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In the last decade, technological advances, combined with an improved appreciation of 
the ability of saliva to inform caregivers about both oral health and systemic disease, have 
led to the emergence of salivary diagnostic platforms. However, the majority of these 
assays have targeted diseases that more commonly affect the adult population, largely 
neglecting infants and children who arguably could benefit the most from non-invasive 
assessment tools for health monitoring. Gaining access into development, infection, and 
disease through comprehensive “omic” analyses of saliva could significantly improve 
care and enhance health access. In this review, we will highlight novel applications of 
salivary diagnostics in pediatrics across the “omic” spectrum, including at the genomic, 
transcriptomic, proteomic, microbiomic, and metabolomic level. The challenges to imple-
menting salivary platforms into care, including the effects of age, diet, and developmental 
stage on salivary components, will be reviewed. Ultimately, large-scale, multicenter trials 
must be performed to establish normative biomarker values across the age spectrum to 
accurately discriminate between health and disease. Only then can salivary diagnostics 
truly translate into pediatric care.
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inTRODUCTiOn

Serum biomarkers have long been the gold standard for diagnostic testing (1–6). However, in recent 
years, advances in biotechnology, combined with a clinical demand for more user-friendly and non-
invasive platforms, have led to the emergence of salivary diagnostic assays to better monitor disease, 
infection, and development (7–11). Perhaps, no other patient population could benefit more from 
these advances than pediatrics. The avoidance of serial phlebotomy for monitoring our most at-risk 
patients reduces trauma and limits anemia (12, 13). Further, as national and international organiza-
tions, such as the United States Food and Drug Association (USFDA) now mandate enrollment 
of children in clinical trials, assays that do not rely on invasive blood sampling offer a safer, more 
appealing alternative (14–16). While the benefits of salivary analysis in the pediatric population are 
plentiful, translating assays into clinical care remains a challenge. Salivary assay development for the 
adult population has seen exponential growth in recent decades, while diagnostics that aim at the 
unique diseases and conditions affecting infants and children lag significantly behind (Figure 1). 
Defining the clinical significance of individual variations in biomarker levels, determining thresh-
olds that clearly discriminate between health and disease, and understanding the impact of age, diet, 
and development on the composition of saliva present hurdles to implementation. Nevertheless, a 
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FigURe 1 | Histogram illustrating exponential growth of salivary diagnostic platforms over time. Though the number of assays designed for children and 
infants has also increased, there remains a relative paucity of platforms targeted for this age demographic. (Data derived from a PubMed search 9.9.16: keywords 
“salivary biomarkers”; limits: humans.)
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wealth of information can be gained from a mere drop of human 
saliva. From predicting physiological development and biological 
functions, to microbial and metabolic analyses, saliva is provid-
ing pediatric caregivers and researchers with an exciting new tool 
for exploration (9, 17–21).

In this review, we will highlight novel applications of salivary 
analyses across the “omic” spectrum, including at the genomic, 
transcriptomic, proteomic, metabolomic, and microbiomic 
level. The important impact of age and development on saliva 
components will be reviewed, and specific attention will be given 
to emerging platforms for use in both neonatal and pediatric 
populations. Limitations to assay development and clinical imple-
mentation will be discussed to further our understanding of both 
the applicability and the translatability of salivary diagnostics in 
the pediatric population.

SALivARY vARiATiOn ACROSS  
THe PeDiATRiC Age SPeCTRUM

Though largely composed of water, human saliva contains elec-
trolytes, microorganisms, enzymes, proteins, immunoglobulins, 
nucleic acids, enzymes, hormones, mucins, and drugs (22–24). 
Commercially available collection and stabilizing kits (e.g., DNA 
Genotek, Oasis Diagnostics®) allow for both ease of collection 

and stabilization of constituents, often for weeks at a time at room 
temperature. These components, whether molecule, transcript, 
protein, metabolite, or microbe, are reflective of both the age 
and developmental stage of the individual (25–27). For example, 
salivary enzymes, such as amylase, are known to increase from 
early infancy through adolescence, ultimately peaking in adult-
hood (28–31). Salivary electrolyte levels are also known to vary 
with age. Calcium and magnesium are significantly higher in 
infancy compared to later in life; sodium to potassium ratios 
reach their highest levels in adolescence, likely corresponding 
to aldosterone surges associated with puberty (22). Such analyte 
concentration variability presents both opportunities and chal-
lenges for the investigator. The ability to non-invasively monitor 
growth and development, in real time, provides great promise 
(Figure 2). However, an investigator must be aware of biological 
changes that occur with age, as well as unique patient populations 
and situations, which may directly affect the oral cavity and its 
constituents, ultimately impacting the reliability and applicability 
of salivary assays.

