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Abstract: The grain yield and concentrations of Fe, Zn, Se, Cd, and P in two winter wheat genotypes
and in vitro bioaccessibility of Fe and Zn under the effect of different nitrogen fertilization and
Zn-Se foliar application were evaluated. The total grain Fe, Zn, and Se concentrations, as well as
Fe and Zn concentrations, after in vitro digestion were under the strongest effect of foliar Zn-Se
application. On the other hand, Fe and Zn bioaccessibility (%) were under the most substantial
effect of genotype. Regarding the need to increase concentrations of essential micronutrients in
wheat grain, foliar Zn-Se application is a reliable and accepted agricultural practice, but to improve
mineral bioaccessibility in human nutrition, foliar Zn-Se application should be combined with the
most responsive genotypes. For this reason, further research on the genotype specificity of wheat
regarding micronutrient bioaccessibility should be carried out.

Keywords: biofortification; in vitro bioaccessibility; iron; selenium; zinc

1. Introduction

Micronutrient deficiencies in the human population are a major public health chal-
lenge [1,2]. In general, they are much more common in underdeveloped countries, but
some nutrient deficiencies, such as iron (Fe), zinc (Zn), and selenium (Se) are significantly
prevalent in industrialized countries too [3,4]. Food is the primary source of nutrients for
humans, and consumed food products should provide all of the necessary nutrients.

The main role of agriculture is to produce a sufficient quantity of food products but,
besides quantity, a large emphasis is on the production of high quality and nutritionally
rich products [5,6]. Unfortunately, it has been noted that some agricultural practices
have had a significant role in the increase of micronutrient deficiencies over the past
decades [7,8]. Some of the major reasons for the increment in micronutrient deficiencies are
food production on poor soils, the “green revolution”, resulting in modern high yielding
wheat cultivars (micronutrient dilution effect), unvaried rice, or wheat-based diets [9]. For
example, wheat is a staple food for a large number of people, but wheat grain mineral
density is lower than needed to satisfy the minimum daily requirements for humans [10].
On the other hand, at the same time, in order to solve this problem, different agricultural
practices such as biofortification have been developed [9]. Biofortification (agronomic and
genetic) is accepted as a successful approach for increasing grain nutrients to the extent
that it is limited by genotypic specificity [11–13]. Besides, micronutrients from wheat grain,
especially iron and zinc, are poorly available in humans due to their bond to phytate [14].
Consequently, agricultural practices developed to increase grain mineral density should
also have a positive effect on their bioaccessibility. Bioaccessibility represents the amount of
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micronutrient that can be released from its matrix into the gastrointestinal tract and become
available for absorption. Thus, the goal of biofortification and other agricultural practices
should not be only to increase micronutrient concentrations in grain, but rather to increase
their bioaccessibility from grain. Furthermore, recently, there has been much interest in
ancient wheat, such as einkorn, emmer, and spelt wheat, as a source of biodiversity in
terms of chemical composition and better nutritional properties in comparison to modern
wheat [15,16]. Additionally, it has been shown that the ancestors of cultivated wheat
that belong to genus Aegilops, such as Ae.ventricosa Tausch, are naturally rich in Zn and
Fe [17,18], so it would be beneficial to evaluate them and include them in research in order
to select varieties with a higher ability to accumulate these microelements in grain [19].
This study aimed to investigate the effect of location, genotype, N fertilization, and Zn-Se
foliar application on grain yield and Fe, Zn, Se, P, and Cd concentration as well as on
in vitro bioaccessibility of Fe and Zn from wheat grain.

2. Materials and Methods
2.1. Location and Weather Conditions

A field experiment has been carried out at the agricultural fields of Novi Agrar at
location Josipin Dvor (JD) (45.51◦ N, 18.67◦ E) and location Ernestinovo (E) (45.44◦ N,
18.67◦ E), situated in Eastern Croatia. Given that the experimental locations are only 9 km
apart, the elevation is similar at both locations and is in the range between 80–90 m above
sea level. According to the Köppen climate classification, the climate at the experimental
locations is a temperate humid climate with warm summer (Cfb). During the vegetation
season (October–July), the total annual rainfall was 586 mm, which is 21% above the
long-term (1961–1990) average (LTA). Although there was enough rainfall (in total) during
the vegetation season, the precipitation was unevenly distributed over the months. For
example, there was no precipitation in January (0 mm) in contrary to LTA where the amount
of rainfall in January was 59 mm. On the other hand, there was 159 mm of precipitation in
May, which is almost twice as much as the LTA (74 mm). However, during the vegetation,
between sowing and tillering stage, distribution of precipitation over the months was even,
with only 24% less rainfall in comparison to the LTA in continental Croatia. From the
tillering stage to full maturity there was 45% more precipitation in comparison to the LTA.

