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abstract

PURPOSE The availability of increasing volumes of multiomics, imaging, and clinical data in complex diseases
such as cancer opens opportunities for the formulation and development of computational imaging genomics
methods that can link multiomics, imaging, and clinical data.

METHODS Here, we present the Imaging-AMARETTO algorithms and software tools to systematically interrogate
regulatory networks derived from multiomics data within and across related patient studies for their relevance to
radiography and histopathology imaging features predicting clinical outcomes.

RESULTS To demonstrate its utility, we applied Imaging-AMARETTO to integrate three patient studies of brain
tumors, specifically, multiomics with radiography imaging data from The Cancer Genome Atlas (TCGA) glio-
blastoma multiforme (GBM) and low-grade glioma (LGG) cohorts and transcriptomics with histopathology
imaging data from the Ivy Glioblastoma Atlas Project (IvyGAP) GBM cohort. Our results show that Imaging-
AMARETTO recapitulates known key drivers of tumor-associated microglia and macrophage mechanisms,
mediated by STAT3, AHR, and CCR2, and neurodevelopmental and stemness mechanisms, mediated by
OLIG2. Imaging-AMARETTO provides interpretation of their underlying molecular mechanisms in light of
imaging biomarkers of clinical outcomes and uncovers novel master drivers, THBS1 and MAP2, that establish
relationships across these distinct mechanisms.

CONCLUSION Our network-based imaging genomics tools serve as hypothesis generators that facilitate the
interrogation of known and uncovering of novel hypotheses for follow-up with experimental validation studies.
We anticipate that our Imaging-AMARETTO imaging genomics tools will be useful to the community of bio-
medical researchers for applications to similar studies of cancer and other complex diseases with available
multiomics, imaging, and clinical data.
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INTRODUCTION

Major collaborative initiatives have unleashed a myriad
of multiomics, clinical, and imaging data for large
patient cohorts in studies of cancer, such as multio-
mics and clinical data from The Cancer Genome Atlas
(TCGA)1 and the Clinical Proteomic Tumor Analysis
Consortium (CPTAC)2 and radiographic and histopa-
thology imaging data from The Cancer Imaging Ar-
chive (TCIA).3 For example, the brain tumor section of
TCGA provides multiomics profiles, including RNA
sequencing (RNA-seq), DNA copy number variation,
and DNA methylation data for approximately 500

patients with glioblastoma multiforme (GBM)4,5 and
approximately 500 patients with low-grade glioma
(LGG).6 The TCIA Visually AcceSAble Rembrandt
Images (VASARI)7-9 project curated a feature set of
approximately 30 magnetic resonance imaging
(MRI)–derived features on the basis of specialists’
review that is available for approximately 200 patients
with GBM and approximately 180 patients with LGG.

A trade-off exists between the number of patients in-
cluded in a data set and the depth of analysis that has
moved to increasing levels of refinement, ranging from
studying tissues, to cell populations, to single-cell10-12
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sequencing. For example, the Ivy Glioblastoma Atlas Project
(IvyGAP)13-15 provides 270 transcriptomic profiles refined
through histopathology imaging and annotated by a con-
sensus of histopathologists for studying anatomic structures
and cancer stem cells for a subset of approximately 30
patients from the TCGA GBM cohort.

In parallel, quantitative imaging provides tools that are
capable of processing large volumes of radiography and
histopathology images, such as deep convolutional neural
networks. The promising field of radiogenomics is based on
the idea that entities at different scales, such as molecules,
cells, and tissues, are linked to one another and, therefore,
may be modeled as a whole.16 Studies have shown that
quantitative image features extracted from radiography
imaging data are associated and predictive of gene ex-
pression patterns from tissues of matched tumors.17-20

Recent efforts further expand this work to link multio-
mics data with both radiography and histopathology
imaging,21,22 toward developing methods for imaging
genomics.

These large archives of multimodal and multiscale data
sources provide complementary insights into the mech-
anistic basis of cancer, toward better diagnosis and
treatment, and open unprecedented modeling opportu-
nities to link multiomics data with clinical and imaging
phenotypes. As a solution to imaging genomics, we in-
troduce the Imaging-AMARETTO software tools to sys-
tematically interrogate networks derived from multiomics
data for relevance to imaging biomarkers of clinical out-
comes. We demonstrate the utility of these imaging ge-
nomics tools by integrating three patient brain tumor
databases, including the TCGA GBM and LGG and the
IvyGAP GBM cohorts. We uncover known and novel
drivers of tumor-associated microglia and macrophage
mechanisms, and neurodevelopmental and stemness

mechanisms, with interpretation of the underlying mo-
lecular mechanisms in light of imaging biomarkers of
clinical outcomes.