There are critical environmental and developmental changes 
that take place in early life that also have a direct impact on 
saliva. For infants born prematurely (<37 weeks’ gestation), not 
only may the ongoing development of salivary glands impact 
filtration, secretion, and diffusion of molecules into saliva 
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FigURe 2 | Benefits and limitations of saliva as a biofluid for biomarker discovery compared to serum, plasma, or whole blood.
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(32) but also mode of birth (cesarean vs. vaginal), initiation 
of feeds, and type of nutrition (breast milk vs. formula), may 
directly affect microbial colonization and diversification in the 
oral cavity. In recent years, multiple investigators have begun 
to describe and highlight the rapid microbial colonization of 
the human shortly after birth (33–35). Deviations from normal 
deliveries, delays in the initiation of enteral nutrition, and pro-
longed hospitalizations are now known to significantly impact 
colonization of the gastrointestinal (GI) system (36–38). As the 
entry point to the GI system and a critical player in overall GI 
health, saliva undoubtedly is equally affected by these variables. 
In addition, studies have shown a significant increase in oral 
microbial colonization and taxa variability as an infant grows 
and develops (39). Teeth eruption during the first few months to 
years of life and exposure to solid foods are considered to be the 
major contributors to this variability (39, 40). Oral bacteria that 
reside in gingival crevices and around teeth begin to emerge with 
tooth eruption. In parallel, both albumin and immunoglobulin 
(Ig) G levels rise in saliva with increasing mucosal permeability 
(41). Further, studies have shown that with the introduction of 
solid foods, salivary peptidomal profiles are altered (39) and 
Ig levels shift from non-specific innate immunity to specific 
immune response elements, e.g., IgA and β-2 microglobulin 
of MHC class I. These alterations are believed to reflect the 
development of adaptive immune responses after exposure to 
different noxious dietary and environmental substances (39, 

40). These age-specific differences remind investigators that 
they must consider the developmental stage of an individual 
when designing and importantly, interpreting salivary assays. 
Normative values and microbial diversification will vary 
with age, and assay interpretation must reflect these findings 
appropriately.

SALivARY “OMiCS”

Salivary genomics
The oral cavity, though not saliva in particular, has offered caregiv-
ers a direct, non-invasive source of genomic material. In recent 
years, genetic testing has moved away from reliance upon inva-
sive blood sampling toward user-friendly buccal swabs (42, 43). 
From commercially available at-home genetic testing kits (e.g., 
http://23andme.com, http://Ancestry.com) to paternity testing 
in the NICU, the ease with which sufficient quality and quantity 
of DNA samples can be obtained has markedly improved (43). 
However, beyond cellular DNA which is best harvested through 
cells, saliva is likely a rich source of cell-free and exosomal DNA 
that may provide caregivers with specific opportunities to monitor 
the overall health of the individual and further explore cell-to-cell 
communication (44–46). While research in this area continues to 
emerge, it is easy to see its applicability to child health. Genomic 
analysis of plasma cell-free DNA is directly impacting the field of 
cancer biology (47). Oncologists may now monitor the genomes 
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of cell-free tumor DNA in plasma samples in order to generate 
targeted and personal therapies, assess drug resistance, and 
monitor a patient’s response to therapy by quantitative analysis 
of tumor load. Analysis of salivary cell-free DNA may provide 
similar insight and be highly beneficial in children affected by 
cancer who are already undergoing countless needle sticks and 
invasive procedures. Indeed, Pu et al. have recently demonstrated 
the applicability of a salivary assay for the detection of a genomic 
deletion in the epidermal growth factor receptor in patients with 
non-small cell lung cancer (48). While future studies are needed 
to demonstrate the role of cell-free salivary DNA in child health, 
it nevertheless offers yet another opportunity to improve delivery 
of care in this vulnerable population.

Salivary Transcriptomics
Our laboratory was one of the first to publish real-time devel-
opmental information available at a transcriptomic (RNA or 
gene expression) level in the newborn (49–51). In our original 
article, we demonstrated that transcripts, indicative of all major 
organ systems, were readily detected in an infant’s mouth (49). 
Genes identified were known to play a role in the developing 
GI, nervous, and hematological systems. While the trafficking 
mechanisms of these gene transcripts remain largely unknown, 
these initial hypothesis discovery experiments led to a series of 
targeted assays aimed at better defining developmental milestones 
and phenotypes.