In the vegetation season (October–July), the average air temperature was 10.1 ◦C,
which is 2.3 ◦C above the LTA for the same period. Additionally, average monthly tem-
peratures for each month during the vegetation were higher than the LTA temperatures.
Winter was mild; the coldest month was December, with an average temperature of 1.6 ◦C
(0.6 ◦C above the LTA for December). Moreover, January was 4.5 ◦C and February 3.4 ◦C
warmer than the LTA temperatures in January and February.

2.2. Soil Analysis

The soil samples were prepared for chemical analyses according to [20] ISO 10390 pro-
cedure for pretreatment of samples for physicochemical analyses. Soil pH was measured
in a 1:5 (volume fraction) suspension of soil in water (pH H2O) and 1 mol L−1 potassium
chloride solution (pH KCl) according to ISO 10390 procedure [18]. Phosphorus and potas-
sium were extracted by AL-acetic acid method [21] and expressed as P2O5 and K2O in
mg 100 g−1 of soil. The humus content (soil organic matter) was determined using the
determination of organic carbon by sulfochromic oxidation, as recommended in the ISO
14235 [22] procedure (ISO 1998). Soil properties at experimental locations are shown in
Table 1.

Table 1. Soil properties at location Josipin Dvor (JD) and Ernestinovo (E).

Location pH
(H2O)

pH
(KCl)

AL-P2O5 (mg
100 g−1)

AL-K2O (mg
100 g−1)

Humus
(%)

CaCO3
(%)

JD 7.60 6.88 25.58 24.72 2.14 1.44
E 8.44 7.49 15.41 18.28 4.27 7.82
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The Fe, Zn, and Cd in the soil samples were extracted by aqua regia [23], and this
fraction was considered as total soil content and expressed in mg kg−1. The soil samples
were digested at 210 ◦C for 60 min in a microwave oven (CEM Mars 6). Fe, Zn, and Cd
were extracted by ethylenediaminetetraacetic acid (EDTA) as plant available fraction in
soil (Table 2).

Table 2. Total soil concentrations and EDTA extractable concentrations of Fe, Zn, and Cd at experi-
mental locations.

Total Concentration of Elements in
Soil (mg kg−1)

EDTA Extractable Elements in Soil
(mg kg−1)

Location Fe Zn Cd Fe Zn Cd

JD 28155 89.45 0.34 56.88 12.38 0.15
E 26850 54.00 0.33 50.98 1.54 0.13

JD, Josipin Dvor; E, Ernestinovo.

2.3. Wheat Genotypes and Treatments

Winter wheat (Triticum aestivum L.) genotypes Srpanjka and Renata were sown in
October and harvested in July at both locations. All agrotechnical measures were carried
out by standard procedures in winter wheat production in this area. Nitrogen (N) treatment
was applied as N fertilization in the concentration of 0 (control treatment), 105 (reduced
fertilization), 140 (optimal fertilization), and 180 kg N ha−1 (excessive fertilization). The
N was applied in the form of urea before sowing. Foliar application of zinc and selenium
(Zn-Se) were carried out at the beginning of flowering (Feekes 10.51). A combination of
1.5 kg Zn ha−1 in the form of ZnSO4 and 10 g Se ha−1 in the form of Na2SeO4 were applied
as a foliar treatment (Zn-Se 1), as opposed to the control treatment, which did not receive a
foliar application (Zn-Se 0). All applied foliar solutions contained surfactant (Tween 20).