METHODS

The *AMARETTO Software Architecture

The *AMARETTO framework (Fig 1) provides tools for
network-based fusion of multiomics, clinical, and imaging
data within and across multiple patient studies of cancer.
Specifically, this framework offers modular and comple-
mentary solutions to multimodal and multiscale aspects
of network-based modeling within and across studies
of cancer through the AMARETTO and Community-
AMARETTO algorithms, respectively. In this work, we
present an imaging genomics software toolbox that com-
prises the newly formulated Imaging-AMARETTO and
Imaging-Community-AMARETTO algorithms that together
facilitate interpretation of patient-derived multiomics net-
works for their relevance to radiography and histopathology
imaging biomarkers of clinical outcomes. Resources of the
*AMARETTO23 software toolbox are available through
GitHub, Bioconductor, R Jupyter Notebook, GenePattern,
GenomeSpace, and GenePattern Notebook.

Imaging-AMARETTO From a User’s Perspective

The workflow for multiomics, clinical, and imaging data
fusion includes utilities to learn networks from individual
patient cohorts using Imaging-AMARETTO and to link
networks across multiple related patient cohorts using
Imaging-Community-AMARETTO. Together, these work-
flows allow users to integrate patient tumor-derived mul-
tiomics or transcriptional profiles with clinical and
molecular characteristics and radiography and histopa-
thology imaging features within and across related patient
cohorts. The Imaging-AMARETTO source code in R is
available from GitHub.24 An R Jupyter Notebook that

CONTEXT

Key Objective
Imaging-AMARETTO provides software tools for imaging genomics through multiomics, clinical, and imaging data fusion

within and across multiple patient studies of cancer, toward better diagnostic and prognostic models of cancer.
Knowledge Generated
Our network-based imaging genomics tools serve as powerful hypothesis generators that facilitate the testing of known

hypotheses and uncovering of novel hypotheses for follow-up with experimental validation studies. Our case study that
integrated multiple studies of brain cancer illustrates how Imaging-AMARETTO can be used for imaging diagnostics and
prognostics by interrogating multimodal and multiscale networks for imaging biomarkers to identify their clinically relevant
underlying molecular mechanisms.

Relevance
We anticipate that our Imaging-AMARETTO tools for network-based fusion of multiomics, clinical, and imaging data will

directly lead to better diagnostic and prognostic models of cancer. In addition, our tools for network biology and medicine
will open new avenues for drug discovery by integrating pharmacogenomics data into these networks, toward better
therapeutics of cancer.
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provides stepwise guidelines for running the source code
directly from GitHub for its application to brain cancer is
available from Google Colaboratory.25

Imaging-AMARETTO supports multiple workflows: a pa-
tient cohort with only transcriptional profiles and a patient
cohort with multiomics profiles. When only RNA-seq data
are available for a cohort, a predefined list of candidate
driver genes is required, which can be selected or uploaded
by the user. Predefined lists of known drivers are available
for collections of transcription factors (TFutils26,27 and
Molecular Signatures Database [MSigDB]28,29 C3) and
cancer driver genes (COSMIC30 Cancer Gene Census,

