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A B S T R A C T   

The ever-changing environmental conditions and pollution are the prime reasons for the onset of several 
emerging and re-merging diseases. This demands the faster designing of new drugs to curb the deadly diseases in 
less waiting time to cure the animals and humans. Drug molecules interact with only protein surface on specific 
locations termed as ligand binding sites (LBS). Therefore, the knowledge of LBS is required for rational drug 
designing. Existing geometrical LBS prediction methods rely on search of cavities based on the fact that 83% of 
the LBS found in deep cavities, however, these methods usually fail where LBS localize outside deep cavities. To 
overcome this challenge, the present work provides an artificial neural network (ANN) based method to predict 
LBS outside deep cavities in animal proteins including human to facilitate drug designing. In the present work a 
feed-forward backpropagation neural network was trained by utilizing 38 structural, atomic, physiochemical, 
and evolutionary discriminant features of LBS and non-LBS residues localized in the extracted roughest patch on 
protein surface. The performance of this ANN based prediction method was found 76% better for those proteins 
where cavity subspace (extracted by MetaPocket 2.0, a consensus method) failed to predict LBS due to their 
localization outside the deep cavities. The prediction of LBS outside deep cavities will facilitate in drug designing 
for the proteins where it is not possible due to lack of LBS information as the geometrical LBS prediction methods 
rely on extraction of deep cavities.   

1. Introduction 

The ever changing environment as well as pollution might be reasons 
for the onset of emerging diseases quite often, demands the faster 
designing of new drugs to curb the deadly diseases in animals and 
humans. Usually, drug molecules interact with proteins and thus, 
knowledge of protein structures is essential for rational drug designing 
or structure-based drug designing (Smith & Williams, 2002; Reynolds 
et al., 2010). However, there are less protein structures available in 
comparison to available protein sequences, hence, their functions 
remain undetermined. Interaction of drug molecules with proteins in
cludes only protein surface (Pettit et al., 2007) on specific locations 
termed as ligand binding sites (LBS) or functional sites (Via et al., 2000). 
Therefore, their knowledge is essential for rational drug designing 
(Sotriffer and Klebe, 2002). Existing geometrical LBS prediction 
methods (Yu et al., 2010; Weisel et al., 2007; Brady and Stouten, 2000) 
rely on search of cavities based on the fact that 83% of the LBS found in 
deep cavities (Lewis, 1991; Laskowsk et al., 1996). There are various 
cavity based LBS prediction methods which are purely geometrical or 

geometrical with added physicochemical properties or purely energy 
based or evolutionary and threading based or consensus methods (which 
add results of other methods e.g. MetaPocket2.0 by Zhang et al. (2011)). 
Some of the efficient methods developed over the years are POCKET by 
Levitt & Banaszak (1992); SURFNET by Laskowski (1995); LIGSITE by 
Hendlich et al. (1997); PASS by Brady & Stouten (2000); Q-SiteFinder by 
Laurie & Jackson (2005); LIGSITEcs and LIGSITEcsc by Huang & 
Schroeder (2006); Pocketpicker by Weisel et al. (2007); FINDSITE by 
Brylinski & Skolnick (2008); Fpocket by Le Guilloux et al. (2009); 
MetaPocket by Huang (2009); MetaPocket 2.0 by Zhang et al. (2011), 
and Depth by Tan et al. (2013). For the final selection of the top cavities, 
suggested as potential LBSs, the existing methods utilize various com
binations of atomic, residual, structural, and evolutionary features etc. 

