.7 × 10−5
BPIFA1, BPIFA3, BPIFA2A, BPIFA2B, BPIFA2C,

BPIFB1, BPIFB2, BPIFB3, BPIFB4, BPIFB6, ACBD7,
and PLTP

PROT GO:0016998 Cell wall macromolecule
catabolic process 6.9 × 10−5 LYSB, LYZ1, LYZ3, LYZ2, and LYZ

PROT GO:0003796 Lysozyme activity 8.0 × 10−5 LYSB, LYZ1, LYZ3, LYZ2, and LYZ

PROT GO:0042742 Defense response to bacterium 1.2 × 10−4
DEFB122, DEFB122A, CSN1S2, DEFB116,

DEFB119, DEFB123, DEFB124, DEFB119, HSTN,
LYZ1, and NOD2

PROT GO:0019835 Cytolysis 1.7 × 10−4 LYSB, LYZ1, LYZ3, LYZ2, and LYZ

PROT GO:1903496 Response to
11-deoxycorticosterone 2.4 × 10−4 CSN1S1, CSN1S2, CSN2, and CSN3

PROT GO:0050829 Defense response to
Gram-negative bacterium 8.5 × 10−4 BPI, LYSB, LYZ1, LYZ3, LYZ2, and LYZ
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Table 5. Cont.

Trait GO Term p-Value Genes

PROT GO:0045087 Innate immune response 2.7 × 10−3
BPIFA1, BPIFB1, BPIFB3, CYLD, HCK, DEFB122,

DEFB122A, DEFB116, DEFB119, DEFB123,
DEFB124, NOD2, TRIM10, TRIM15, and TRIM31

PROT GO:0032570 Response to progesterone 3.4 × 10−3 CSN1S1, CSN1S2, CSN2, and CSN3
PROT GO:0032355 Response to estradiol 3.4 × 10−3 CSN1S1, CSN1S2, CSN2, and CSN3
PROT GO:0007586 Digestion 6.4 × 10−3 LYZ1, LYZ3, LYZ2, and UCN3

PROT GO:0045028 G-protein coupled purinergic
nucleotide receptor activity 6.4 × 10−3 GPR171, GPR87, P2RY12, and P2RY14

PROT GO:0050830 Defense response to
Gram-positive bacterium 9.2 × 10−3 H2B, LYSB, LYZ1, LYZ3, LYZ2, and LYZ

PROT% GO:0005149 Interleukin-1 receptor binding 9.0 × 10−8 IL1A, IL1RN, IL36A, IL36B, IL37, IL1B, IL36G,
IL36RN, IRAK4, and IL1F10

PROT% GO:1903496 Response to
11-deoxycorticosterone 3.5 × 10−4 CSN1S2, CSN3, LALBA, CSN1S1, and CSN2

PROT% GO:1903494 Response to
dehydroepiandrosterone 3.5 × 10−4 CSN1S2, CSN3, LALBA, CSN1S1, and CSN2

PROT% GO:0005452 Inorganic anion exchanger
activity 3.8 × 10−4 SLC22A12, SLC4A8, SLC22A6, SLC22A8, SLC4A4,

SLC22A10, SLC4A5, SLC22A9, and SLC22A11

PROT% GO:0032355 Response to estradiol 2.0 × 10−3 STAT3, CSN1S2, CSN3, LALBA, CSN1S1,
and CSN2

PROT% GO:0015347
Sodium-independent organic

anion transmembrane
transporter activity

2.2 × 10−3 SLC22A12, SLC22A6, SLCO4A1, SLCO2B1,
SLC22A8, SLC22A10, SLC22A9, and SLC22A11

PROT% GO:0046983 Protein dimerization activity 2.6 × 10−3 TFAP2A, PPP3CA, STAT5B, HEY1, MYC, ID2,
TCF23, STAT3, ANO4, and E2F6

PROT% GO:0043252 Sodium-independent organic
anion transport 3.0 × 10−3 SLC22A12, SLC22A6, SLCO4A1, SLCO2B1,