Using high-throughput screening tools, such as multiplexed 
reverse transcriptase-quantitative polymerase chain reaction, 
on total RNA extracted from as little as 5 µL of neonatal saliva, 
we have been able to identify a panel of genes whose combined 
expression profiles may help neonatal caregivers to objectively 
assess oral feeding skills (52, 53). Genes identified on the panel 
are involved in diverse biological functions including hunger 
signaling (AMPK, NYP2R), palate development (WNT3), and 
sensory integration (NPHP4, PLXNA1). In initial studies, the 
combined salivary expression profile of these biomarkers was 
shown to be up to 78% accurate in predicting mature oral feed-
ing skills in the newborn. In addition, our laboratory has been 
the first to link expression levels of a well-described speech–
language gene, FOXP2, to oral feeding success in the newborn 
(54, 55). These experiments have laid the foundation for future 
studies to non-invasively explore developmental biology in our 
youngest patients and offer caregivers an enormous opportunity 
to utilize salivary transcriptomics to further explore, diagnose, 
and potentially prevent other areas of neonatal pathology 
where disrupted development results in unique and often life-
threatening diseases including bronchopulmonary dysplasia, 
necrotizing enterocolitis (NEC), or retinopathy of prematurity. 
However, as a newly emerging field, it is important to recognize 
the potential impact of growth and biology on assay applicabil-
ity. As stated previously, defining normative values across the 
age spectrum, exploring sex differences in expression patterns, 
understanding the role of salivary gland development, micro-
bial colonization patterns, diet, and tooth eruption on gene 
expression will take prospective, collaborative, multicenter 
trials. Failing to perform the necessary experiments, such 
as observational studies to examine developing microbial 

colonization patterns or to establish normative reference genes 
for appropriate gene expression analyses over time, will directly 
impact our ability to translate these exciting discoveries to the 
bedside.

Salivary Proteomics and Metabolomics
Saliva has been estimated to contain approximately 2,000 pep-
tides, comprising 40–50% of total secreted body proteins (56). 
Unlike nucleic acids (DNA and RNA) that traditionally require 
the additional step of extraction prior to analysis, salivary proteins 
may be detected and quantified directly after collection. This ease 
of processing, combined with their relative stability compared to 
either DNA or RNA, makes proteins ideal biomarkers. Recent 
advances in technology and bioinformatics has allowed for the 
comprehensive profiling of hundreds to thousands of proteins 
from a single sample source to improve our understanding of 
the physiological, as well as the pathological, status of the human 
being (57–61).

To date, salivary protein biomarkers have been described for 
multiple adult oral and systemic diseases, including breast, pan-
creatic, and oral cancers (62–65), as well as autoimmune diseases, 
such as Sjögren’s disease, diffuse systemic sclerosis, rheumatoid 
arthritis, and systemic lupus erythematosus (SLE) (66). Moreover, 
studies have investigated the role of salivary proteomic analyses 
to predict myocardial infarction, diabetes mellitus types 1 and 
2, and pulmonary diseases (67–69). While the pediatric patient 
population is ripe for similar diagnostic advances, here too, an 
investigator must pay specific attention to unique circumstances, 
including ongoing and rapid development as well as hormonal 
changes associated with puberty, which may impact proteomic 
analyses in newborns, infants, and children.

The salivary proteome varies from childhood to adolescence 
and is often dependent upon growth (70–72). For example, 
concentrations of salivary insulin growth factor (IGF-I) may 
vary and serve as an indicator of skeletal growth throughout 
childhood (71). Nutritional status of the child also affects sali-
vary biomarkers. Malnourished children have specific salivary 
proteomic variations associated with protein energy under nutri-
tion or PEU (73), and children affected with type 1 diabetes have 
been shown to have higher levels of salivary pro-inflammatory 
biomarkers compared to healthy controls. Conversely, there is a 
growing body of research examining salivary metabolomics that 
may predict metabolic syndrome, type 2 diabetes, and obesity 
in children. A recent study of 744 children (age 11) showed that 
salivary levels of c-reactive protein, salivary insulin, and leptin 
were higher and adiponectin levels lower in obese children 
compared to healthy normal weight children (74). Other studies 
tested the applicability and reliability of using salivary glucose 
levels as a surrogate for blood levels (75–77). With the use of a 
regression equation, salivary glucose values could accurately be 
converted to blood glucose levels, providing patients, especially 
children with type 1 diabetes, with a non-invasive tool for self-
monitoring (78).

Beyond assessing the nutritional and metabolic status of 
children, there have been a limited number of studies utilizing 
salivary proteins for disease detection in this population. Salivary 
biomarkers for familial juvenile SLE, a more aggressive form 
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of the disease known to causes widespread tissue damage and 
inflammation, have been described (79). Interestingly, there have 
also been recent studies showing aberrant protein expression in 
the saliva of children affected with autism spectrum disorder. 
Research has shown that there are decreased levels of three 
proteins, statherin, histatin 1, and acidic proline-rich protein, 
in the saliva of autistic children compared to healthy controls  
(80, 81). In addition, Wormwood and colleagues have recently 
demonstrated that salivary proteomic analyses of children can 
inform caregivers about developing cognitive functions (82). The 
ability of saliva to provide a window into disrupted neurodevel-
opment holds enormous promise for the field, allowing caregivers 
insight into areas of the body once believed only to be accessible 
though costly neuroimaging (e.g., MRI, CT) or invasive proce-
dures (e.g., cerebral spinal fluid, blood).