MSigDB Hallmark). When genetic or epigenetic data are
also available, they can help to guide the selection of
candidate driver genes. Potential cancer drivers are
identified as somatic recurrent cancer aberrations from
genetic and epigenetic data sources using GISTIC31 and
MethylMix.32,33 The GISTIC algorithm is used to identify
copy number amplifications and deletions from DNA copy
number variation data. The MethylMix algorithm is used to
identify hyper- and hypomethylated sites from DNA
methylation data. The user also specifies the number of
regulatory modules to be learned from the data and the
percentage of most varying genes to be included in the
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FIG 1. The Imaging-AMARETTO and Imaging-Community-AMARETTO software architecture. The overall framework offers modular and com-
plementary solutions to multimodal and multiscale aspects of network-based modeling within and across multiple studies of cancer. Specifically,
(1) The AMARETTO algorithm learns networks of regulatory modules or circuits (circuits of drivers and target genes) from functional genomics or
multiomics data (eg, DNA copy number variation [CNV], DNA methylation [MET], RNA gene expression [RNA]) within each study of cancer (eg,
within The Cancer Genome Atlas [TCGA] glioblastomamultiforme [GBM], Ivy Glioblastoma Atlas Project [IvyGAP] GBM, or TCGA low-grade glioma
[LGG] cohorts separately); (2) the Community-AMARETTO algorithm learns communities or subnetworks of regulatory circuits that are shared or
distinct across networks derived from multiple studies of cancer (eg, across the TCGA GBM, IvyGAP GBM, and TCGA LGG cohorts); and (3) the
Imaging-AMARETTO and Imaging-Community-AMARETTO algorithms associate these circuits (AMARETTO) and subnetworks (Community-
AMARETTO) to clinical, molecular, and imaging-derived biomarkers by mapping radiography and histopathology imaging data onto the networks
and assessing their clinical relevance for imaging diagnostics.
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analysis. Networks of regulatory modules are inferred from
RNA-seq data using an iterative optimization procedure.
The algorithm34-37 starts with an initialization step that
clusters the genes into modules of co-expressed target
genes. For each of these modules, we learn the regulatory
programs as a linear combination of candidate driver genes
that best predict their target genes’ expression using Elastic
Net–regularized regression.38 Target genes are then reas-
signed to the regulatory programs that best explain their
gene expression levels as estimated by the predictive power
of the regulatory programs’ respective regularized re-
gression models when predicting the target genes’
expression.34-37 The algorithm iterates over these two steps
until convergence. This analysis generates a network of
regulatory modules, defined as a group of target genes
collectively activated or repressed by their associated
drivers.

Imaging-Community-AMARETTO: Linking

Imaging-AMARETTO Networks Across Cohorts

To compare and integrate networks of regulatory modules
across multiple cohorts, the user can submit two or more
Imaging-AMARETTO networks and optionally add known
networks as collections of signatures to guide subnet-
work learning and interpretation, such as immune cell
(CIBERSORT39,40) and stemness41-43 signatures. The
algorithm34 creates a module map of all pairwise com-
parisons between modules across multiple networks to
assess the extent of overlapping genes between all pairs
of modules (−log10 P value, hypergeometric test). This
module map is partitioned using an edge betweenness
community detection algorithm (Girvan-Newman44) that
groups the modules into subnetworks or communities
across the multiple networks. These communities repre-
sent shared behavior across two or more cohorts, and
modules not assigned to communities are reported as
distinct behavior specific for each cohort. This analysis
generates subnetworks or communities of regulatory
modules that are shared or distinct across multiple
Imaging-AMARETTO networks derived from multiple co-
horts and further refines shared and distinct behavior of
modules with respect to their specific drivers.

Downstream Utility for Interpreting Clinical and

Experimental Outcomes

We developed several downstream utilities that facilitate
interpretation of the Imaging-AMARETTO networks, in-
cluding functional characterization, driver validation, clin-
ical correlation, and imaging association. To functionally
characterize modules and communities, we provide sig-
natures from known gene sets databases (MSigDB) that
can be augmented with user-defined signatures, such as
immune cell,39,40 stromal cell,45 and stemness41-43 signa-
tures. Regulatory modules and communities are assessed
for enrichment in these known functional categories
(hypergeometric test).

To validate the predicted drivers as regulators of their
targets in modules and communities, we assess whether
activator or repressor drivers have a direct or indirect im-
pact on their targets using experimental genetic pertur-
bation data. The user can test signatures derived from
genetic perturbation experiments, such as signatures of
target genes bound to transcription factors measured in
protein-DNA–binding chromatin immunoprecipitation
sequencing (ChIP-Seq) experiments (Encyclopedia of
DNA Elements,46 ChIP-X Enrichment Analysis,47

Harmonizome48) or defined by motif binding (MSigDB
C3), or signatures of genes induced or repressed in re-
sponse to genetic knockdown or overexpression experi-
ments of drivers (Library of Integrated Network-Based
Cellular Signatures [LINCS]/Connectivity Map [CMAP],49,50

Harmonizome).

To characterize regulatory modules for clinical outcomes
and molecular biomarkers, the user can submit pheno-
types known for all or subsets of samples and specify the
statistical hypothesis tests to use for each phenotype. Ex-
amples of clinical and molecular phenotypes include
survival data, molecular subclasses (eg, mesenchymal,
proneural, or classical GBM,51 astrocytoma or oligoden-
droglioma LGG) and biomarkers (eg, IDH mutation, EGFR
amplification, MGMT methylation status). Our imple-
mentation supports survival analysis using Cox proportional
hazards regression, nominal two-class and multiclass
analysis using the Wilcoxon rank sum and Kruskal-Wallis
tests, and continuous or ordinal analysis using the Pearson
linear and Spearman rank correlation tests. These clinical
and molecular phenotype associations are assessed for
each of the regulatory modules in individual cohorts and
combined for communities across cohorts.

