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Abstract: Embedding optical camera communication (OCC) commercially as a favorable complement
of radio-frequency technology has led to the desire for an intelligent receiver system that is eligible
to communicate with an accurate light-emitting diode (LED) transmitter. To shed light on this
issue, a novel scheme for detecting and recognizing data transmitting LEDs has been elucidated
in this paper. Since the optically modulated signal is captured wirelessly by a camera that plays
the role of the receiver for the OCC technology, the process to detect LED region and retrieval
of exact information from the image sensor is required to be intelligent enough to achieve a low
bit error rate (BER) and high data rate to ensure reliable optical communication within limited
computational abilities of the most used commercial cameras such as those in smartphones, vehicles,
and mobile robots. In the proposed scheme, we have designed an intelligent camera receiver system
that is capable of separating accurate data transmitting LED regions removing other unwanted LED
regions employing a support vector machine (SVM) classifier along with a convolutional neural
network (CNN) in the camera receiver. CNN is used to detect every LED region from the image
frame and then essential features are extracted to feed into an SVM classifier for further accurate
classification. The receiver operating characteristic curve and other key performance parameters of
the classifier have been analyzed broadly to evaluate the performance, justify the assistance of the
SVM classifier in recognizing the accurate LED region, and decode data with low BER. To investigate
communication performances, BER analysis, data rate, and inter-symbol interference have been
elaborately demonstrated for the proposed intelligent receiver. In addition, BER against distance and
BER against data rate have also been exhibited to validate the effectiveness of our proposed scheme
comparing with only CNN and only SVM classifier based receivers individually. Experimental
results have ensured the robustness and applicability of the proposed scheme both in the static and
mobile scenarios.

Keywords: support vector machine (SVM) classifier; intelligent receiver; optical camera communication
(OCC); image sensor

1. Introduction

In recent years, optical camera communication (OCC) has been considered a potential
wireless access option owing to the recent advancement in the luminous efficacy of light-
emitting diode (LED) technology. At present, a dense formation of LED-based lighting
infrastructures is being observed almost everywhere owing to offering low-power consump-
tion, low-cost, and large optical spectrum immune to electromagnetic interference [1–3].
The large cost-free optical spectrum has created a new venture for resolving data congestion
into the radio frequency (RF) spectrum. Thus, LEDs have become a significant option for
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illumination and communication simultaneously. In contrast, the successive improvement
of complementary metal-oxide-semiconductor (CMOS) technology has integrated a new
dimension in OCC development providing high pixel resolution and high-speed built-in
camera inherited smart devices [4,5]. Therefore, OCC has become a promising indoor and
outdoor communication technology.

Recently, with the enrichment of OCC technology, it has opened up a new frontier
for the future massive connected network. Recently, academia and industry both have a
surge of interest in taking advantage of OCC technology. OCC has substantial potential as
most of the in-road vehicles are camera mounted and numerous LED infrastructures are
installed in the outdoor environment. A variety of beneficial applications are expected to
be achieved leveraging OCC technology in some other prospective areas such as robotics,
automation, and e-Health. Furthermore, to deploy a 5G communication system effectively
and to meet the requirement of the upcoming 6G communication system, OCC provides
ample opportunity. In addition, OCC is suitable for the safety applications which require
low BER and low latency [6–10]. While this technology is being continuously improved, it
is not yet adequate to coronate OCC technology commercially in the initially envisioned
areas. Currently, the artificial intelligence (AI) based approach has been adopted to en-
hance different performance features, for example, data rate, SNR, and communicating
distance [11].