Salivary Microbiomics and Metagenomics
According to the World Health Organization, infectious diseases 
are the leading cause of death of children and adolescents world-
wide (83). Improved methods for earlier detection of infections, 
particularly in developing nations where blood sampling is not 
only invasive but also impractical, holds the potential for sig-
nificantly improving outcomes. While the healthy human mouth 
contains as many as 500 million bacterial cells with more than 
700 different colony species (84–86), it can also harbor and shed 
pathological infections. Upper respiratory infections, such as the 
influenza virus and human bocavirus HboV-1, a mild respiratory 
disease, can be detected in the saliva up to 1 year after primary 
infection (87, 88). In addition, cytomegalovirus (CMV), Epstein–
Barr virus, human herpes virus (HHV) 6, and HHV7 can all be 
detected in human saliva (89–91). CMV, the most common cause 
of congenital hearing loss in children in developed countries (92), 
was one of the first viruses to be successfully detected through 
salivary analysis in the newborn (93). These initial reports showed 
not only that the virus was as readily detectable in saliva compared 
to more traditional assays using urine but also that saliva had a 
higher sensitivity for CMV detection compared to blood (94). 
Most recently, saliva has been shown to be an important biofluid 
for monitoring infectious Zika virus particles (95, 96). Salivary 
assays aimed at Zika RNA detection may prove to be a valuable 
tool for caregivers who are tracking exposure rates, transmission, 
and shedding of the virus.

In addition to the specific microbial detection, saliva also 
contains IgA, IgM, and IgG, which can assess immunological 
status and response to infection (97). For instance, studies have 
reported both the detection of specific antibodies to rotavirus 
infection in saliva (98), as well as the immunological response 
after administration of the vaccine (99). Similarly, rubella-specific 
IgM antibodies are detectable in children’s saliva (100), as are 
IgG levels of children who are seropositive for mumps, measles, 
and the herpes simplex virus (101, 102). Moreover, the hepatitis  
B virus, human immunodeficiency viruses, and Salmonella typhi 
can all be identified through the use of advanced technologi-
cal approaches for Ig detection in the salivary fluid of children 
(103–105).

One of the more interesting aspects of working with saliva as 
a biofluid for clinical assessment is the fact that it harbors hun-
dreds of organisms. In recent years, the field of metagenomics, 
defined as the genomes of all the organisms living in a specific 
environment in the human body, has emerged (106). Our ability 
to analyze not simply human gene and protein expression but 
also the organisms residing in the mouth that may be responsible 
for such a response, provides yet another opportunity to improve 
child health. Unique microbial colonization patterns have been 
shown to be associated with disease including childhood caries, 
NEC, and metabolic syndrome. Identifying aberrant microbial 
colonization patterns, while simultaneously monitoring an indi-
vidual’s unique immune and inflammatory response, may allow 
for the development of preventative strategies to improve health 
outcomes (86, 107).

Other Considerations and Applications
In 2014, the Centers for Disease Control reported that the preva-
lence of children ≥12 years old using illicit drug was 12% (107), 
and the use of non-medical psychotherapeutic drugs was 2.5%. 
Sadly, as drug abuse has become increasingly common, novel 
detection methods, including those that can be performed easily 
in the either home or office under direct visualization, are needed. 
Salivary drug screening assays have already been approved by  
the USFDA and are available for medical and commercial use  
(e.g., http://americanscreeningcorp.com). Cocaine, ampheta-
mines, opioids, benzodiazepines, and tetra-hydro-cannabinoids, 
among others, can all be detected and quantified in saliva 
(108–111). Further, concentrations of drug metabolites of a vari-
ety of prescribed drugs are also measurable in saliva (112, 113), 
making ease of obtaining therapeutic levels without invasive, 
serial phlebotomy possible.

COnCLUSiOn

Salivary diagnostics are primed to have an important impact on 
infant and child health. Whether accessing the genome, exploring 
real-time gene and protein expression during development, or 
evaluating the metabolic and infectious status of the individual, 
applying the latest technological advances to salivary analysis 
can provide valuable insight into the health of the child in a safe, 
non-invasive manner. However, careful attention must be made 
to age, diet, and developmental stage when designing assays. 
Establishing normative values of gene and protein expression, 
as well as metabolites and microbes, to account for normal 
variations across the age spectrum can only be achieved through 
prospective, large-scale, multicenter trials. Only then can data 
be interpreted appropriately and the hope of translating salivary 
diagnostic into pediatric carefully realized.
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