SLC22A8, SLC22A10, SLC22A9, and SLC22A11

PROT% GO:0043153 Entrainment of circadian clock
by photoperiod 3.3 × 10−3 PPP1CB, PER1, RBM4, ID2, CRY1, RBM4B,

and TP53

PROT% GO:0007595 Lactation 3.9 × 10−3 STAT5A, STAT5B, VDR, NEURL1, ATP2B2, CSN3,
CSN2, and PRLR

PROT% GO:0007259 JAK-STAT cascade 4.8 × 10−3 STAT5A, STAT5B, CTR9, IL31RA, PRLR,
and SOCS5

PROT% GO:0030282 Bone mineralization 5.1 × 10−3 KLF10, CLEC3B, WNT11, PKDCC, RSPO2,
FBXL15, IFITM5, and LGR4

PROT% GO:0048013 Ephrin receptor signaling
pathway 6.2 × 10−3 EPHB6, EFNA1, EFNA3, EFNB3, NCK2, EFNA4,

and PTK2

PROT% GO:0010628 Positive regulation of gene
expression 6.4 × 10−3

CRP, SEC16B, OSR2, RAMP2, PRKAA1, ODAM,
ROCK2, RBM4B, SCX, SERPINB9, LRRC32,

WNT11, FGF8, FABP4, ID2, KIT, RPS3, DROSHA,
STAP1, KRAS, APOB, IL7R, ZBTB7B, and ZPR1

PROT% GO:0008380 RNA splicing 6.5 × 10−3
RBFOX2, MTERF3, PRPF4B, MAGOHB, JMJD6,

RBM4, RBMXL2, PUF60, C1QBP, SRSF2, LUC7L3,
PABPC1, SRSF7, and ZPR1

PROT% GO:0005344 Oxygen transporter activity 6.9 × 10−3 MB, HBE2, HBE1, HBE4, HBB, and CYGB

PROT% GO:0006397 mRNA processing 7.1 × 10−3

RNASEL, RBFOX2, DDX1, PRPF4B, HNRNPLL,
MAGOHB, JMJD6, RBM4, RBMXL2, ALKBH5,
PUF60, C1QBP, SRSF2, PABPC1, AURKAIP1,

SRSF7, and ZPR1

PROT% GO:0048704 Embryonic skeletal system
morphogenesis 7.8 × 10−3 OSR2, COL11A1, PCGF2, HOXB4, HOXB3,

HOXB2, HOXB1, HOXB7, and DSCAML1

LP GO:0030334 Regulation of cell migration 1.3 × 10−1 ABI3 and LDB2

LP GO:1903955 Positive regulation of protein
targeting to mitochondrion 1.5 × 10−1 ELMOD1 and SAE1

LP GO:0004867 Serine-type endopeptidase
inhibitor activity 1.9 × 10−1 SERPINB6 and SERPINB9
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4. Discussion

The majority of previous GWAS carried out to search for genomic regions associated
with economically important traits in dairy cattle have been conducted using MD or
HD SNP panel data. However, iWGS can increase the statistical power for detecting
QTLs and causative variants for complex traits [58]. Based on iWGS-based GWAS, we
identified novel genomic regions of interest, revealing novel candidate genes (ARHGAP35,
NPAS1, TMEM160, ZC3H4, SAE1, ZMIZ1, PPIF, LDB2, ABI3, SERPINB6, and SERPINB9
for LP; NIM1K, ZNF131, GABRG1, GABRA2, DCHS1, and SPIDR for MILK; NR6A1, EXT2,
POLD1, GOT1, and ETV6 for FAT; DPP6, LRRC26, and the KCN gene family for FAT%;
CDC14A, RTCA, HSTN, and ODAM for PROT; and HERC3, HERC5, LALBA, and NEURL1
for PROT%), and confirmed previously reported associations. The fairly high number
of novel candidate genes for LP and milk production traits supports the use of a denser
mapping of the genome for GWAS purposes, as well as the polygenic nature of these traits.
Liu et al. [59] evaluating 1220 Holstein cows with a SNP panel containing 124,743 markers
identified 10 highly significant SNPs associated with FAT and PROT. However, those
authors did not detect any significant SNP related to milk yield, even with a moderate
number of markers involved in the GWAS, reinforcing the argument that the use of WGS
can substantially contribute to this type of analysis. For instance, numerous QTLs were
found for MILK (146), FAT (152), and PROT (166) in five French and Danish dairy breeds
when using WGS data [18]. Using iWGS-based GWAS, we identified multiply genomic
regions affecting LP, a complex trait with few known QTLs. Therefore, our findings greatly
contribute to elucidating the genetic background of LP in Holstein cattle.