Due to dependency of the existing LBS prediction methods on cavity 
search, these methods fail where LBS localize outside the deep cavities i. 
e. in 17% proteins as reported by Laskowsk et al. (1996) and Nisius et al. 
(2012). In this regard, artificial neural network (ANN) based method is 
proposed for the prediction of LBS that localize outside deep cavities in 
animal proteins including human. In the present work, a feed-forward 
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back propagation ANN was trained utilizing 38 discriminant features 
(such as structural, atomic, physiochemical, and evolutionary etc.) of 
the LBS and non-LBS residues found within the roughest patch on the 
protein surface extracted by R-subspace (Singh & Lahiri, 2017a). The 
performance of this ANN based prediction method was found 76% better 
for those animal proteins where cavity subspace (extracted by Meta
Pocket 2.0, a consensus method) failed to predict LBS due to their 
localization outside the deep cavities. The prediction of LBS outside 
deep cavities will facilitate in drug designing for the proteins where it is 
not possible due to lack of LBS information as the geometrical LBS 
prediction methods rely on extraction of deep cavities. 

2. Material and methods 

2.1. Data utilized 

The data set I of 75 animal proteins including human (Supplemen
tary Table 1) with LBS finding on shallow surface in place of deep 
cavities was downloaded from RCSB-PDB to train and test the ANN. 
Then, the trained network was tested for cross-validation on separate 
data set II with test set II of 25 animal proteins including human (Sup
plementary Table 1) extracted from 210 protein-ligand complexes were 
taken from the PLD database (Puvanendrampillai and Mitchell, 2003) 
along with dataset of 198 drug target protein data mentioned in the 
work of Zhang et al. (2011) with datasets of 48 bound (Holo) and un
bound (Apo) structures mentioned in work of Huang and Schroeder 
(2006); for which MetaPocket 2.0 failed to predict LBS as localizing 
outside deep cavities (08 proteins for which MetaPocket2.0 failed to 
provide any result, 11 proteins for which none of the predicted cavities 
included LBS, and 06 proteins for which top three cavities failed to 
include LBS, mentioned in Supplementary Table 1). By the result of 
MetaPocket2.0, it was confirmed that in dataset II with test set II of 25 
animal proteins including human LBSs were localized not in deep cav
ities. Lay-out of the work plan from data collection to network testing is 
provided in Fig. 1. 

2.2. Extraction of roughest patch on protein surface 

The roughest patch on protein surface was extracted using R-sub
space in all the proteins utilized in the present study based on the al
gorithm mentioned by Singh and Lahiri (2017a). All the residues 
localized within the roughest patch were grouped into LBS and non-LBS 
residues based on the LBS residues listed in the PDB files of the proteins 
used in the present study. Then, various features (Table 1) were 
extracted for all the LBS and non-LBS residues to feed as input to the 
ANN to train and test the network. 

2.3. Feature extraction for network training 

There were 38 features (listed in Table 1) extracted for LBS and non- 
LBS residues and their atoms found within the localized roughest patch 
on the protein surface. First 8 features were physicochemical properties 
of 20 amino acids. Features 1 to 7 were taken from the work of Guo et al. 
(2008), which they utilized for protein-protein interaction study, how
ever, in the present study, these features were found to be useful in LBS 
prediction also. Feature 8 was hydropathy index given by Kyte and 
Doolittle (1982). Features from 9 to 13 were structure based features. 
Feature 9 and 10 were calculated from the information given in PDB 
files, both these features are mentioned in the work of Sankararaman 
et al. (2010). Feature 11 is the new feature added in the present study, 
termed as Depth of residue and calculated as average distance of all 
atoms of each residue from the center of gravity (CG) of the protein. 
Features 12 to 14 were calculated by utilizing DSSP (Kabsch & Sander, 
1983) program. Feature 15 was evolutionary feature extracted in terms 
of conservation score of individual amino acid residues and calculated 
by ConSurf (Ashkenazy et al., 2016) program. Features 16 to 33 were 
based on various amino acid residue properties (taken in binary) 
mentioned in the work of Sankararaman et al. (2010) and Nelson and 
Cox (2008). However, features 34 to 38 were the atomic properties of 
atoms of amino acid residues mentioned in the work of Krivák and 
Hoksza (2015). 