Finally, to interpret regulatory modules for relevance to
radiography or histopathology imaging features, associa-
tions with these imaging features can be assessed. Ex-
amples of radiography and histopathology phenotypes
include the 30 TCIA VASARIMRI features defined by expert
consensus for the TCGA GBM and LGG cohorts, the
IvyGAP13-15 histopathology imaging features characterizing
RNA-seq samples refined for anatomic structures and
cancer stem cells defined by expert consensus for the
IvyGAP GBM cohort, and radiography and histopathology
imaging features derived using quantitative imaging
methods.20,52-54

Users are provided with all results in the form of hypertext
markup language (HTML) reports that are generated in an
automated manner for individual cohorts using Imaging-
AMARETTO and multiple cohorts using Imaging-Commu-
nity-AMARETTO. These reports include searchable tables
within and across modules and communities, including
statistics (ie, coefficients, P values, false discovery rate
[FDR] values) for functional enrichment, driver validation,
clinical and molecular biomarkers, and radiography and
histopathology imaging features. These reports also include

Gevaert et al
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heat map visualizations for modules (Figs 2-6) and graph
visualizations for communities (Appendix Fig A1). Source
code is also provided to convert Imaging-AMARETTO and
Imaging-Community-AMARETTO networks for depositing
networks in the NDEx55 network database, taking advan-
tage of its interactive features.

RESULTS

To demonstrate its utility, we applied the Imaging-
AMARETTO workflow to three studies of brain tumors:
multiomics profiles from approximately 500 patients
and approximately 30 radiography MRI features for
approximately 200 patients from the TCGA GBM
cohort,56 multiomics profiles from approximately 500
patients and approximately 30 radiography MRI fea-
tures for approximately 180 patients from the TCGA
LGG cohort,56 and for a subset of approximately 30
patients from the TCGA GBM patient cohort 270 tran-
scriptomic profiles refined through histopathology im-
aging and annotated with imaging features that
characterize anatomic structures for 122 samples and
cancer stem cells for 148 samples were used from the
IvyGAP GBM project.57

Disease progression in glioma is characterized by in-
filtration of resident microglia and peripheral macrophages
in the tumor microenvironment and by pervasive infiltration
of tumor cells in the healthy surroundings of the tumor.58

Understanding microglia and macrophage physiology and
its complex interactions with tumor cells can elucidate their
roles in glioma progression and uncover potentially in-
teresting druggable targets.

Our results show that Imaging-AMARETTO captures these
hallmarks of glioma, for example, key drivers of tumor-
associated microglia and macrophage mechanisms59

mediated by STAT3, AHR, and CCR2, and neuro-
developmental and stemness mechanisms60 that involve
OLIG2. Our findings recapitulate recent discoveries59,60 and
provide interpretation of the molecular mechanisms in light
of imaging biomarkers of clinical outcomes. Of note, Im-
aging-Community-AMARETTO also uncovers novel key
master drivers that are shared by these distinct key
mechanisms.

Imaging-AMARETTO Deciphers Clinical Relevance of

Multiomics Modules of Key Driver Mechanisms

Of clinical relevance, higher expression levels of STAT3,
AHR, and CCR2 modules (Figs 2, 3, and 6) are asso-
ciated with shorter survival in GBM and LGG, and these
modules also distinguish between molecular subclasses
of GBM and LGG. In GBM, the mesenchymal subclass is
represented by higher expression of these modules
compared with the classical and proneural subclasses.
In LGG, the astrocytoma subtype is characterized by
higher expression of these modules compared with the
oligodendroglioma subtype.

Diametrically opposed, higher expression levels of OLIG2
modules (Figs 4-6) are associated with better survival in
GBM and LGG, and these modules also distinguish be-
tween molecular subclasses of GBM and LGG but in the
opposite direction. In GBM the classical and proneural
subclasses are represented by higher expression of these
modules compared with the mesenchymal subclass. In
LGG, the oligodendroglioma subtype is characterized by
higher expression of these modules compared with the
astrocytoma subtype.