4.1. Candidate Genes for Lactation Persistency

Among the traits evaluated in this current study, LP is the less explored one, and to our
best knowledge, this is the first iWGS-based GWAS for LP, which presents a good opportu-
nity to explore novel genomic regions influencing its phenotypic expression. Despite the
fact that the peaks were not well defined due to the highly polygenic nature of LP [7], BTA18
and BTA28 were the ones with the most significant regions. The genes highly associated to
LP on BTA18 were ARHGAP35, NPAS1, TMEM160, ZC3H4, and SAE1 and on BTA28 were
ZMIZ1 and PPIF. None of these genes were previously linked to LP. Interestingly, most of
these genes mentioned above associated with LP were previously linked to fertility traits in
dairy cattle [60–62], indicating that fertility and LP are genetically correlated in dairy cattle
populations [63]. Other studies have also demonstrated the genetic relationship between
reproductive traits and LP in dairy cattle. For instance, Muir et al. [64] showed that heifers
with difficult first calving tended to have more persistent first lactations and lower peak
yields, indicating an antagonistic relationship between calving ease and LP. More recently,
Yamazaki et al. [9] reported that differences in LP are related to a cow’s ability to conceive
after the second calving. Therefore, the best bulls for improving female fertility after the
second calving may differ with the production system and herd milk production, given that
a strong genetic correlation was verified between LP and fertility traits in Japanese Holstein
cattle [9]. Another important finding was the gene network connection among ARHGAP35,
TMEM160, and SAE1 (BTA18) and ARHGAP39, PPP1R16A, FOXH1, and CYHR1 (BTA14),
as demonstrated in Figure 3. No other study has reported a close network interaction
between some of the main genes responsible for LP and milk production traits, indicating
potential pleiotropic effects (Figure 3 and Supplemental Figure S2). Further studies should
investigate the connection between LP and milk production traits at the molecular level.
Evidence of interaction between LP and milk production traits were previously reported
by Jakobsen et al. and Yamazaki et al. [65,66], where moderate to high genetic correlations
were observed between these two trait groups.

Three GO terms were significantly enriched for LP, GO:0030334 (regulation of cell
migration), GO:19003955 (positive regulation of protein targeting to mitochondrion), and
GO:0004867 (serine-type endopeptidase inhibitor activity). The genes linked to the GO
terms ABI3 and LDB2 (GO:0030334), SAE1 (GO:1903955), and SERPINB6 and SERPINB9
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(GO:0004867) could also be considered as novel candidate genes and its molecular role
related to LP should be deeper investigated. The ABI3—ABI gene family member 3 was
significantly associated in our study not only with LP but also FAT% and PROT% (Figure 2),
confirming its influence in the phenotypic expression of bovine milk-related traits. The
ABI3 gene was previously related to milk pregnancy-associated glycoproteins in Holstein
cattle but its molecular role in dairy cattle has been little explored [67]. SAE1, which also
appear as one of the most significant genes for LP, was previously associated with lactation
evolution in mice, indicating that this gene plays an important role in the expression of
lactation in other mammalian species [68]. SERPINB6 and SERPINB9 are genes belonging
to the serpins superfamily of protease inhibitors, which uses a conformational change
to inhibit target enzymes. They are central genes controlling many proteolytic cascades,
including important mammalian coagulation pathways [69]. Both genes were formerly
associated with milk production traits in buffaloes [70] and somatic cell count in Jersey
cows and clinical ketosis lactation in Holstein cattle [71,72], but this is the first time that
SERPINB6 and SERPINB9 have been associated with LP. Due to its relationship with other
dairy cattle traits, its molecular role in the expression of LP should be further investigated.