2.4. Sample Preparation and Laboratory Analysis

Both genotypes at both locations were harvested at full maturity. Grain samples
were dried at 70 ◦C for 72 h and milled in a micronutrient free mill (Retsch RM200, Haan,
Germany) into whole wheat flour containing all milling fractions. A 1 g sample of milled
grain was digested with 9 mL 65% (v/v) HNO3 and 2 mL 30% (v/v) H2O2 in microwave
vessels (CEM Mars 6, Matthews, NC, US), according to [24]. Samples were digested for
60 min at 180 ◦C. After digestion, the cooled sample solution was filtered through a double
filter paper and transferred into a 50 mL graduated flask, which was filled with deionized
water up to the volume of 50 mL. For the Se determination, 5 mL of concentrated HCl was
added to the cooled digest to reduce Se6+ to Se4+. Concentrations of Fe, Zn, Se, Cd, and P
were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES)
technique (Perkin Elmer–Optima 2100 DV, Überlingen, Germany) using an internal pooled
plasma control. Reference material (Rice flour, IRMM-804, Sample No. 0533, European
Commission, Joint Research Centre, Institute for Reference Materials and Measurements,
Geel, Belgium) was prepared in the same way as the grain samples.

In vitro digestion was carried out according to [25]. Concentrations of Zn and Fe
in the supernatant after in vitro digestion were determined by ICP-OES technique. The
percentage of bioaccessibility (B (%)) in the samples was calculated as follows:

B (%) = (concentration after in vitro digestion × 100)/(concentration in whole grain)

2.5. Statistical Analysis

The experiment was designed as a completely randomized block design with four
factors (location, genotype, N fertilization, and Zn-Se foliar application) in four replicates.
Factorial four-way (for grain yield and Fe, Zn, Se, P, and Cd concentration in grain) and
three-way analysis of variance (for in vitro bioaccessibility and % of bioaccessibility of Fe
and Zn) were carried out. The partial eta square coefficient was used as a measure of effect
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size. Mean values were compared using Fishers least significant difference test (LSD test).
Only differences significant at p < 0.01 were considered. The relationships between the
examined traits were obtained by Pearson’s correlation coefficient (r) at a significance level
of p < 0.01. All statistical analyses were done by Enterprise Guide 5.1. of the SAS System
for Windows (Copyright© 2021 by SAS Institute Inc., Cary, NC, USD, All Rights Reserved).

3. Results and Discussion
3.1. The Effect of Location on Grain Yield and Fe, Zn, Se, P, and Cd Concentration

In plant production, soil, topographic and vegetation characteristics, and weather
conditions are essential environmental factors that influences a plant during all stages of
development [26,27] and have a substantial effect on the yield and mineral composition
of grain [28,29]. Among other things, the concentration of an element in soil and its
phytoavailability, soil pH, the content of organic matter, clay and calcium carbonate,
microbiological activity in the rhizosphere, soil moisture, and temperature, as well as
climate, are factors that determinate accumulation of elements in different plant parts.

In the present study, grain yield (Table 3) and concentrations of Fe, Zn, Se, and Cd in
wheat grain were under the significant effect of location (Table 4).

Table 3. Average values of grain yield (t ha−1) at different locations, genotypes, foliar Zn-Se, and nitrogen application
(kg ha−1).

Location Genotype Foliar Zn-Se Nitrogen

JD 6.38 ± 1.91 b R 6.08 ± 1.71a 0 6.18 ± 1.69 a 0 3.92 ± 0.47 a

105 6.42 ± 1.11 b

E 5.91 ± 1.33 a S 6.21 ± 1.61a 1 6.11 ± 1.63 a 140 7.12 ± 1.11 c

180 7.11 ± 1.19 c

F a = 6.61 * F = 0.49 F = 0.16 F = 71.23 **

Each value is represented as mean ± SD (n = 4). Values in a column followed by a different letter are significantly different (difference
between levels of the same factor). F values for each source of variation are shown and marked as ** (p < 0.01) or * (p < 0.05). JD, Josipin
Dvor; E, Ernestinovo; R, Renata; S, Srpanjka, 0, Zn-Se 0; 1, Zn-Se 1. a According to factorial ANOVA, two, three, and four factorial
interactions did not have a significant effect on the examined trait, so their F values are not shown in the table.

Table 4. Average values of Fe, Zn, Se, P, and Cd concentration in grain (mg kg−1) at different locations, genotypes, foliar
Zn-Se applications, and levels of nitrogen fertilization.