Imaging-AMARETTO Deciphers Histopathology Imaging

Biomarkers of Key Driver Mechanisms

Histopathology imaging features of anatomic structures
show that higher expression of STAT3, AHR, and CCR2
modules (Fig 3) distinguishes between samples derived
from the cellular tumor compared with those from leading
edge and infiltrating tumor regions. Higher expression of
OLIG2 modules distinguishes infiltrating tumor from cel-
lular tumor samples.

Features representative of cancer stem cells show that
higher expression of STAT3, AHR, and CCR2 modules
(Fig 3) distinguishes cancer stem-cell samples from their
non–stem cancer cell counterparts. This observation is
consistent across the distinct substructures of the cellular
tumor, including hyperplastic blood vessels, microvascular
proliferation, perinecrotic zone, and pseudopalisading cells
around necrosis. Diametrically opposed, higher expression
of OLIG2 modules distinguishes non–stem cancer cells
from cancer stem cells consistently across these micro-
vascular and necrosis substructures.

Imaging-AMARETTO Deciphers Radiography Imaging

Biomarkers of Key Driver Mechanisms

Radiographic image features of STAT3, AHR, and CCR2
modules (Figs 2 and 6) are highly consistent across GBM
and LGG. Higher expression is associated with a higher
proportion of enhancing tumor, lower proportion of non-
enhancing tumor, and less cortical involvement. These
modules also distinguish between measures of thickness of
enhancing margin in both GBM and LGG. In GBM these
STAT3, AHR, and CCR2 modules show higher expression
in association with eloquent cortex, while in LGG, they show
higher expression in association with enhancement
intensity.

Features of OLIG2 modules (Figs 4-6) are also consistent
across GBM and LGG and diametrically opposed to those of
STAT3, AHR, and CCR2. In both GBM and LGG, higher
expression is associated with a higher proportion of non-
enhancing tumor and lower proportion of enhancing tumor.
In GBM, higher expression is also associated within speech
receptive eloquent cortex, while in LGG, higher expression
is associated with cortical involvement and the presence
of cysts.

Imaging-AMARETTO: A Software Tool for Imaging Genomics in Cancer
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FIG 2. Imaging-AMARETTO predicts STAT3 and AHR as known drivers of tumor-associated microglia and macrophage mechanisms in low-grade glioma
(LGG). These heat maps present module 125 from The Cancer Genome Atlas (TCGA) LGG cohort that is a member of community 5 shared across the three
cohorts (TCGA glioblastoma multiforme [GBM], Ivy Glioblastoma Atlas Project GBM, and TCGA LGG). For all patient-derived samples (rows), the heat maps
show driver genes’multiomics profiles (columns), including DNAmethylation and RNA gene expression data (left panels); target genes’ (columns) RNA gene
expression levels (middle panel); and relevant biomarkers (columns), including clinical and molecular and imaging phenotypes (right panels). This module
includes eight driver genes (FNDC3B, IQGAP1, ANO6, ELK3, STAT3, TMOD3, CASP8, and ITPRIPL2) that jointly act as activator drivers of the 114 target
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Images magnetic resonance imaging features with this module shows that the proportion of enhancing tumor (f5; P = 8.96e-7; FDR = 0.0000134) and
enhancement intensity (f4; P = .0000395; FDR = 0.000494) are correlated with gene expression, while the proportions of nonenhancing tumor (f6; P =
.0000452; FDR = 0.00036) and cortical involvement (f20; P = .0175; FDR = 0.118) are inversely correlated with expression. Module gene expression levels
also distinguish between the thicknesses of enhancing margin (f11; P = .00137; FDR = 0.02).71 CNV, copy number variation.
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FIG 3. Imaging-AMARETTO predicts AHR and CCR2 as known drivers and identifies TBHS1 as a novel driver of tumor-associated microglia and macrophage
mechanisms in glioblastoma multiforme (GBM). These heat maps present module 64 from the Ivy Glioblastoma Atlas Project (IvyGAP) GBM cohort that is
amember of community 5 shared across the three cohorts (The Cancer GenomeAtlas [TCGA] GBM, IvyGAPGBM, and TCGA low-grade glioma). For all patient-
derived samples (rows), the heat maps show driver genes’ functional genomics profiles (columns), specifically RNA gene expression profiles (left panel); target
genes’ (columns) RNA gene expression levels (middle panel); and relevant biomarkers (columns), including clinical and molecular and imaging phenotypes
(right panels). This module includes nine driver genes (THBS1, CLEC2B, TNFAIP3, DSE, RNF149, MGP, CCR2, CSPG5, and CKB) that jointly act as activators
(eg, CCR2, a squamous cell carcinoma tumor-rejection antigen recognized by T lymphocytes and candidate for specific immunotherapy) and repressors
(CSPG5 and CKB) that drive the 87 target genes in this module, including AHR, CCR2, and THBS1. Association analyses confirm that higher expression of
module genes reflects samples derived from patients in the mesenchymal subclass (P = .000047; false discovery rate [FDR] = 0.00015), while lower expression
represents the classical subclass (P = .032; FDR = 0.067). Association of histopathology imaging features that study anatomic structures reveals that genes in
this module distinguish between the samples derived from distinct anatomic structures (P = 1.8e-15; FDR = 4.3e-15), (continued on following page)
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Imaging-Community-AMARETTO Uncovers Known Key