4.2. Candidate Genes for Milk Yield

Several powerful associations detected here support previously reported genomic
regions for milk production traits. For instance, the region containing highly significant
SNPs on BTA14 for MILK, including ARHGAP39, PPP1R16A, FOXH1, KIFC2, CYHR1,
and TONSL was reported in other studies [15,37,73,74]. Atashi et al. [74] reported this
region on BTA14 to be associated with 305-day milk yield and peak yield in dairy cows.
Other relevant genomic regions were found on BTA20, BTA5, and BTA6, also containing
genes previously identified as potentially influencing milk production. MGST1, SLC15A5
(BTA5); MOB1B, DCK, SLC4A4 (BTA6) and NIM1K, ZNF131 (BT20) can be highlighted for
its strong significance with MILK (Table 2). Raven at al. [75] reported the link between
MGST1 and milk production in multibreed cattle. Additionally, it is noteworthy that
the SLC4A4 gene had an important function in the production of MILK in a study with
Holstein cattle in the USA [73]. SLC4A4 is a solute transporter, belonging to one of the
major transporter superfamilies mostly involved in the active transport of glucose. Glucose
uptake by mammary epithelial cells is a crucial stage in milk synthesis, and therefore,
directly influences MILK [76]. Furthermore, NIM1K and ZNF131 have been reported to
prolong lactation period culminating in higher milk production levels in Canadian dairy
cattle [36]. Banos et al. [77] reported that ZNF131 was expressed in the milk transcriptome
and the mammary gland of dairy sheep, highlighting the impact of this gene in the process
of molecular transcription of regions related to sheep milk production. The importance of
zinc finger protein 131 (ZNF131) on the transcription of molecular codes responsible for
the milk production seems clear. Lastly, this is the first time that NIM1K and ZNF131 have
been directly associated with milk yield in dairy cattle.

Four other novel candidate genes for MILK presented significant GO terms (FDR ≤ 1%)
in the enrichment analyses. GO:0004890 and GO:0005230: GABRG1 (BTA14) and GABRA2
(BTA6); GO:0003273: DCHS1 (BTA15) and GO:0071479: SPIDR (BTA14), shown in Table 4,
can be highlighted as genes that might play fundamental roles in metabolic functions
involving MILK. Interestingly, the four genes were previously linked to FAT [62,78,79] or
other milk components [80], confirming its close relationship with milk production traits.
For instance, γ-aminobutyric acid type A genes (GABRG1 and GABRA2), which contributes
to γ-aminobutyric acid (GABA) chloride ion channel activity and participates in GABA-A
receptor activity, were previously associated with milk production traits in Holstein and
Xinjiang Brown cattle [81,82].

4.3. Candidate Genes for Fat Yield

As observed for MILK, the GWAS for FAT revealed several genomic regions with
highly significant SNPs associated with 989 genes spread across 21 chromosomes. Besides
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the genes located in BTA14 (ARHGAP39, PPP1R16A, FOXH1, KIFC2, CYHR1, and TONSL)
identified for MILK, a highly significant genomic region was identified for FAT on BTA5,
which harbors the SLC15A5 gene. SLC15A5 was previously associated with FAT, presented
in a large region of 88.26–93.69 Mb on BTA5, that seems to have a cluster of additive effects
linked with MGST1, PLEKHA5, and ABCC9 [62]. The same genes (MGST1, PLEKHA5,
and ABCC9) were also significantly associated with FAT in our study (Supplemental
Table S1), suggesting that this genomic region plays an important role in the expression of
FAT in Holstein cattle. Other significant peaks for FAT were observed on BTA11, BTA15,
BTA16, and BTA26, revealing novel candidate genes. On BTA11, the most significant
region contains the NR6A1 gene, which was also included in the significant GO:0000978,
demonstrating its potential for being a novel candidate gene associated with FAT. NR6A1
has high homology among different species [83], and acts in the expression of traits linked
to metabolism, reproduction, and production, as demonstrated in a study with swine
where this gene was related with fat deposition [84]. Another relevant gene located on
BTA11 that might be interesting to investigate further is OLFML2A. Besides been highly
associated with FAT, OLFML2A was also found in VEP analysis, confirmg its potential
as a novel candidate gene associated with FAT. OLFML2A (Olfactomedin Like 2A) is a
protein coding gene related to protein homodimerization activity and extracellular matrix
binding. To our best knowledge, this gene has never been associated with any milk trait in
the literature before and its influence on milk related traits warrants a deeper investigated.
Interestingly, the OLFML2A gene was found differently expressed in a study of fat depot-
specific gene signatures in mice, contributing to the distinct patterns of extracellular matrix
remodeling and adipose function in different fat depots [85]. Additionally, on BTA15, the
most significant SNP found was associated with EXT2, which was also related with a
significant GO term responsible for cell differentiation (GO:0030154). EXT2 was previously
cited as a suggestive gene associated with milk iron content in Jersey cows [86]. However,
this is the first time that this gene has been directly associated with FAT in Holstein cattle.