In the traditional scheme, the stream of data are converted into an optical signal
being modulated using LEDs. Various modulation techniques have been proposed so
far including both single-level intensity modulation schemes such as ON-OFF keying
(OOK), under-sampled frequency shift ON-OFF keying (UFSOOK), under-sampled phase
shift ON-OFF keying (UPSOOK), and spectral-efficient transmission scheme techniques
such as color shift keying (CSK) and multi-level intensity modulation. Afterwards, the
modulated signal is sent through a wireless medium [12–16]. The transmitted data are
captured in the image sensor receiver. Deep learning techniques, notably convolutional
neural network (CNN), are employed at the receiver side to detect LED, and the data bits
are retrieved using several image processing techniques. Recently, it has been reported
that stripe distortion can be effectively reduced when CNN is employed to extract features
from the bright and dark striated frames during decoding [17,18]. The key issues that can
characterize the OCC performance are broadly investigated in [19]. A new study have been
conducted to improve decoding methods. They demonstrated differentiating multi-valued
data more correctly for intelligent transport systems [20]. In addition, the authors have also
demonstrated the variation of OCC performance based on the key performance parameters.
Machine learning techniques at the receiver side have also been investigated due to the
low computational complexity compared with the deep learning algorithms [21]. Authors
in [22] used a support vector machine (SVM) in 8-superposed pulse amplitude modulation
(8-SPAM) and direct-current-biased optical orthogonal frequency division multiplexing-
based visible light communication (VLC) systems for LED detection purpose. SVM utilized
optical barcode detection technique based on VLC have been studied in [23]. In [24], the
authors have described SVM for constellation classification in two kinds of geometrically
shaped 8-quadrature amplitude modulation for seamlessly integrated fiber and the VLC
system. However, in all the traditional detection schemes, all the detected LEDs have
been considered as data transmitting LEDs. In practice, many unwanted LED regions
can be detected, which demolishes the robustness of the communication performance.
For object detection purposes, CNN outperforms the other machine learning techniques.
But, it cannot detect the actual transmitting LED regions deleting other unwanted LED
regions from the camera frame because it does not consider spatial information of the
object. Therefore, it fails to differentiate actual data transmitting LED from other unwanted
LEDs [25]. Consequently, the data decoding process gets vulnerable in practical scenarios
such as V2V and robotics in the presence of many LEDs in the field of view (FOV) of
the camera. This seems to be a large roadblock towards the potential application of
OCC technology.
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To the best of our knowledge, it is not investigated yet how a receiver can recognize
actual data transmitting LED region from the frame among other unwanted LED regions
and decode data intelligently from that accurate region in the OCC case. Therefore, in this
paper, a novel intelligent camera receiver system employing SVM, a supervised learning
model, along with CNN for OCC, has been designed. Our designed receiver system
is capable of decoding data bits separating an accurate data transmitting LED region
among various light-emitting sources present in the camera frame. Taking into account
the visual flickering, we have modulated the optical beam by the FSOOK modulation
technique, a low-cost and low-complexity modulation technique, which encodes bits
into different frequencies [26]. This modulated optical signal was transmitted through
a wireless medium to the receiver in the presence of other blinking LEDs. The scenario
of how the proposed intelligent camera receiver works is depicted in Figure 1. Based on
our scheme, we have developed a new data decoding algorithm for FSOOK based OCC.
Our designed receiver first detects every LED region employing CNN. From each region,
features are extracted to train the SVM classifier. Using the trained classifier model, the
camera successfully separates accurate regions for data decoding purposes. As a result,
unwanted LED regions are removed which will result in low computational complexity
and mitigation of neighboring interference.

Figure 1. Scenario of the intelligent receiving system for OCC.

The remainder of this paper is structured as follows: Section 2 describes the SVM
classifier. The overall OCC system including the modulation technique and algorithm for
decoding data intelligently from the recognized region has been illustrated in Section 3.
We have demonstrated how the data set has been prepared using extracted features in
Section 4. In Section 5, we have elaborately discussed the experimental results to justify
our scheme. Finally, we concluded our article in Section 6.