Treatments Fe Zn Se P Cd

Location

Josipin Dvor 27.1 ± 3.99 b 25.6 ± 6.17 b 0.112 ± 0.09 b 3498 ± 300 a 0.041 ± 0.014 b

Ernestinovo 29.1 ± 5.13 a 27.6 ± 6.18 a 0.153 ± 0.11 a 3528 ± 304 a 0.014 ± 0.011 a

Genotype

Renata 29.5 ± 5.54 b 28.3 ± 5.75 b 0.148 ± 0.11 b 3685 ± 297 b 0.030 ± 0.012 b

Srpanjka 26.7 ± 3.10 a 24.9 ± 6.28 a 0.117 ± 0.09 a 3341 ± 187 a 0.025 ± 0.010 a

Foliar Zn-Se

Zn-Se 0 29.8 ± 4.85 a 21.6 ± 3.66 b 0.035 ± 0.02 a 3587 ± 316 b 0.032 ± 0.016 b

Zn-Se 1 26.4 ± 3.85 b 31.6 ± 3.75 a 0.231 ± 0.06 b 3439 ± 270 a 0.023 ± 0.017 a

Nitrogen

0 26.4 ± 3.60 a 24.3 ± 5.70 a 0.122 ± 0.10 a 3594 ± 329 a 0.022 ± 0.015 a

105 27.1 ± 3.71 a 26.7 ± 6.56 b 0.138 ± 0.10 b 3480 ± 270 bc 0.028 ± 0.017 b

140 29.0 ± 5.28 b 27.6 ± 6.39 b 0.143 ± 0.12 b 3540 ± 304 ab 0.029 ± 0.017 b

180 29.9 ± 5.24 b 27.8 ± 5.93 b 0.129 ± 0.10 a b 3437 ± 291c 0.030 ± 0.019 b
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Table 4. Cont.

Treatments Fe Zn Se P Cd

Source of Variation a

Location (L) 13.27 ** 19.02 ** 53.08 ** 0.7 290 **
Genotype (G) 26.13 ** 54.7 ** 30.66 ** 91.86 ** 9.18 **
Foliar Zn-Se (F) 39.42 ** 475 ** 1206 ** 17.02 ** 28.06 **
Nitrogen (N) 8.6 ** 12.07 ** 2.83 3.66 6.34 **
L × G 21 ** 5.72 1.56 0.00 0.61
L × F 0.03 0.08 4.37 0.00 13.70 **
L × N 1.87 0.89 0.21 4.85 ** 0.75
G × F 30.04 ** 2.30 13.66 14.04 ** 12.91 **
G × N 1.22 0.56 1.73 2.81 1.39
F × N 2.05 1.24 1.8 1.44 1.14

Each value is represented as mean ± SD (n = 4). Values in a column followed by a different letter are significantly different according to LSD
test (difference between levels of the same factor); F values for each source of variation are shown and marked as ** p < 0.01 a According
to factorial ANOVA, three and four factorial interaction did not have a significant effect on the examined traits, so their F values are not
shown in the table.

The Fe, Zn, and Se concentrations in grain were higher at location E, at 6.9%, 7.3%, and
27%, respectively (Table 4), while grain yield was 8% lower at location E in comparison to
yield at location JD (Table 3). On the contrary, grain Cd concentration was 2.92-fold higher
at location JD compared to E (Table 4). Higher soil Cd concentration can increase grain
Cd concentration in comparison to uncontaminated soil [30]. At location JD, total soil Cd
concentration was only 3%, and EDTA extractable Cd was 15% higher compared to location
E (Table 2). That does not seem substantial enough to increase grain Cd for 2.92-fold alone.
This finding indicates the importance of other factors (soil pH, soil P, and humus content)
or their interactions on grain Cd concentration that is a highly complex trait. Besides, soil
total and EDTA extractable concentrations of other elements were also higher at location JD
(Table 2), but grain concentration of elements was lower compared to location E (Table 4).
At the same time, humus content (organic matter) that can enhance nutrient availability to
plants indirectly, through the increase in CEC complex [28], was twice as high at location
E (Table 2). The higher soil Cd content at location JD could affect the phytoavailability
of other elements from the soil as well as the abundance of soil microorganisms [31] and
create unfavorable conditions for the adoption of other elements.