Among the most significant GO terms, GO:0055089 is involved in fatty acid homeosta-
sis in which important genes such as DGAT1 are included. The link between the DGAT gene
with FAT and other milk production traits is widely known [28,87]. However, out of the
five genes related to GO:0055089, POLD1 and GOT1 have not been previously associated
with FAT. POLD1, which is located on BTA18, was previously associated with PROT in
Nordic Holstein cattle, but its function in the expression of milk production traits is not
yet well established [88]. GOT1, located on BTA26, was previously associated with milk
fatty acids acting in the transformation of citrate by ATP-citrate lyase in the cytosol, which
is required for fatty acid synthesis [89]. Another novel candidate gene for FAT is ETV6,
which was identified in two GO terms (GO:0030154 and GO:0000978), representing cell
differentiation and RNA polymerase II core promoter proximal region sequence-specific
DNA binding, respectively. ETV6 was also previously associated with FAT% in Brown
Swiss cattle [90] and MILK in Holstein cattle [78], but this is the first time that ETV6 was
linked to FAT.

4.4. Candidate Genes for Fat Percentage

For FAT%, 4459 SNPs, distributed across 22 chromosomes, associated with 2016
annotated genes were found. Among the highly significant regions, it can be highlighted
the SLC15A5 (BTA5) and MRPS30 (BTA20) genes, besides those already mentioned from
the BTA14 also found in MILK and FAT. SLC15A5, a solute carrier family member, was
also recently associated with FAT% in Holstein cattle [62,91], confirming its importance to
milk quality. Furthermore, other genes from the solute carrier family demonstrated to be
relevant for FAT% since SLCO1A2, SLCO1B3, SLCO1C1 and SLCO2B1 were associated in
the GO:0015125, one of the significant GO terms enriched for this trait (Table 4). MRPS30
was first associated with FAT% in Jiang et al. [62] and previously linked to MILK in studies
reported by Fang et al. and Cai et al. [92,93].
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The most significant GO terms for FAT% are GO:0005149 (interleukin-1 receptor bind-
ing) and GO:0015459 (potassium channel regulator activity). The GO:0005149 presented
the highest significance (8.5 × 10−8) and showed a big group of IL family genes associated
to FAT% (Table 4). There are few reports in the literature integrating the interleukin-1
receptor with dairy cattle—only research that associated genes from this gene family with
mastitis or fertility indicators [94,95]. However, there is proven evidence in other species,
including humans, of the relationship between the IL gene family and the structuring of
fat in different tissues, which may demonstrate the importance of some of these genes
in the context of the structuring of milk fat [96,97]. Another important GO term found
was the GO:0015459, which is related to the potassium channel activity. The main genes
involved in this GO are DPP6 (BTA4), LRRC26 (BTA11) besides others from the KCN gene
family. Genes from the KCN family were previously associated with milk traits [98], but its
molecular involvement with FAT% needs to be further explored. A possible mechanism
that might be worth investigating is that, in milk, potassium is correlated with lactose, and
therefore with milk yield, via osmotic regulation [99]. Therefore, changes in percentage
traits could be driven by potassium-induced changes in milk volume.