and Novel Master Drivers Linking Mechanisms

Recent discoveries of STAT3, AHR, and CCR2 as drivers
of tumor-associated microglia and macrophage
mechanisms59 are captured by modules in communities 1
and 5: TCGA LGG module 125 (Fig 2) shows hypo-
methylation of STAT3 as activator driver of AHR, with
higher expression associated with shorter survival and
astrocytoma LGG, and IvyGAP GBM module 64 (Fig 3)
shows that higher expression of AHR and CCR2 is as-
sociated with the presence of cancer stem cells and
microvascular substructures and suggests as novel acti-
vator driver, THBS1, that plays important roles in mac-
rophage infiltration and angiogenesis,61 vascularization,62

and tumorigenesis62 in glioma. OLIG2 as a driver of
neurodevelopmental and stemness mechanisms60,63,64 is
captured by modules in community 2: (1) TCGA LGG
module 91 (Fig 4) shows hypomethylation of OLIG2 as
activator driver of this module, with higher expression
associated with better survival, oligodendrocyte LGG,
and IDH1 wild-type status; (2) TCGA GBM module 75
(Fig 5) is driven by OLIG2, with higher expression asso-
ciated with proneural and classical versus mesenchymal
GBM, and suggests as novel repressor driver THBS1 and
as novel activator driver hypomethylation of neuronal
marker MAP2 that plays important roles in microtubule-
associated neurogenesis65,66 and reduces invasiveness67

and stemness68 in glioma; and (3) TCGA GBM module 98
(Fig 6) shows CCR2 and OLIG2 co-acting as activator and
repressor drivers, respectively, highlighting their di-
ametrically opposed behavior, with higher CCR2 and
lower OLIG2 expression associated with mesenchymal
versus proneural and classical GBM and suggesting as
novel repressor driver hypomethylation of MAP2, con-
sistent with observations in TCGA GBMmodule 75 (Fig 5).
Using knockdown experiments of THBS1 from LINCS/
CMAP, we confirmed that THBS1 acts as activator and
repressor of its targets in IvyGAP GBM module 64
(Fig 3) and TCGA GBM module 75 (Fig 5), respectively.

Thus, Imaging-Community-AMARETTO (Appendix Fig A1)
identified THBS1 andMAP2 as novel master drivers across
the three STAT3, AHR, CCR2, andOLIG2 communities that
provide new insights into how these distinct key mecha-
nisms are linked in glioma. Interesting avenues for further
exploration with experimental validation studies include

testing novel hypotheses of THBS1 and MAP2 as master
regulators of shared mechanisms that involve macrophage
infiltration, vascularization, tumorigenesis, invasion, stem-
ness, and neurogenesis in glioma.

DISCUSSION

We developed the Imaging-AMARETTO algorithms and
software tools for imaging genomics to facilitate systematic
interrogation of regulatory networks derived from multio-
mics data within and across related patient studies for their
relevance to radiography and histopathology imaging fea-
tures that predict clinical outcomes. We demonstrated its
utility through application to three patient studies of brain
tumors, including multiomics and radiography imaging
data from the TCGA GBM and LGG studies and tran-
scriptional and histopathology imaging data from the Ivy-
GAP GBM study.

Our results show that Imaging-AMARETTO recapitulates
known key drivers of tumor-associated microglia and
macrophage mechanisms (STAT3, AHR, and CCR2) and
neurodevelopmental and stemness mechanisms (OLIG2).
Imaging-AMARETTO provides interpretation of the un-
derlying molecular mechanisms in light of imaging bio-
markers of clinical outcomes, and Imaging-Community-
AMARETTO also uncovered novel master drivers THBS1
andMAP2 that establish relationships across these distinct
mechanisms.