2. Support Vector Machine

The SVM has been considered one of the most widely used and accurate classifica-
tion algorithms than others after being introduced in 1990 within the machine learning
community [27]. Fundamentally, it is a supervised learning algorithm whose main objec-
tive is creating an optimal hyperplane between two classes of data set focusing on the
training samples even if for a miniature training set. The hyperplane acts as a decision
boundary to categorize the data in different classes. In Figure 2, points near the hyperplane,
called support vectors, are used to determine the optimized hyperplane. For a given
training sample (x1, y1), (x2, y2), . . . , (xm, ym) where class labels are represented by
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yi = {+1,−1}, ∀iε{1, 2, 3, . . . , m}. (1)

The optimal separating hyperplane is mathematically formulated as [28]

θTxi + b = 0, (2)

where θ = [θ1, θ2 . . . , θm] is an m-dimensional vector of weights, and xi = [x0, x1, . . . , xm] is
an m-dimensional input vector, where x0 = 1 by convention, and b is called the biasing
unit. The optimization problem associated with finding the hyperplane can be expressed
as follows:

1
2
‖θ‖2 =

1
2

θTθ, (3)

which is subjected to
θTxi + b ≥ +1 for yi = +1. (4)

θTxi + b ≤ +1 for yi = −1. (5)

Figure 2. Illustration of SVM classifier.

The final nonlinear decision function can be obtained as follows:

f (x) = sign

(
m

∑
i=1

αi

(
θTxi

)
+ b

)
. (6)

To generalize the SVM classifier about complex data features, SVM uses a technique
called Kernel k(xi, x). The value k(xi, x) corresponds to ϕ(xi).ϕ(x), which maps linearly
non-separable patterns into a higher dimension feature space. The commonly used kernel
functions, e.g., linear,polynomial, sigmoid, and radial basis function (RBF), are briefly
described in Table 1. Finally, the decision function can be modified as follows:

f (x) = sign

(
m

∑
i=1

αi(ϕ(xi) · ϕ(x)) + b

)
. (7)

Table 1. Kernel functions for the proposed system.

Type Function

Linear xTxi + c

Radial basis function (RBF) exp
(∣∣∣∣− ‖x−xi‖2

2σ2

∣∣∣∣)
Polynomial (xTxi + c)p

Sigmoid tanh((xTxi + c)p)
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3. OCC System Overview
3.1. OCC System Architecture

In Figure 3, the block diagram delineates the overall OCC architecture in addition to
the proposed classifier model. The structure mainly consists of two parts: the transmitter
and the receiver, but, unlike the traditional receiver system, the receiver part includes
some additional features that assist with differentiating the accurate data transmitting
LED over other LEDs. On the transmitter side, numerous LED regions were present. The
LED optical signal was modulated by FSOOK modulation at a frequency level between
2–4 kHz before sending to the receiver. While the modulation is performed, the LED
blinking should not be perceivable to the human eye. Since the perceivable flickering rate
is up to 200 Hz [29], the modulation frequency used in FSOOK attenuates the flickering
issue in a significant margin. With regard to the transmitting LEDs and other sources of
interference, they are not modulated in that particular frequency. The projection of all
these light-emitting sources was captured by the image sensor. Interference sources were
dispelled when a trained CNN model is used. All the possible LED sources were detected
and segmented using image processing techniques. Due to the rolling shutter effect of
the CMOS based image sensor, each image frame gets striated of white and black shade.
Afterwards, necessary geometrical features have been extracted to classify and recognize
accurate data transmitting regions from the range of all possible regions.

Figure 3. Overall OCC architecture with the proposed classifier model.

3.2. FSOOK Modulation

It is a modulation scheme that encodes bit ‘1’ and bit ‘0’ with two different frequencies
known as mark and space frequency, respectively [26]. The header and footer are appended
at the beginning and ending of data bits respectively to identify the data packets. In order
to create distinctions among header, footer, and data bits, we use the synchronization bit
pattern ‘111’ as the header and footer. Due to the rolling shutter effect, we get a sequence
of bit patterns in each data packet depicted in Figure 4.