Fig. 1. Lay-out of the work plan from data collection to network testing (*LBS = ligand binding site).  
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2.4. Classification of LBS and non-LBS residues 

For the classification of amino acid residues into LBS (class 1: C1) and 
non-LBS residues (class 2: C2), following steps were followed: 

2.4.1. Classifier utilized: ANN 
In this study, ANN was utilized as classifier. Neural Network Tool of 

MATLAB was used with specifications such as: Feed-forward back 
propagation network (FFBPN) architecture, TRAINLM (Levenberg- 
Marquardt optimization) training function, LEARNGDM (Gradient 
descent with momentum weight and bias) adaptation learning function, 
MSE (mean of squared error) performance function, TANSIG transfer 
function, along with 01 hidden layers with 10 nodes, and 1000 epochs. 

2.4.2. Training and test data sets 
First, LBS and non-LBS residue data from the roughest patch 

extracted by R-subspace of 75 proteins were extracted to be taken as 
data set I including training set and test set (I). However, both the class 
data were unequal in size as the LBS residues (C1) are very less in 
number in comparison to non-LBS residues (C2), which could led to 
biased classification by network towards class of bigger data. Therefore, 
to nullified this class disparity, C2 data of equal size with C1 data was 
selected randomly from the whole C2 data using random sampling 
approach. Then, 70% of merged data (C1+C2) was taken as training 
data and rest of 30% data was taken as test set (I). A separate data set II 
including test set (II) was prepared from the 25 proteins (Table 2). 

2.4.3. Preparation of input and output data 
Input data prepared for the ANN classifier was extracted as 38 fea

tures mentioned in Table 1 for all the residues localized within the 
roughest patch extracted by R-subspace. However, output data was 
prepared as (1, − 1) for the LBS residues and (− 1, 1) for the non-LBS 
residues. 

2.4.4. Transformation of input data 
In the present study, input data prepared by extracted 38 features 

was both in binary (e.g. residue properties) and decimals (e.g. physi
cochemical properties of amino acids). Therefore, the input data was 
needed to transform first to avoid the disparity in data ranges. The min- 
max normalization (Han et al., 2011) was utilized to transform input 
data in the range of 0–1 by using following formula: 

Table 1 
List of 38 features (based on 05 properties, denoted as A-E) extracted for LBS and non-LBS residues used to prepare input for ANN.   

(A) Physicochemical properties of amino acids  
1. Hydrophobicity - H1  
2. Hydrophilicity -H2  
3. Volume of side chains - V  
4. Polarity – P1  
5. Polarizability – P2  
6. Solvent accessible surface area - SASA  
7. Net charge index of side chains– NCI  
8. Hydropathy index – HI  

(B) Structure based features  
9. B-factor – BF (taken from PDB file)  

10. Centrality – CN (calculated as inverse average distance of each amino acid residue from all other residues of that protein)  
11. Depth of residue – DR (calculated as distance of each residue from the center of gravity (CG) of the protein)  
12. Secondary structure - SS (for individual residue calculated by DSSP)  
13. Accessible surface – ACC (for each residue of the protein calculated by DSSP)  
14. Kappa bend angle – KA (for each residue of the protein calculated by DSSP)  

(C) Evolutionary feature  
15. Conservation color – CC (conservation color scores (1–9) based on conservation scores calculated by ConSurf were taken and converted to binary by taking 9 as 1 and rest 1 to 

8 as 0)  
(D) Residue properties  

16. Charged residues  
17. Positive charged residues  
18. Negative charged residues  
19. Ionisable residues  
20. Hydrophobic residues  
21. Hydrophilic residues  
22. Nucleophilic residues  
23. Acidic residues  
24. Basic residues  
25. Amide residues  
26. Aliphatic residues  
27. Hydroxyl group containing residues  
28. Cyclic side chain containing resides  
29. Sulphur containing residues  
30. Aromatic residues  
31. Hydrogen acceptor residues  
32. Hydrogen donor residues  
33. Hydrogen donor acceptor residues  

(E) Atomic properties  
34. O atoms – (number of neighbouring oxygen atoms)  
35. N atoms – (number of neighbouring nitrogen atoms)  
36. C atoms – (number of neighbouring carbon atoms)  
37. Hydrogen acceptor atoms –(number of neighbouring H-acceptor atoms)  
38. Hydrogen donor atoms –(number of neighbouring H-donor atoms)  

Table 2 
Detail of data sets including animal proteins from various organisms used to 
train and test the network.  