Of note, the querying of the Imaging-AMARETTO networks
for modules whose elevated expression is inversely asso-
ciated with proportions of enhancing tumor and cancer
stem cells on radiography and histopathology imaging,
respectively, shows that these modules are putatively
coregulated by activator drivers OLIG2 and MAP2 and
repressor drivers STAT3, AHR, CCR2, and THBS1. Thus,
we hypothesize that restoration of the function ofOLIG2 and
MAP2 and attenuation of the expression of STAT3, AHR,
CCR2, and THBS1 potentially shift their target genes’ ex-
pression to more benign functional states associated with
better survival in GBM and LGG.

This case study illustrates how Imaging-AMARETTO can be
used for imaging diagnostics and prognostics by in-
terrogating multimodal andmultiscale networks for imaging
biomarkers to identify their clinically relevant underlying
molecular mechanisms. Our network-based imaging ge-
nomics tools are powerful hypothesis generators that

FIG 3. (Continued). where cellular tumor (CT; P = .0000078; FDR = 0.000013) samples and, in particular, with substructure microvascular proliferation
(CTmvp; P = 8.7e-14; FDR = 6.2e-13) and pseudopalisading cells around necrosis (CTpan; P = .018; FDR = 0.027) show elevated expression of module
genes, while leading edge (LE; P = .018; FDR = 0.023) and infiltrating tumor (IT; P = .0014; FDR = 0.0045) samples show lower expression. Association
of histopathology imaging features targeting cancer stem cells reveals that samples derived from cancer stem cells are generally associated with higher
module gene expression compared with nonstem cells (P = 4.0e-16; FDR = 8.6e-15) and, specifically, elevated expression in stem-cell v control
samples from substructures of the CT (P = .0000059; FDR = 0.00018), including hyperplastic blood vessels (CThbv; P = 1.2e-11; FDR = 5.2e-10),
perinecrotic zone (CTpnz; P = 3.4e-9; FDR = 3.4e-8), CTpan (P = .000087; FDR = 0.00032), and CTmvp (P = .0039; FDR = 0.029).72 CNV, copy
number variation.
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distinguishes between the histological subtypes (P = .00047; FDR = 0.00084), with lower expression representing the astrocytoma subtype (P = .00016;
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Association of Visually AcceSAble Rembrandt Images magnetic resonance imaging features with this module shows that the proportion of enhancing tumor
(f5; P = .016; FDR = 0.032) is inversely correlated with gene expression, while the proportion of nonenhancing tumor (f6; P = .032; FDR = 0.066), cortical
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variation.
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facilitate the testing of known hypotheses and uncovering of
novel hypotheses for follow-up with experimental validation
studies. We anticipate that our tools for network-based
fusion of multiomics, clinical, and imaging data will lead