3.3. Proposed SVM Classifier Assisted Intelligent Receiver
3.3.1. LED Region Detection by a Convolutional Neural Network

The workflow of the proposed intelligent receiver system is depicted in Figure 5.
The receiver system consists of a CMOS based image sensor that collects optical signals
transmitted through the optical channel. We have used the ’Microsoft LifeCam Cinema
Webcam’ as the receiver during the experiment. Since the captured color image is formed
by the combination of three color channels, we have denoted the capture image by Iu×v×3,
where u and v represent the height and width of the images. The captured image is resized
into 512× 512, and the resized image is given as an input to the object classifier designed by
the CNN algorithm. These algorithms are eligible to extract image features automatically
and can learn from those features effectively. To perform the LED detection, the CNN
model has been trained by the images of our used LED captured in our lab environment.
We have taken 2500 images to build our data set. Images from different angles and distances
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are considered in our data set to train the CNN model more accurately. The CNN model
recognizes all light source regions I1

u1×v1×3, I2
u2×v2×3, I3

u3×v3×3, . . . , In
un×vn×3, where n is

the total number of LEDs in the frame by performing the functions like region proposal,
feature extraction, classification, etc. Several layers inside CNN, namely convolutional
layers, pooling layers, and fully connected (FC) layers, perform those functions, but the
convolutional layer is the main part of CNN. The convolutional layers are composed of a
convolutional kernel that is used to generate the proposed region and feature maps from
the original image. The convolutional kernel can be of many sizes. In our training phase,
we have used ten 4× 4 convolutional filters in the first convolutional layer and twenty
4× 4 convolutional filters in the second convolutional layer. The convoluted output is
estimated by the following equation [30]:

y =
q−1

∑
q=0

p−1

∑
p=0

(wpqxa+1,b+p + Θ), (0 ≤ a ≤ a f , 0 ≤ b ≤ b f ). (8)

Figure 4. Illustration of the FSOOK modulation technique and data packet architecture.

Figure 5. Workflow inside the proposed intelligent OCC receiver.
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Max pooling with a 2× 2 filter and 2 strides is further used in another two layers to
reduce the spatial size of the warped images and computation in the network resulting
in being less prone to overfitting preserving all features. This pooled feature map was
flattened into one column while passing through the FC layer. Here, the FC layer tries to
determine the most correlated features of a particular class. The non linear softmax function
is used to classify LEDs at the dense layer from other objects in the image frame. The
’Adam’ optimizer has been used to optimize our CNN model. As part of the optimization
process, the cost function, conventionally called loss function, is required to calculate the
error at each cycle of the training of our CNN model. Among various cost functions, we
have considered ’binary cross-entropy’ function in our work since we needed to recognize
whether the object in the image frame is the LED or not. Now, using the chosen optimizer
and cost function, the CNN model tries to reduce the error by updating weights in each
layer of the neural network.

3.3.2. Accurate Data Transmitting LED Region Separation

In Figure 5, the detected LED regions with bounding boxes are the output of the CNN.
The bounding box LED objects are then processed employing several image processing
techniques. At first, each LED image is converted into a grayscale format fp×q to specify
the distinct pixel intensity values of the stripes generated in the image sensor. Next, a
2× 2 kernel full of ones is used to reduce the shape of the projected stripes by removing
small anomalies near the stripe boundaries. To make the receiver an intelligent and robust
retrieval system, the system needs to respond by differentiating accurate LEDs as quickly
as possible. Therefore, the selection of features is very important. The extraction of
appropriate features is very challenging since the objects are almost the same. LED objects
of the same type can have a different shape, stripe pattern based on the communication
distance, camera frame rate, and mark and space frequency. To analyze the different
geometrical shapes, computation of the features from the contour line has been considered
significant distinguishable features [31]. Contours are the outline that is designed using the
edges of the object to represent the shape. They contain some geometrical attributes that
are effective to recognize and segment objects. After drawing a contour on each separated
region, a feature set [M00, ST , PR, NL] is formed that includes zero order moments or area
of LED region, no. of stripes per LED region, perimeter of combined stripes contour, and
no. of line segment of combined stripes contour, respectively. Based on the extracted input
features, a trained SVM classifier detects accurate data transmitting LED regions.