3.2. The Effect of Genotype on Grain Yield and Fe, Zn, Se, P and Cd Concentration

The Fe, Zn, Se, P, and Cd concentrations in grain were under the significant effect
of wheat genotype (Table 4). The genotype Renata accumulated higher amounts of all
examined elements in grain in comparison to genotype Srpanjka (Table 4). The most
considerable differences between genotypes were determined in grain Se (26%) and Cd
(20%) concentrations. The P and Fe concentrations were 10%, and Zn concentration
were 13% higher in Renata than in Srpanjka. Two genotypes are not enough to discuss
genotypic specificity, but the differences between them are in accordance with previously
published results on the genotype specificity of winter wheat regarding the accumulation
of Fe, Zn, Se, and Cd in the grain [32–34]. Both genotypes included in this research are
Croatian genotypes, released in the year 1989 (Srpanjka) and 2006 (Renata). There are some
similarities between genotypes in agronomic traits due to the genotype Renata pedigree
(Srpanjka was one of Renata’s parents) [35]. Although these genotypes differ in quality
traits [36], they are similar in grain yield (as confirmed by this study) (Table 3) and plant
height, two traits that are very often related to the mineral content of grain. Grain mineral
concentration is in significant negative relation to grain yield and harvest index, indicating
that high-yielding cultivars have a decreased ability to accumulate minerals in grain. Lower
accumulation of minerals in the grain of modern cultivars could be a result of a decrease in
a plant height, which is in relation to the length of the root system [37]. However, it seems
that genotype specificity in the accumulation of minerals in grain is, besides the effect of
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the shorter root system, also under the impact of other factors [38]. In some older varieties,
grain Zn and grain size were in positive correlation, indicating that it could be possible to
combine high grain yield and high grain Zn. On the global scale, grain Zn concentration
varies between 20.4 and 30.5 mg kg−1 [39]. Average Zn and Fe concentrations in the grain
of both genotypes (Table 4) are in accordance with grain Fe and Zn concentrations in
cultivated wheat obtained by other authors [10,40].

Se concentration in the grain varies between 5 and 720 µg kg−1, and that varia-
tion is mostly influenced by spatial variation in soil Se. Average Se concentration in the
grain obtained in this study was consistent with [41] but lower than the targeted level of
400 µg kg−1. Similarly, reported average concentrations of Fe and Zn in others as well
in this study were far below the targeted concentration of 40 mg kg−1 [42]. Accordingly,
at this moment, the vast majority of cultivars used for grain production do not meet the
targeted level for grain Zn, Fe, or Se concentration, indicating that foliar application of Zn
and Se should be an important strategy for the increment of these elements in grain.

3.3. The effect of Foliar Application of Zn and Se on Grain Yield Fe, Zn, Se, P, and Cd
Concentrations

Biofortification of wheat grain through foliar application of Zn and Se alone or in
combination with other elements is an accepted method for the increase of these elements
in the grain. The effectiveness of foliar application depends on a large number of factors,
but mostly on the concentrations and combination of applied elements and the time of
application. The effect of foliar application of Zn and Zn combined with P or N on Zn
concentration in grain has been investigated by [43], who proposed a combination of foliar
Zn and N application as a potential strategy for the improvement of Zn bioavailability.
In this study, foliar application of Zn-Se increased Zn concentration in grain by 46%
(Table 4) in comparison to the control treatment, but even with such a significant increase in
comparison to non-foliar application, grain Zn concentration still did not reach a targeted
level of 40 mg Zn kg−1 (Table 5). An increase of 10.01 mg kg−1 in average grain Zn
concentration on Zn-Se foliar application is consistent with [39], who reported an increase
in average grain Zn concentration for 10.5 mg kg−1 by the foliar application of Zn. A foliar
application of Zn is usually carried out at the begging of the flowering stage. Given that
Zn translocation from leaves to grain contributes more to the grain Zn than Zn uptake
during the grain filling [44], leaves and flag leaf are vital pools of Zn for accumulation in
grain. Besides, wheat grain could be a valuable source of Se if Se concentration in grain
would be around 400 ng g−1. Daily intake of Se has declined in the past decades due to
consumption of food poor in Se. Low soil Se and low EDTA extractable Se are one of the
reasons why Se concentrations in grains are so small. Foliar application of Zn-Se increased
grain Se concentration 6.6-fold in comparison to no foliar treatment (Table 4). In addition,
grain Se and Zn were in strong positive correlation (r = 0.85; p < 0.01). A similar increase
(6-fold) in grain Se was observed in [11], but only in treatments where Se was combined
with Zn, indicating that the interaction of Zn and Se should be further studied to reveal the
mechanisms responsible for their accumulation in grain.