to better diagnostic and prognostic models of cancer and
will open new avenues for drug discovery by integrating
pharmacogenomic data into these networks, toward better
therapeutics of cancer.69,70
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nonenhancing tumor (f6; P = .013; FDR = 0.060, with nonenhancing proportion, 33%, P = .0014; FDR = 0.027, and nonenhancing proportion, 5%,
P = .032; FDR = 0.17) and speech receptive eloquent cortex (f3; P = .046; FDR = 0.75) are correlated with the module gene expression.74
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FIG 6. Imaging-AMARETTO predicts CCR2 and OLIG2 as co-acting known activator and repressor drivers and MAP2 as novel repressor driver linking
tumor-associated microglia and macrophage mechanisms with neurodevelopmental and stemness mechanisms in glioblastomamultiforme (GBM). These
heat maps presentmodule 98 from The Cancer Genome Atlas (TCGA) GBM cohort that is a member of community 2 shared across the three cohorts (TCGA
GBM, Ivy Glioblastoma Atlas Project GBM, and TCGA low-grade glioma). For all patient-derived samples (rows), the heat maps show driver genes’
multiomics profiles (columns), including DNAmethylation and RNA gene expression data (left panels); target genes’ (columns) RNA gene expression levels
(middle panel); and relevant biomarkers (columns), including clinical andmolecular and imaging phenotypes (right panels). Thismodule includes 10 driver
genes (TEC, SPINT1, CCR2, MAN1A1, OLIG2, NPAS3, MAP2, RUFY3, NTRK3, and CSPG5) that jointly act as activator (TEC, SPINT1, CCR2, MAN1A1)
and repressor (OLIG2, NPAS3, MAP2, RUFY3, NTRK3, CSPG5) drivers of the 98 target genes in this module. Two driver genes, MAP2 and RUFY3, are
methylation driven (hypomethylation of MAP2 and hyper- and hypomethylation of RUFY3, inversely associated with their gene expression levels). Higher
expression of the genes in this module represents the mesenchymal molecular subclass (P = 5.1e-35; false discovery rate [FDR] = 5.9e-34), while lower
expression of genes in this module comprises the classical (P = 6.1e-15; FDR = 3.8e-14), G-CIMP (P = .000012; FDR = 0.000030), and proneural (P =
.00034; FDR = 0.00062) molecular subclasses. IDH1mutation status is associated with the module expression (P = .00069; FDR = 0.0019), with higher
expression levels representing the wild-type status. Association of Visually AcceSAble Rembrandt Images magnetic resonance imaging features with this
module shows that the proportion of nonenhancing tumor is inversely correlated (f6; P = .045; FDR = 0.13) with nonenhancing proportion , 33% (P =
.0086; FDR = 0.067) and the proportion of enhancing tumor is correlated (f5; P = .020; FDR = 0.28) with the module gene expression.75
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FIG A1. Imaging-Community-AMARETTO identifies known drivers AHR, STAT3, CCR2, and OLIG2 and uncovers novel
master drivers THBS1 and MAP2 that link distinct key mechanisms that underlie glioma. In this Imaging-Community-
AMARETTO graph, the nodes represent the regulatorymodules or circuits that are learned from the three studies of brain
cancer (The Cancer Genome Atlas [TCGA] glioblastomamultiforme [GBM], Ivy Glioblastoma Project [IvyGAP] GBM, and
TCGA low-grade glioma [LGG]; node sizes are scaled by the number of driver and target genes in themodules), the edges
represent the extent of overlapping genes between the modules across the three cohorts (edge thickness is scaled with
the significance of the overlapping genes betweenmodules), and the clouds represent how themodules across the three
cohorts are grouped into the communities or subnetworks that are learned using the Girvan-Newman edge betweenness
community detection algorithm. Imaging-Community-AMARETTO organized modules regulated by known drivers of
tumor-associated microglia and macrophage mechanisms STAT3, AHR, and CCR2 and neurodevelopmental and
stemness mechanism OLIG2 into three communities. Community 5 (C5) links STAT3, AHR, and CCR2, and C1 links
AHR and CCR2 as activators of shared modules. Modules regulated by OLIG2 are represented in C2 with OLIG2 as
activator of its modules. Of note, C2 also contains a module that links OLIG2 and CCR2 co-acting as repressor and
activator, respectively (Fig 6). Imaging-Community-AMARETTO also uncovered THBS1 and MAP2 as novel master
drivers across the three STAT3, AHR, CCR2, and OLIG2 communities that provide new insights into how these distinct
keymechanisms are linked in glioma. THBS1 is an activator driver of threemodules in C1 and C5, and a repressor driver
of threemodules in C2.MAP2 is a repressor driver of threemodules in C1 and C5 and an activator driver of sixmodules in
C2 (except repressor of TCGAGBMmodule 98). Taken together, C1 linksAHR and THBS1 (TCGAGBMmodule 79). C2
links OLIG2, MAP2, and THBS1 (TCGA GBM module 75; Fig 5); OLIG2 and MAP2 (IvyGAP GBM module 38, TCGA
GBMmodule 61); CCR2,OLIG2, andMAP2 (TCGA GBMmodule 98; Fig 6). C5 links CCR2, AHR, and THBS1 (IvyGAP
GBMmodule 64; Fig 3) andAHR and STAT3 (TCGA LGGmodule 125; Fig 2). Using genetic knockdown experiments of
THBS1 from LINCS/Connectivity Map, we confirmed that THBS1 acts as activator and repressor drivers of its targets in
IvyGAP GBM module 64 (Fig 3) and TCGA GBM module 75 (Fig 5), respectively (http://portals.broadinstitute.org/
pochetlab/JCO_CCI_Imaging-AMARETTO/Imaging-AMARETTO_HTML_Report_TCGA-GBM_IVYGAP-GBM_TCGA-
LGG/; www.ndexbio.org/#/network/16820740-d7ea-11e9-bb65-0ac135e8bacf).
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