3.3.3. Data Decoding Method from the Accurate LED Region

After recognizing accurate data transmitting LED regions, the data bits have been
decoded from the accurate LED regions by analyzing the produced bright stripes and dark
stripes on the image frame. The overall demodulation scheme of our proposed intelligent
receiver is shown in Algorithm 1. In Algorithm 1, the detection of LED regions using CNN
to the separation of accurate data transmitting LED region have been pointed out from step
1 to step 9. From each separated region, normalized intensity value Zi is measured where
i specifies the i th row of total p no. of rows in the separated accurate LED region. Now,
the median value of the normalized intensities is calculated and set as threshold Zth. Now,
we have assigned Zi = ‘1’ if Zi > Zth and vice versa to represent the ‘ON’ state, i.e., bright
stripe and the ‘OFF’ state, i.e., dark stripe, respectively. In our experiment, the frequency
to encode bit ’1’ is chosen as double that of the frequency to encode bit ‘0’. Therefore, the
time period for the encoding bit ‘1’ is half that of encoding bit ’0’ as well. This leads to
the variation in the no. of pixel rows in the image frame, where bright stripes and dark
stripes are generated, concerning bit ‘0’ and bit ‘1’. Thus, we have calculated the no. of
rows, which is represented as width, of successive ‘OFF’ and ‘ON’ states sequentially using
‘OpenCV’ module in Python, and they are denoted as W0 and W1. Finally, if both the width
is greater than the ratio (δ) of each row read out time and half of the time period to encode
bit ‘1’, the output is derived as bit ‘0’; otherwise, it is derived as bit ‘1’.
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Algorithm 1 Demodulation Scheme at the Receiver.
Input: Captured image of all LEDs state.
Output: xo = “11101011...” from accurate data transmitting LED region.

1: read each RGB image Iu×v×3;
2: detection of each LED region by CNN and separate regions

I1
u1×v1×3, I2

u2×v2×3, I3
u3×v3×3, . . . , In

un×vn×3;
3: convert to grayscale image Iu×v×3 → fp×q(gray);
4: draw contour on each of the f n

p∗q;
5: for i = 0 : no. of separated LED region do
6: extract features [M00, ST , PR, NL];
7: pass features to trained SVM classifier;
8: recognize accurate data transmitting LED region;
9: end for

10: normalize each row intensities’ values ∑
p
i=1 Zi;

11: set median of normalized values as threshold Zth;
12: for i = 0 : p do
13: if Zi > Zth then
14: assign Zi = “1”;
15: else
16: assign Zi = “0”;
17: end if
18: calculate width W0 of successive Zi = “0” and width W1 of successive Zi = “0”;
19: end for
20: if W0 > δ and W1 > δ then
21: set xo = “0”;
22: else
23: set xo = “1”;
24: end if

4. Data Set Preparation

The prime objective of our proposal is to enable the camera to intelligently determine
data transmitting LED and communicate with this LED. Hence, the camera needs a trained
AI-based classifier by which it can perform the required task. To train the classifier, a data
set is needed which contains some necessary features from the bounding boxes of detected
LED regions. In order to build the data set, 1000 preprocessed bounding box images of the
LED region are used. The experimental parameters that are used to extract the features are
listed in Table 2. Input feature vectors are constructed considering different situations such
as varying distance from LED to the camera and moving LED from left to right. However,
before performing feature extraction, a closing operation is applied on the selected regions
to combine all the neighboring stripes, and the contour is drawn on the shape by combined
stripes. It is a morphological filtering technique that is composed of gray level dilation
followed by gray level erosion taking the input of the selected regions and a structuring
element. The closing operation can be expressed as [32]

f n
p×q · bm×n = ( f n

p×q⊕bm×n) · bm×n, (9)

where f n
p×q is nth region, and bm×n is the structuring element of which m, n� a, b.

In Figure 6, we have presented a single frame where the shape of combined stripes
contour is shown. For each projected LED, either data transmitter or unwanted LED, we
found this type of shape of the contour formed based on the combined stripe. Analyzing
the geometrical pattern of the contour, there is considerable change in the pattern when the
communication distance is varied or mark and space frequency have been changed. Hence,
based on the contour pattern of the data transmitting LED region and other unwanted LED
regions, we have selected several features that are elaborately described in the next section.
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Table 2. Parameters used in the implementation of the proposed model.