Furthermore, Se is essential to humans, but not to vascular plants, so a concentration
of Se applied with an intent to increase Se concentration in wheat grain should not induce
phytotoxicity symptoms in plants. Broadley [45] reported that an amount of 100 g Se ha−1

did not cause any visible symptoms or decline in yield in comparison to the control
treatment. Applied Se (in combination with Zn) increased average Se concentration by
0.196 mg Se kg−1 grain (which is still lower than the targeted value). Given that 10 times
higher Se concentration [45] did not cause phytotoxicity symptoms in wheat plants, it
would be recommended to carry out a study with increasing concentrations of Se with the
aim to achieve a desirable Se concentration in the grain.
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Table 5. In vitro bioaccessible concentrations of Fe and Zn (mg kg−1) and percentage of Fe and Zn bioaccessibility (%) from
wheat grain.

Treatments In Vitro Fe In Vitro Zn Fe (%) Zn (%)

Genotype

Renata 8.87 ± 1.24 b 4.41 ± 0.92 b 28.5 ± 4.30 a 15.5 ± 2.62 b

Srpanjka 8.38 ± 0.68 a 4.93 ± 0.93 a 31.9 ± 3.50 a 19.0 ± 2.56 a

Foliar Zn-Se

Zn-Se 0 9.03 ± 1.10 b 4.09 ± 0.80 b 29.8 ± 3.83 a 18.3 ± 3.40 b

Zn-Se 1 8.22 ± 0.56 a 5.26 ± 0.72 a 30.6 ± 4.66 a 16.2 ± 2.51 a

Nitrogen

0 8.54 ± 0.68 a 4.57 ± 0.96 a 32.6 ± 4.07 a 18.2 ± 2.55 a

105 8.51 ± 0.55 a 4.67 ± 0.93 a 30.7 ± 3.50 ab 17.1 ± 3.55 a

140 8.81 ± 1.13 a 4.76 ± 1.14 a 28.2 ± 3.70c 16.8 ± 3.30 a

180 8.65 ± 1.31 a 4.69 ± 0.83 a 29.3 ± 4.69 b 16.9 ± 3.66 a

Sources of Variation a F Value

Genotype (G) 6.56 ** 8.53 ** 16.63 ** 32.42 **
Foliar Zn-Se (F) 17.7 ** 42.3 ** 1.00 10.46 **

Nitrogen (N) 0.49 0.19 5.03 ** 0.97

Each value is represented as mean ± SD (n = 3). Values in a column followed by different letters are significantly different among different
levels of the same factor (p < 0.01). F values for each source of variation are shown and marked as ** (p < 0.01). a According to factorial
ANOVA, two and three factorial interaction did not have a significant effect on examined traits, so their F values are not shown in the table.

Besides, foliar Zn-Se application had a significant, but negative, effect on Fe (−11%),
P (−4%), and Cd (−28%) concentration in grain (Table 4). There are many reports on
the interactions between elements [29,46,47], but there is no unified conclusion on their
interaction, mostly because of important genotype effects, heterogeneous phytoavailability
of elements from the soil, and differential environmental conditions and agricultural
practices. The addition of the Zn to the soil increases its accumulation in the grain and
decreases the accumulation of Cd in grain [48], most probably because of its competition
with Zn for usage of the same adoption mechanisms.

3.4. The Effect of Nitrogen Fertilization on Grain Yield Fe, Zn, Se, P, and Cd Concentrations

A nitrogen (N) is a key macronutrient essential for the production of a photosyntheti-
cally active canopy and storage proteins in the grain [49]. To provide enough N for plants,
N fertilization is a conventional agricultural practices. In this study, the effect of four
different levels of N on grain Fe, Zn, Se, P, and Cd concentration was investigated. Grain
yield (Table 3) and all examined elements were under the significant effect of N fertilization
(Table 4). The grain yield (Table 3) and Fe, Zn, Se, and Cd concentrations increased under
the effect of N fertilization, while P concentration decreased (Table 4). The Zn, Se, and Cd
concentration in grain were lowest at the control treatment and significantly lower than
on all other N treatments (Table 4). Similarly to [50], N concentration of 105 kg ha−1 was
equally effective as higher concentrations because there were no significant differences
between N105 and other higher N concentrations. Furthermore, in contrast to our findings,
where N and foliar Zn-Se in combination did not have a significant effect on any of the
examined elements (Table 3), [43] reported that foliar Zn combined with N increased Zn
concentration and bioavailability in grain.