Protein data 
sets 

Data sets Number of inputs 

I- 75 proteins Training 
set 

38 features of 414 LBS and 414 non-LBS residues 

Test set I 38 features of 177 LBS and 177 non-LBS residues) 
II- 25 

proteins 
Test set II 38 features of LBS and non-LBS residues from 

individual protein at a time  
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X,
i =

Xi − minF

maxF − minF
(maxF′ − minF′) + minF′  

Here, X,
i was transformed value of an unit Xi of feature F. minF and maxF 

were minimum and maximum values of feature F, respectively, and minF′ 

and maxF′ were new minimum and maximum values of feature F, 
respectively, which were taken as 0 and 1, respectively in the present 
study. 

Then, the minimum and maximum values for the input data of 
training set were also utilized to normalize input data of both test sets I 
and II. 

2.4.5. Parameters of performance evaluation 
In the present study, following parameters (Krivák & Hoksza, 2015) 

were utilized to evaluate the performance of ANN classifier for the 
classification of LBS and non-LBS site residues: 

Recall=
tp

tp + fn  

here, tp = true positive (correctly predicted LBS residue) and fn = false 
negative (wrongly predicted LBS residue) cases. 

Precision=
tp

tp + fp  

here, fp = false positive (wrongly predicted non-LBS residues) cases 

MCC=
(tp × tn) − (fp × fn)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(tp + fp)(tp + fn)(tn + fp)(tn + fn)

√

here, tn = true negative (correctly predicted non-LBS residues) 
However, success rate was utilized to evaluate the efficiency of ANN 

based LBS prediction. 

Success rate =
Number of hits
Total proteins

× 100  

here, hit means a protein for which at least of one residue predicted 
correctly as LBS residue comes within range of 4 Å distance (Krivák & 
Hoksza, 2015) of ligand molecule for that protein. 

3. Results and discussion 

The present study proposed an ANN based method for the prediction 
of LBS localized outside deep cavities and propose its utilization as an 
alternative to cavity based LBS prediction methods in animal proteins. 
Moreover, it was interesting to check whether the cases of failure of 
MetaPocket 2.0 could be overcome by this new ANN based LBS pre
diction method. In this regard, the outcome of performance of this 
proposed ANN based prediction method was given in terms of efficiency 
of the trained network as well as efficiency of the LBS prediction on 
different test data sets. 

3.1. Efficiency of trained ANN for LBS prediction and its basis 

The recall, precision and Matthews Correlation Coefficient (MCC) 
were 82.37, 75.28 and 55.56, respectively for the training set and 78.53, 
71.65 and 47.68, respectively for the test set A of Data set I of 75 proteins 
(Table 3). 

There are well known facts that the LBS residues are more conserved 

(Panchenko et al., 2004; Liang et al., 2006) and are found more in loop 
or coil regions than other structures (Regad et al., 2011). Seven out of 
eight physiochemical properties mentioned as features 1 to 7 were taken 
from the work of Guo et al. (2008) where these were utilized for 
protein-protein interaction study with high efficiency. The present study 
utilized these features for the first time for the LBS prediction. Moreover, 
some residues, particularly Arg, His, Trp and Tyr are more frequent in 
LBS (Villar & Kauvar, 1994). The present study was focused to explore 
and utilize as many as reported discriminant features for LBS and 
non-LBS residues to classify them. Other features included conservation 
pattern and structural profiles of individual amino acid residues of 
proteins, physiochemical properties, atomic and residual properties of 
standard 20 amino acids utilized for the training of neural network for 
LBS prediction were the basis of the performance of this classifier. The 
present study added a new feature i.e. depth of residue, calculated as the 
average distance of all the atoms of each residue from the center of 
gravity (CG) of the protein. Depth of the residue was found to be an 
important geometric feature added for the first time in the present study. 
Efficiency (in terms of recall, precision and MCC) of the trained network 
was found to be comparable with the efficiency of classifier mentioned 
in the work of Krivák and Hoksza (2015) for various mentioned data sets 
except CHEN11 dataset, however, data set utilized in the present study 
was different where LBS information was available in PDB files to 
correctly train the network. 