Parameter Value

LED diameter 10 mm
Camera exposure time 15.6 ms, 3.90 ms, and 976.6 µs
Camera frame rate 30 fps
Camera image resolution 1280× 720
Mark and space frequency 4000 kHz and 2000 kHz
Learning rate 0.001
No. of epoch 30
Kernels RBF, linear, polynomial, and sigmoid

4.1. Zero Order Moments or Area of LED Region (M00)

The moment is a unique feature that defines the relationship between pixels of the
corresponding objects with their surroundings. For many years, this feature is being used
to recognize objects from image frames. Fundamentally, it computes the weighted average
intensity of the pixels, and, therefore, it cannot be applied on a single pixel except a definite
area of the projected object [33]. For an image, fp×q the moment of order (x, y) can be
defined as

Mxy =
m

∑
p=0

n

∑
q=0

σxpyq fp×q; x, y = 0, 1, 2, . . . , (10)

where σxpyq denotes moment weighting kernel. Different image properties lie in the raw
moments. In our case, we have denoted moment of order (0, 0) as an area of the combined
stripes for data transmitting LED.

4.2. No. of Stripes per LED Region (St)

Since LED modulated data results in dark and bright stripes in the captured image,
the number of stripes and the width plays an important role in recovering the data stream
from the image frame. The number of stripes is varied proportionally with the size of LED,
mark, and space frequency of LED, and also the distance between the camera and LED [16].
It is noticed that high-speed cameras with high read-out capability outperform in terms
of communication speed. The width of the bright and dark stripes can be theoretically
determined as [19]:

ST =
1

f tr
, (11)

where f represents mark or space frequency, and tr is the time needed to read-out a single
pixel of the image.

4.3. Perimeter of Combined Stripes Contour (Pr)

A contour is drawn considering all the stripes generated by the LED blinking and
rolling shutter effect of the camera. Hence, the arc length of the enclosed contour varies
according to the number of stripes. Thus, the perimeter is also considered a significant
feature for our data set.

4.4. No. of Line Segment of Combined Stripes Contour (NL)

In 1973, the Douglas–Peucker algorithm developed by D. Douglas and T. Peucker
splits a curve into line segments depending upon the specified precision (ε). It determines
the dominant point on the curve by digitizing the original curve and generates a similar
curve of fewer points [34]. We have used this algorithm to relate the number of line
segments with the no. of stripes. It is noticeable that, with the variation of LED on-off
frequency and distance, getting accurate contour of the object is difficult. Thus, errors may
be present in determining the number of stripes. Combining all stripes, we segmented
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the combined contour using the Douglas–Peucker algorithm based on the corner point of
each stripe.

The scatter plot of the selected features is shown in Figure 7. In the figures, the
distribution of features shows a clear distinction among data transmitting LED and un-
wanted LED which affirms our motive to integrate an SVM classifier in the conventional
receiver system.

Figure 6. Example of a single LED image frame where all the generated stripes are combined together
and a contour is formed.

Figure 7. Scatter plot of selected features (a) area vs. no. of stripes per LED region; (b) area vs. perimeter of the combined
stripes contour; and (c) area vs. no. of the line segment of the combined stripes contour.
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5. Experimental Results

In this section, the performance of our proposed scheme for OCC receivers has been
demonstrated explicitly. The overall performance has been measured experimentally,
and the experiments were conducted considering different conditions. We have taken
a maximum of three LEDs as data transmitting LEDs for our experiment. The distance
among transmitters was set to 5 cm when multiple transmitters were used during the
experiment. The whole decoding procedure of the receiver side has been performed
and analyzed in the Python 3.7 environment. Firstly, we have examined the classifier
performance to classify and recognize the accurate data transmitting LEDs by varying
kernel functions of the SVM classifier. During the experiment, we have used three LEDs
among which the no. of actual data transmitting LEDs have been varied. We have
also varied the communication distance (10 cm to 60 cm) to justify the effectiveness of
our scheme. However, to examine the efficiency of separating accurate LED regions
intelligently, the SVM classifier performance has been investigated demonstrating the
receiver operating characteristic (ROC) curve and other key performance parameters, such
as precision, recall, and F1 score. These parameters are defined as

Precision =
True positive

True positive + False positive
=

True positive
Total predicted positive

,

Recall =
True positive

True positive + False negetive
=

True positive
Total actual positive

,

F1 score = 2× Recall × Precision
Recall + Precision

.