Based on partial eta coefficients, in this study, Se (0.93), Zn (0.83), and Fe (0.29) grain
concentrations were under the strongest effect of foliar Zn-Se application in comparison to
the other factors included in this study. However, grain P was under the most substantial
effect of genotype (0.49), while Cd (0.75) was under the strongest effect of location. Simi-
larly, [51] found that Fe and Zn concentrations in winter wheat grain were mostly under the
effect of genotype and P concentration was mainly under the effect of location, while Cd
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concentration in grain was under the effect of both factors, suggesting that accumulation of
elements is under the influence of various factors that are element-specific.

3.5. In Vitro Bioaccessibility of Zn and Fe

Concentrations of Zn (partial eta coefficient 0.47) and Fe (partial eta coefficient 0.27),
after in vitro digestion, were under the strongest effect of foliar Zn-Se application, followed
by the effect of genotype. At the same time, genotype effect was the most important
factor for Fe (0.26) and Zn (0.40) bioaccessibility (%), followed by a foliar Zn-Se application
for Zn (0.18) and nitrogen fertilization for Fe (0.23) bioaccessibility (%) (Table 5). Lower
bioaccessibility (%) of Fe and Zn in the genotype Renata in comparison to Srpanjka could
be related to higher grain P content compared to Srpanjka (Table 5). Total P content in grain
is highly correlated to grain phytic acid (r = 0.96). Phytic acid is the storage form of P in
plant seed, and it is estimated that 60–80% of seed P is bound in phytic acid [52,53].

Besides, phytic acid is an antinutrient that decreases the bioavailability of dietary
nutrients in humans and monogastric animals [54]. As an illustration, the cultivar Renata
had a higher grain P concentration that is highly correlated to the content of phytic acid.
Based on that, we can assume that Renata had lower nutrient bioaccessibility in comparison
to Srpanjka due to the higher content of phytic acid. However, for a more precise estimation,
a trivariate model of Zn absorption [55] or laboratory measurement of phytic acid should
be carried out.

The N fertilization did not have a significant effect on Fe and Zn concentration after
in vitro digestion, but Fe bioaccesibility (%) was under the significant negative effect of
N fertilization. A decrease in Fe bioaccessibility was 10% between the control treatment
(0 kg N ha−1) and excessive fertilization (180 kg N ha−1). Although there was no significant
effect of N fertilization on Zn bioaccessibility (%), a decreasing pattern was recorded (7%
difference between 0 N and 180 N) in spite of an increase in grain Zn concentration under
the increased N fertilization. On the contrary, based on the [phytate]:[Zn] ratio in flour and
whole grain and the trivariate model of Zn absorption, [43] found that a combination of N
and foliar Zn application increases Zn concentration and Zn bioaccessibility.

4. Conclusions

Wheat production is under the substantial effect of environmental factors that cannot
be entirely controlled. Factors that are controllable should be used to produce high-quality
products. N fertilization is commonly used in wheat production to increase grain yield. In
a term of increase in the mineral concentration of grain, N fertilization has a significant
positive effect on grain Fe, Zn, and Cd concentrations and a significant adverse effect on Fe
bioaccessibility (%). Foliar Zn-Se application has a substantial positive effect on Zn and Se
grain concentration, while grain Fe, P, and Cd concentrations decreased under foliar Zn-Se
application. Furthermore, Zn-Se foliar application increased Zn in vitro bioaccessibility (mg
kg−1). Generally speaking, grain Fe, Zn, and Se concentrations were under the strongest
effect of foliar Zn-Se application, Fe bioaccessibility was under the strongest effect of
N fertilization, while Zn bioaccessibility was mostly affected by genotype. Because the
bioaccesibility of Zn is under substantial effect of genotype, future work should be focused
on the research of Zn rich genotypes or ancestor wheat as a material for research of mineral
bioaccesibility. From the perspective of human nutrition, the bioaccessibility of minerals
in wheat grain is an important trait. Ancient wheat and modern genotypes differ in their
ability to accumulate minerals as well as in mineral bioaccessibility in grain, so future
work should be focused on the selection of the most suitable genotypes for the research
on bioaccessibility.
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