4.5. Candidate Genes for Protein Yield

For PROT, CDC14A and RTCA (BTA3); and MAF1, SHARPIN, CYC1, EXOSC4, PARP10,
OPLAH, GRINA, PLEC (BTA14) are key candidate genes for milk protein expression.
On BTA3, this is the first time that CDC14A and RTCA are associated with PROT, but
interestingly both genes were already detected in signatures of selection of other milk
production traits in Valdostana cattle populations [100]. Furthermore, RTCA was previously
associated with milk production traits in buffalo [101], but its connection with milk traits
has not been described yet. The MAF1 gene located on BTA14 has been associated with
milk protein synthetic capacity and for this reason, it has been pointed out as a key
candidate genes for PROT [34,62,102]. The other genes identified on BTA14 (SHARPIN,
CYC1, EXOSC4, PARP10, OPLAH, GRINA, and PLEC) were recently strongly associated
with milk production traits, including PROT [37,93,102]. According to Jena et al. [103],
SHARPIN influences mammary gland development and controls extracellular matrix
organization of stroma during branching morphogenesis, which induces alveologenesis
during pregnancy and lactation. Moreover, Lin et al. [104] found strong association of
SHARPIN, CYC1, EXOSC4, and PARP10 with milk serum albumin, which is one of the main
protein contents of cattle milk. These facts reinforce the hypothesis that the large genomic
region where these genes are located (0.5 Mb upstream and downstream from SHARPIN)
is important for milk protein expression. It is important to highlight that both GRINA
and PARP10 were found in our VEP analysis, confirming that those two genes are highly
associated with PROT and should be considered as novel relevant variants for this trait.
The Glutamate Receptor Ionotropic NMDA-Associated Protein 1 (GRINA) belongs to the
Lifeguard family and is involved in calcium homeostasis [105]. This gene was previously
reported to play an important role in the lipid, major proteins, and cholesterol homeostasis
in milk content of dairy cows, suggesting that GRINA might contribute to the regulation of
solids present in dairy milk [12,102]. PARP10, which is a member of the poly (ADP-ribose)
polymerases family, is related to several essential biological functions, such as immunity,
metabolism, apoptosis, and DNA damage repair [106]. From a physiological perspective,
the concentration of albumin in milk is influenced by pathological and genetic factors,
which could connect the action of PARP10 on the regulation of albumin in dairy cattle milk
content [104].

The GO enrichment analyses for PROT (Table 5) also revealed the casein gene cluster
containing the CSN1S1, CSN1S2, CSN2, and CSN3 genes, which encode αs1, αs2, β,
and κ casein, respectively. These genes have a strong influence on casein synthesis in
cattle milk, and polymorphisms in this region have significant impact on milk protein
composition [107]. In this context, HSTN and ODAM, which are located at the same region
of the casein gene cluster, can be considered as novel candidate genes for PROT due to
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their close binding on BTA6 with CSN1S1, CSN1S2, CSN2, and CSN3, where all these genes
are in linkage disequilibrium.

4.6. Candidate Genes for Protein Percentage

With several genomic regions adjacent to those mentioned in the other milk production
traits, PROT% was the trait with the largest number of significant markers, i.e., 5519 SNPs,
spread across 24 chromosomes and 2739 annotated genes. The most significant regions were
found on BTA5, BTA6, BTA14, BTA15, and BTA20, with special emphasis on BTA6, BTA20,
and BTA14. The most significant genes located on BTA6 are HERC3, HERC5, and PIGY.
HERC3 and HERC5 can be considered as novel candidate genes for PROT% as they were
previously associated with PROT and FAT%, respectively [29,30]. Genes from the HERC
family of ubiquitin ligases associate with prolactin to regulate important milk proteins such
as β-casein [108], turning these two genes into strong candidates to be intimately related
to PROT%. On the BTA20 chromosome, PAIP1, C20H5orf34, TMEM267, CCL28, HMGCS1,
and NIM1K are the most significant genes located in this genomic region. Of those, only
CCL28 was previously reported to be associated with PROT% in North American Holstein
cattle [62]. However, the other five genes also deserve special attention, not only for
being highly associated with PROT% but also for being grouped in a narrow genomic
region (31.20–31.50 Mb) that possibly makes these genes act together in the expression
of PROT%. The C-C motif chemokine ligand 28 gene (CCL28) belongs to the subfamily
of small cytokine CC genes that are involved in immunoregulatory and inflammatory
processes [109]. Because of its relation with antimicrobial activity, CCL28 can play an
important role in mastitis control and thus, indirectly influencing milk production [110].
This gene seems to be a strong candidate gene, as it was identified in our VEP analysis and
is directly associated with one of the markers with one of the highest significance levels for
PROT% on the BTA20.