(12)

We have also evaluated the performances from the communication perspective. It
shows satisfactory performance on the BER, data rate, and inter-symbol interference (ISI).

5.1. Classifier Performance

We have classified accurate data transmitting region from all the possible captured
LED regions detected by CNN using the trained SVM classifier. Based on the selected
features, the SVM classifier provides an accurate LED region for demodulation. Thus, the
other communication performances are greatly dependent on the classification that results
in separated LED regions. Therefore, to evaluate classifier performance, we have shown
the ROC curve for different kernel functions as shown in Figure 8. The communication
distance and the exposure time Te were set to 30 cm and 976.6 µs, respectively. In addition,
two LEDs have been used where one was data transmitting LED. The area measured under
the ROC curve known as AUC is larger for the RBF kernel than others. Consequently, the
classification accuracy is also larger for the RBF kernel.

In Table 3, we have presented overall accuracy and measured AUC values considering
the different kernels and no. of data transmitting LEDs. To evaluate classifier performance,
one additional non-data transmitting LED has been used with the data transmitting LEDs
for each case. During the experiment, for a certain number of image frames, we have
calculated the amount of ’TRUE’ data transmitting LED and amount of ’FALSE’ data
transmitting LED recognized by the classifier. We have also calculated the amount of ’TRUE’
non-data transmitting LED and amount of ’FALSE’ non-data transmitting LED. Later, we
have calculated accuracy and AUC using programming in the Python 3.7 environment.
The maximum accuracy is recorded as 94.92% for the RBF kernel and the lowest accuracy
of 79.87% is achieved for the sigmoid kernel. Moreover, we have also given a bar plot to
show the comparison among key performance parameters varying exposure time Te, while
the amount of data transmitting LED was one, as shown in Figure 9. For the exposure time
976.6 µs, all the performance indexes are high. However, the achieved performance has
validated that our scheme is capable of recognizing accurate LED regions.
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Figure 8. ROC curve of SVM classifier for (a) RBF kernel; (b) linear kernel; (c) polynomial kernel;
and (d) sigmoid kernel.

Figure 9. Comparison among precision, recall, F1 score varying exposure time (Te).

Table 3. Classifier performance (accuracy and AUC) analysis with a different no. of LEDs.

No. of Data Transmitting LED Linear RBF Polynomial Sigmoid

One
Accuracy

(%) 92.09 94.92 89.45 80.93

AUC 0.89 0.94 0.87 0.79

Two
Accuracy

(%) 90.05 93.10 87.91 81.36

AUC 0.85 0.91 0.83 0.81

Three
Accuracy

(%) 87.76 89.91 88.13 79.87

AUC 0.84 0.88 0.85 0.77
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5.2. BER, Data Rate, and ISI Analysis

After classifying accurate data transmitting LED, data bits have been decoded from
the cropped region using a decoding algorithm described in Algorithm 1. We have decoded
data and evaluated the communication performance of our proposed intelligent receiver.
According to our scheme, the receiver intelligently selects accurate LED regions so the prob-
ability of interference from other sources or reflection from the surrounding surface have
been reduced. Figure 10 depicts the measured BER performance against communication
distance for the receiver employing only an SVM classifier, only CNN, and our proposed
scheme. A significant reduction in BER has been observed when the SVM classifier along
with CNN is used. At the maximum distance of 60 cm, the BER increases up to 7.9× 10−4,
which is below the forward error correction (FEC) limit of 3.8× 10−3. At this point, only
the SVM based receiver shows BER above the FEC limit, whereas the CNN based receiver
is very close to the FEC limit. It signifies the effectiveness of our proposed scheme.

Figure 10. Comparison of bit error rate (BER) among receivers using only SVM, only CNN, and our
proposed scheme.