3.2. Efficiency of LBS prediction 

Data set II of 25 proteins as test set II (for which MetaPocket2.0 
failed) was utilized for the evaluation of efficiency of LBS prediction by 
testing the trained network. Efficiency of this prediction is measured in 
terms of success rate which was 76% (as shown in Table 4) for the 25 
animal proteins where MetaPocket 2.0 failed to predict LBS, though both 
have almost equal search subspace in terms of roughest patch from R- 
subspace and cavity subspace from MetaPoacket2.0. Detail of these 
proteins was given in Table 5 which includes 08 proteins for which 
MetaPocket 2.0 failed to provide any output, 11 proteins where whole 
cavity-subspace failed to localize LBS and 06 proteins where top three 
cavities failed to include LBS, where LBS localized outside the deep 
cavity. However, the proposed ANN + R-subspace based LBS failed only 
for 06 proteins out of these 25 proteins with the success rate of 76%. 

It was found to be encouraging that the proposed ANN + R-subspace 
based LBS prediction method was successful for 76% cases in compari
son to 0% success rate of MetaPocket2.0 for the set of 25 proteins. It is 
also much higher in comparison to results mentioned by Krivák and 
Hoksza (2018) as it was accessed on the proteins where LBS localized 
outside deep cavities. The increase of success rate of this proposed ANN 
based LBS prediction method might be attributed due to the inclusion of 
geometric roughness in the spatial distribution of atoms within the 
design architecture of R-subspace (Singh & Lahiri, 2017a) to get the 
roughest patch on the protein surface and the utilization of improved 
Rotating cylindrical probe method proposed by Singh and Lahiri 
(2017b) for the surface extraction to extract the roughest patch as the 
LBS is a surface phenomenon. 

4. Conclusion 

The present study helps to overcome the problem of occasional 

Table 3 
Performance of trained network for the data set I.  

Data set I Recall Precision MCC 

Training set 82.37 75.28 55.56 
Test set I 78.53 71.65 47.68  

Table 4 
Success rate of cavity-subspace provided by MetaPocket 2.0 and ANN based LBS 
prediction method in Data set II.  

Data set II Success rate of LBS prediction 

MetaPocket 2.0 ANN + R-subspace based method 

Test set II 0/25 proteins 19/25 proteins (76%)  
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failure of cavity based LBS prediction in animal proteins where they 
localize outside deep cavities by providing an ANN + R-subspace based 
LBS prediction method. It was found that the proposed method could 
serve as a better alternative with 76% better success rate than the cavity 
based LBS prediction methods where these methods failed due the 
localization of LBS outside deep cavity in case of about 17% of the 
proteins. The result was interpreted in the light of two properties, uti
lization of the roughest patch extracted on the protein surface using R- 
subspace capable of localizing LBS where cavity-subspace fails and 
utilization of more available discriminant features between LBS and 
non-LBS residues for the training of artificial neural network classifier. 
Therefore, this approach could be utilized as a better alternative to 
MetaPocket 2.0, a consensus method for LBS prediction, to enhance the 
success rate of LBS prediction, where LBS localizes outside deep cavities. 
The prediction of LBS outside deep cavities will facilitate in drug 
designing for the proteins where it is not possible due to lack of LBS 
information as the geometrical LBS prediction methods rely mainly on 
extraction of deep cavities. 
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