Eighteen GO terms were significantly enriched (Table 5) and associated with vari-
ous processes, especially GO:0005149 (interleukin-1 receptor binding), GO:1903496 (re-
sponse to 11-deoxycorticosterone), GO:1903494 (response to dehydroepiandrosterone), and
GO:0007595 (lactation). As found for FAT%, the interleukin-1 receptor binding presents
a large group of IL family genes for PROT%, which are crucial in the expression of milk
production traits in many species, including dairy cattle [97]. The terms GO:1903496 and
GO:1903494 were also found for PROT, reinforcing the relevance of the casein gene cluster
for milk protein, in both forms, total yield and percentage. Additionally, in both terms,
the gene LALBA (milk whey protein α-lactoalbumin) was also identified for PROT%, high-
lighting the involvement of this well-known gene with PROT%, as previously reported in
other dairy cattle studies [111,112]. On GO:0007595, many genes known for its association
with PROT% were identified such as STAT5A, STAT5B, ATP2B2, CSN3, CSN2, and PRLR,
validating the connection of these genes with milk composition in dairy cattle. VDR has
also been previously linked to PROT% in Holstein and Jersey cows [113].

4.7. Common Genes Identified in GO Terms

Several overlapping genomic regions were found either between milk production traits
or between milk production and LP traits (Figure 2). This fact supports the hypothesis that
many genes associated with these traits could have a pleiotropic effect in dairy cattle [16].
According to Oliveira et al. [16], the pleiotropic effects observed on genes related to milk
traits suggest a biological function on the use of energy resources directly affecting the
synthesis of milk and solids. Few genes have been reported to commonly influence LP
and milk production traits, which reinforces the fact that the common genes found in our
study can help to elucidate the molecular interactions among various candidate genes with
potential pleiotropic effects.

Fifteen genes were significantly associated with LP and at least one of the milk pro-
duction traits, as CXCL13 and LDB2 (MILK); ZMIZ1, bta-mir-371, NLRP12 and PPIF (FAT);
INPP5A (FAT%); SERPINB6, SERPINB9, IGF2BP1 and DLX4 (PROT%). Additionally, LP,
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FAT%, and PROT% had common candidate genes between the three traits simultaneously:
ABI3, GNGT2, B4GALNT2, and PHOSPHO1, demonstrating their importance on the ge-
netic structure of milk solid production, but also in the duration of peak lactation. Out of
those mentioned genes, SERPINB6 and SERPINB9 have been previously associated with
somatic cell count in Jersey cattle [16] and milk production traits in water buffalo [114].
Furthermore, it is noteworthy that the genes LDB2 (MILK), SERPINB6, SERPINB9 (PROT%)
and ABI3 (FAT% and PROT%) were also present in the significant GO terms of biological
process, revealing its relationship with regulation of cell migration, and regulation of
protein and enzyme inhibitor activity.