The BER performance varies based on exposure time. The effect of changing exposure
time Te on BER for a single data transmitting LED keeping two unwanted LED regions has
also appeared in Figure 11a. With the increase of exposure time, BER also increases due to
the interfering lights from other sources. Although BER has increased with the increase
of the exposure time Te, the maximum BER at the maximum distance is below the FEC
limit in our scheme. We have also investigated BER performance by varying the number
of LEDs, as shown in Figure 11b. When the amount of actual data transmitting LED
increases, efficient separation of LED regions has an enormous influence on BER. Therefore,
a significant change in BER has been found when the amount of data transmitting LED has
been increased from one to three. When the amount of data transmitting LED is three, the
BER has been achieved around 3.5× 10−3 for Te = 976.6 µs.

Furthermore, the eye diagram depicted in Figure 12 at Te = 976.6 µs has ensured
the low ISI at the receiver side. During multiple data transmitting LED region cases, if
the receiver fails to differentiate distinct regions accurately, recovering a distinct pulse for
a distinct bit can be difficult for the receiver. The large eye opening affirms the low ISI
presence at separated regions classified by the SVM classifier.

Since the SVM classifier separates LED regions and data are decoded from the sepa-
rated regions, it has a significant effect on data rate too. When communication distance is
changed, some low intensity stripes may cancel out from the detected regions. A distinctive
change in data rate is caused due to the change in no. of stripes in the LED regions. With
the change in no. of LEDs, data rate variation against communication distance is shown
in Figure 13. For a single LED, the maximum estimated data rate is 960 bps at distance
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10 cm, and 830 bps is the lowest data rate, which is achieved at 60 cm for the three data
transmitting LEDs. The data rate can be augmented significantly using an LED array with
a BER lower than the FEC limit.

Figure 11. BER analysis by varying (a) exposure time (Te) and (b) no. of data transmitting LEDs.

Figure 12. Eye diagram of SVM assisted intelligent OCC receiver while exposure time (Te) is 977.6 µs.

Figure 13. Data rate comparison varying no. of LEDs while Te is 977.6 µs.



Sensors 2021, 21, 4283 15 of 17

However, some stripes can be recovered further by updating in the image processing
steps at a fixed distance. It causes a change in the no. of erroneous and accurately decoded
bits. Therefore, a significant change in the data rate and BER have been observed. Figure 14
illustrates BER vs. data rate performance while communication distance was 50 cm for
three different cases. At each case, two LEDs were in data transmitting mode, and one was
used as an unwanted region in the image frame. For achieving 960 bps, BER recorded for
SVM-based receiver is beyond the FEC limit, while the CNN-based receiver shows more
closeness to the FEC limit. Our scheme-based receiver can decode data at 960 bps at a BER
of 3.5× 10−3.

Figure 14. BER against data rate comparison among our scheme based classifier, receiver using only
CNN classifier, and receiver using only SVM classifier.

6. Conclusions

In the conventional OCC system, only CNN has been used to detect LED regions
irrespective of any unwanted LED regions or multiple LED regions from multiple users.
In this article, we have designed a scheme by which the camera receiver can differentiate
accurate data transmitting LED among unwanted LED leveraging SVM classifiers addi-
tionally for the first time. The FSOOK modulation scheme has been used to modulate data
that is sent by blinking of the LED accordingly. We have evaluated the overall performance
elaborately demonstrating the ROC, and other key performance parameters of the classifier,
as well as other communication performance features, such as BER, data rate, and ISI. The
ROC of the SVM classifier affirms its efficacy to accurately classify LED. The BER analysis
exhibits 10 times lower BER at the maximum communication distance (60 cm). In addition,
by the eye diagram, we have also investigated ISI of the decoded data from the recognized
LED region. Moreover, the data rate against a distance varying no. of LEDs has been
observed for our proposed scheme. In addition, BER against the data rate is also discussed
to ensure the necessity of our proposed scheme. However, it is perceptible from the overall
analysis that our scheme is a novel approach for reliable OCC communication. Based on
our scheme, a new frontier is expected to be outstretched for the OCC to deploy in future
communication technology.
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