As expected, due to the high genetic correlation between the studied traits, numer-
ous genes were simultaneously associated with the five milk production traits. Oliveira
Junior et al. [13] working with the same North American Holstein population found high
genetic correlation (>0.48) among MY, FAT, PROT, FAT%, and PROT% highlighting the
close genetic relationship between these traits. Even in multibreed dairy populations the
high correlations among production traits are usually observed [115]. In total, 98 com-
mon genes were identified for all milk production traits (Figure 2). Interestingly, all these
genes are located on BTA14, reinforcing the importance of this genomic region for milk
production traits. The genes located closer to the genomic region linked to the top SNP
found among MILK, FAT, FAT%, and PROT% are PPP1R16A, FOXH1, KIFC2, and CYHR1.
Nayeri et al. [15] reported that PPP1R16A, FOXH1, and CYHR1 were commonly linked
with FAT and FAT% in Holstein cattle and Cai et al. [93] also demonstrated that PPP1R16A,
FOXH1, KIFC2, and CYHR1 presented a potential pleiotropic effect on MILK, FAT, and
PROT. Finally, the closer common genes related to the top SNP found for PROT are GRINA,
PARP10, and PLEC. GRINA and PARP10 were also reported by Cai et al. [93] as genes with
pleiotropic effect on MILK, FAT, and PROT. Furthermore, PLEC was the only gene reported
to be commonly associated with MILK, PROT, and FAT in Chinese Holstein cattle [17],
which is in agreement with our findings.

4.8. Potential Implications and Limitations

Several novel candidate genes associated with LP and milk production traits in dairy
cattle were identified, while previous associations were also confirmed. These findings
will be useful for optimizing genomic prediction of breeding values in Holstein cattle and
other dairy breeds, by adding the significant SNPs into commercial SNP panels to increase
the accuracy of predictions and also give differential weight to these important genomic
regions through biology-driven genomic prediction methods [116]. Furthermore, the
genomic regions revealed are initial targets for future studies investigating the molecular
mechanisms influencing the phenotypic expression of milk related traits. For instance,
some important candidate genes found require a better understanding of their molecular
functions, such as SAE1, SERPINB6, and SERPINB9, which were highly associated with
LP but their biological functions are not clear. SAE1-SUMO activating enzyme subunit 1,
is a gene linked to one of the most significant SNPs for LP and also present in one of the
enriched GO terms found here, was previously associated with dairy cow mammary gland
epithelial cells [117], but its molecular functions related to LP are still unclear.

Additionally, even with an application of a strict quality control to reduce the influence
of the poorly imputed variants and individuals on the GWAS analysis, it is still expected
that some removed low-frequency variants could be associated with the studied traits
and not identified here. Despite the great advantage of identifying causal mutations at
low frequency [20], they could also be false positives. Future studies should focus on the
biological validation of the key candidate genes reported in this study. This could be done
based on in-vitro experiments and gene knock-out models.

5. Conclusions

We have shown that the use of imputed whole-genome sequence data for GWAS
enabled the identification of a high number of SNPs associated with lactation persistency
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and milk production traits in dairy cattle. Several genomic regions and candidate genes
were identified, which are widely distributed across all autosomal chromosomes, especially
BTA5, BTA6, BTA14, BTA18, BTA20, and BTA28. This study also confirmed the importance
of the BTA14 for milk production traits. Additionally, many genomic regions with poten-
tial pleiotropic effects were identified. Numerous novel candidate genes were revealed:
ARHGAP35, NPAS1, TMEM160, ZC3H4, SAE1, ZMIZ1, PPIF, LDB2, ABI3, SERPINB6, and
SERPINB9 (LP); NIM1K, ZNF131, GABRG1, GABRA2, DCHS1, and SPIDR (MILK); NR6A1,
OLFML2A, EXT2, POLD1, GOT1, and ETV6 (FAT); DPP6, LRRC26, and KCN gene family
(FAT%); CDC14A, RTCA, HSTN, and ODAM (PROT); HERC3, HERC5, LALBA, CCL28, and
NEURL1 (PROT%), involved in key biological pathways such as fatty acid homeostasis,
transporter regulator activity, response to progesterone and estradiol, response to steroid
hormones, and lactation. Lastly, another relevant finding was that a variety of genomic
regions related to LP and milk production were previously associated with fertility traits
in dairy cattle, confirming the links between these two groups of traits. Our findings con-
tribute to a better understanding of the molecular mechanisms underlying the phenotypic
expression of lactation persistency and milk production traits, which can be useful for
improving the genomic evaluation of important economic traits in the Holstein cattle.
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